U(t) (t) -U T 1. (t) (t)

Size: px
Start display at page:

Download "U(t) (t) -U T 1. (t) (t)"

Transcription

1 Prof. Dr.-ng. F. Schuber Digial ircuis Exercise. () () A () - T T The highpass is driven by he square pulse (). alculae and skech A (). = µf, = KΩ, = 5 V, T = T = ms. Exercise. () () A () T T The highpass is driven by he pulse (). alculae and skech A (). = nf, = KΩ, = 5 V, T = T = µs. Exercise.3 E () E () A () T D Dimension he highpass for a pulse source E () wih he square pulse in ha way, ha - he oupu has he mos possible low impedance, - he load of he source is always lower han 50 ma and - he pulse il d of he oupu volage A () is lower han one percen. hoose values for N and N from he E-series ( N = 80 Ω, N =560 nf). = 50 Ω, = 0 V, T D = µs. (E-series:,0/,/,5/,8/,/,7/3,3/3,9/4,7/5,6/6,8/8, Tolerance 0 %) Ü -

2 Prof. Dr.-ng. F. Schuber Digial ircuis [Exercise.4] () A () () T D T P alculae he upper value Amax and he lower value Amin of he oupu volage in he seady sae. [Exercise.5] 0 X S A n he given circui is he swich S for he same duraion of ime T/ in posiion respecively. a) alculae for he seady sae (). b) Skech for he seady sae (). X = 50 pf, = A = KΩ, 0 = 0 V, T = 00 ns. Exercise.6 5 V E E 0 A T D The lowpass is driven by he given pulse. a) alculae A () for > 0. b) Skech A (). = nf, = KΩ, = KΩ, = 0 KΩ, 0 = 0 V, T D = 0 µs. Ü -

3 Prof. Dr.-ng. F. Schuber Digial ircuis Exercise.7 E E E E A E 0 0 E T D T T D a) alculae he equivalen pulse source relaive o he connecions E - E'. b) alculae A (). c) Skech A (). = 50 Ω, = 70 Ω, = 00 Ω, = 00 nf, 0 = 5V, T D = 0 µs, T = T D = 5 µs. Exercise.8 The given circui measures he capacior x. The swich S will be closed a he ime = 0 and he skeched process of charging sars. The evaluaion logic measures he ime inerval = -. The inpu curren of he evaluaion logic is zero. 0 S = 0 EVALATON LOG x x x = V, = 8 V, 0 = 0 V, = kω a) How is he value of X, if = 500 ns is measured? ( X =33 pf). b) Skech X for 00 ns < < 0 ms. f he capacior X is no ideal wih an isolaion resisor x here will be an error in measuremen. s he measured capacior `X in his case higher or lower han (Wih jusificaion)? Ü - 3

4 Prof. Dr.-ng. F. Schuber Digial ircuis Exercise 3. p P L L Q a) alculae for he AND-Gae wihou load L QL,, L, QH and H. ( max = P, min = 0 V) ( QL = 0,667 V, L =-,33 ma, QH = 5,4 V, H =0,06µA). b) alculae for he AND-Gae wih load L he emporal course of Q (), if () is a square impulse (T D = 3 µs, v T = 0,5). c) Skech Q (). d) How are he values of T and T F? (T = 0,79 µs, T F =0,8 ns). L = 00 pf, P = 4 KΩ, L = 36 KΩ, P = 6 V. Diodes: F = 0,6 V, F = 50 Ω, = 0 MΩ ( >> P ). Exercise 3.3 K B T L Q = 5 V, = 560 Ω, B = KΩ Transisor T: BEX = 0,7 V, EX = 0, V, B0 = 0 A, B N = 00 The ransisor driver is loaded wih L. a) alculae he load L for he condiion QH,4 V ( L = 57 Ω). b) alculae he collecor curren and he required base curren B for a sauraion facor m =. ( = 8,56 ma, B = 0,7 ma) c) alculae he value of K, if H =,4 V is given. hoose a value KN from he E-series. ( K =,95 kω, KN =,5 kω) E-series:,0,,5,8,,7 3,3 3,9 4,7 5,6 6,8 8, Tolerance ± 0 % Ü - 4

5 Prof. Dr.-ng. F. Schuber Digial ircuis Exercise 3.5 G K B L Q G B esisors: G =, KΩ, K =,7 KΩ, B = 8 KΩ, =,8 KΩ, L =,8 KΩ Supply volages: - B = = V Driving source: GX = 8 V, GY = V Transisor daa: BEX = 0,7 V, EX = 0 V, B0 0 A, n he given ransisor swich he used ransisor shall be subsiued by a new ype. a) Wha is he curren amplificaion facor B N of he new ransisor ype, if always is valid m =? (B N = 34,). b) heck, if he ransisor is surely blocked ( BEY 0 V). ( BEY = -0,996 V). Exercise 3.7 TTLgae K A Q B B = V B = - V B = 0 KΩ, = 00 Ω Transisor: EX = 0, V, BEX = 0,6 V, B N = 00, B0 = 0 A TTL-Gae: QH =,4 V, QL = 0, V, OT = 0 The ransisor raises he ampliude of he pulse a he oupu of he TTL-gae. a) The ransisor swich shall surely be in he sauraion (m = ). alculae he resisor K and choose a value KN from he E-series. ( K = 735 Ω, KN = 560 Ω) b) heck, if he ransisor is surely blocked ( BEYmax < 0 V). ( BEY = -0,54 V) E-series:,0,,5,8,,7 3,3 3,9 4,7 5,6 6,8 8, Tolerance ± 0 % Ü - 5

6 Prof. Dr.-ng. F. Schuber Digial ircuis Exercise 3.9 L S K B T & & & 50 = 5 V L = 680 Ω, B = 80 Ω TTL-npu : - L,6 ma, H 40 µa Transisor T: BEX = 0,7 V, EX = 0 V, B0 = 0 A, B N = 00 The given ransisor driver shall be loaded wih 50 TTL-inpus. a) heck, if a blocked ransisor T he condiion H,4 V is valid. ( H = 3,64 V) b) alculae he collecor curren and he base curren B for a sauraion facor m =. ( = 87,4 ma, B =,75 ma) c) alculae he value of K, if S = 3 V is given. hoose a value KN from he E-series. ( K = 884 Ω, KN = 680 Ω) Ü - 6

7 Prof. Dr.-ng. F. Schuber Digial ircuis Exercise 3. The oupu of a MOS-gae shall drive hree TTL-inpus. For adapaion is used a ransisor swich. Q Q K T & & & 3 MOS-gae ransisor swich TTL-gae From daa shees is known: MOS-oupu (a 0 V supply volage): Q G H L Q H = 9,95 V, L = 0,05 V, G = 600 Ω TTL-inpu : H 40 µa a H V, - L,6 ma a L 0,8 V Transisor T: BEX = 0,7 V, EX 0 V, B0 = 0 µa, B N = 0, = 5 V, = KΩ a) heck, if a blocked ransisor = H V is valid. ( H = 4,87 V) c) Dimension K for a sauraion facor m =. hoose a value for KN from he E-series. ( KN = 6,8 kω) Ü - 7

8 Prof. Dr.-ng. F. Schuber Digial ircuis Exercise 4. Deermine he combinaorial logic, ha realize he following circuis in posiive logic. (NO, O, AND) 5 V 4K,6K K 4K Q K 5 V 4K,5K,6K 30 4K Q K K 5 V 4K K,6K 30 Q 800 K Ü - 8

9 Prof. Dr.-ng. F. Schuber Digial ircuis Exercise 4. Deermine he combinaorial logic, ha realize he following circuis in posiive logic. (AND, T STATE-driver). DD Q DD Q OE Ü - 9

10 Prof. Dr.-ng. F. Schuber Digial ircuis Exercise 5. E - E d + A alculae under assumpion of an ideal operaional amplifier (A 0 =, N =, OT = 0) he volage amplificaion V = A / E and he inpu resisor EN = E / E of he given circui. (V = -00, EN = 0, kω) = 0, kω, = 0 kω Exercise 5. - E d + E A a) alculae under assumpion of an ideal operaional amplifier (A 0 =, N =, OT = 0) he volage amplificaion V = A / E and he inpu resisor ein = E / E of he given circui. ( A / E = 0, EN = ) b) alculae he volage amplificaion for = 0. ( A / E = ) = 0, KΩ, = 0 KΩ Exercise E + A alculae under assumpion of an ideal operaional amplifier (A 0 =, N =, OT = 0) A = f( E ). ( A = - /() E d) Ü - 0

11 Prof. Dr.-ng. F. Schuber Digial ircuis Exercise 5.4 Z Z Z 3 - Z 4 E + A a) alculae under assumpion of an ideal operaional amplifier (A 0 =, N =, OT = 0) he volage amplificaion V = A / E of he given circui. b) alculae he value of V, if Z 4 approaches and Z 3 approaches 0? Exercise 5.9 D S SH Q S Q SL A E = 0 Ω, A = 0,9 V, E =,7 V Diode D: F = 0,3 V, =, = 0 Ω Equivalen circuis: Schmi-rigger-inpu nverer-oupu H QH 0 L QL Q H L = 6 KΩ, 0 = 4,3 V H = 3,7 V, H = 70 Ω, L = 0, V, L = 0 Ω The given asable circui wih Schmi-rigger and inverer shall be invesigaed for he seady sae. a) Deermine for = 0 Ω he pulse duy facor v Ta of he oupu volage Q. (v Ta = 0,39) b) For which value of has he pulse duy facor of Q he value v Tb = 0,5 an? (Neglec he inpu curren!) ( = 79 Ω) Ü -

12 Prof. Dr.-ng. F. Schuber Digial ircuis Exercise 5.0 is given he following monosable rigger circui wih a imer 555: K A OMP G A > Q Y OMP S > X K B G B T Skech he emporal course of he volage afer a rigger-impulse and calculae under assumpion of ideal elemens he pulse-duraion T D of he monosable rigger circui. (T D = * ln 3) Exercise 5. is given he following asable rigger circui, ha can be conrolled by he volage S : S K A G A OMP > Q Y D OMP S > KB G B T Daa of he diode D: F = 0 V, = 0 A, F = 0 Ω, =. Daa of he ransisors T: EX = 0 V, B0 = 0 A. npu-resisors of he comparaors N. a) Explain guided by he emporal courses of and Y he funcion of he circui. b) alculae in general he pulse-duraion T D, he pulse-pause T P and he frequency f as funcions of,, and S. (T D = * ln(( /3 S )/( -/3 S )); T P = * ln((/3 S )/(/3 S ))) c) Which mark-o-space raio ges one for S = and S = /? (v T = 0,5; v T = 0,44) d) Dimension and in ha way, ha for S = he frequency is 5 khz. Which frequency hen ges one for S = /? ( = 0,084 ms; f =,7 khz) Ü -

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

2 Definitions and parameters of the impulse-technics

2 Definitions and parameters of the impulse-technics efiniions and parameers of he impulse-echnics igial logic-circuis are driven wih signals, which only represen wo levels: he levels LOW and HIGH or he variables wih he values "" and ". These levels are

More information

Chapter 4 DC converter and DC switch

Chapter 4 DC converter and DC switch haper 4 D converer and D swich 4.1 Applicaion - Assumpion Applicaion: D swich: Replace mechanic swiches D converer: in racion drives Assumions: Ideal D sources Ideal Power emiconducor Devices 4.2 D swich

More information

Pulse Generators. Any of the following calculations may be asked in the midterms/exam.

Pulse Generators. Any of the following calculations may be asked in the midterms/exam. ulse Generaors ny of he following calculaions may be asked in he miderms/exam.. a) capacior of wha capaciance forms an RC circui of s ime consan wih a 0 MΩ resisor? b) Wha percenage of he iniial volage

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

i sw + v sw + v o 100V Ideal switch characteristics

i sw + v sw + v o 100V Ideal switch characteristics deal swich characerisics. onsider he swiching circui shown in Fig. P. wih a resisive load. Assume he swich is ideal and operaing a a duy raio of 4%. (a) Skech he waveforms for i sw and v sw. (b) Deermine

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

Lecture -14: Chopper fed DC Drives

Lecture -14: Chopper fed DC Drives Lecure -14: Chopper fed DC Drives Chopper fed DC drives o A chopper is a saic device ha convers fixed DC inpu volage o a variable dc oupu volage direcly o A chopper is a high speed on/off semiconducor

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

555 Timer. Digital Electronics

555 Timer. Digital Electronics 555 Timer Digial Elecronics This presenaion will Inroduce he 555 Timer. 555 Timer Derive he characerisic equaions for he charging and discharging of a capacior. Presen he equaions for period, frequency,

More information

Timer 555. Digital Electronics

Timer 555. Digital Electronics Timer 555 Digial Elecronics This presenaion will Inroduce he 555 Timer. 555 Timer Derive he characerisic equaions for he charging and discharging of a capacior. Presen he equaions for period, frequency,

More information

Basic Principles of Sinusoidal Oscillators

Basic Principles of Sinusoidal Oscillators Basic Principles of Sinusoidal Oscillaors Linear oscillaor Linear region of circui : linear oscillaion Nonlinear region of circui : ampliudes sabilizaion Barkhausen crierion X S Amplifier A X O X f Frequency-selecive

More information

Non Linear Op Amp Circuits.

Non Linear Op Amp Circuits. Non Linear Op Amp ircuis. omparaors wih 0 and non zero reference volage. omparaors wih hyseresis. The Schmid Trigger. Window comparaors. The inegraor. Waveform conversion. Sine o ecangular. ecangular o

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution: Example: The inpu o each of he circuis shown in Figure 10-N1 is he volage source volage. The oupu of each circui is he curren i( ). Deermine he oupu of each of he circuis. (a) (b) (c) (d) (e) Figure 10-N1

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Cosmic Feb 06, 2007 by Raja Reddy P

Cosmic Feb 06, 2007 by Raja Reddy P osmic ircuis@iisc, Feb 6, 7 by aja eddy P. ou() i() alculae ou(s)/(s). plo o(). calculae ime consan and pole frequency. ou ( e τ ) ou (s) ( s) Time consan (/) Pole frequency : ω p. i() n he above circui

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

Features / Advantages: Applications: Package: Y4

Features / Advantages: Applications: Package: Y4 IGBT (NPT) Module CES = x 1 I C = 9 =. CE(sa) Phase leg Par number MII7-13 1 Backside: isolaed 7 3 Feaures / dvanages: pplicaions: Package: Y NPT IGBT echnology low sauraion volage low swiching losses

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 37 Chaper 8: Second Order Circuis Discuss Exam Daniel M. Liynski, Ph.D. Exam CH 1-4: On Exam 1; Basis for work CH 5: Operaional Amplifiers CH 6: Capaciors and Inducor CH 7-8:

More information

Chapter 2: Logical levels, timing and delay

Chapter 2: Logical levels, timing and delay 28.1.216 haper 2: Logical levels, iming and delay Dr.-ng. Sefan Werner Winersemeser 216/17 Table of conen haper 1: Swiching lgebra haper 2: Logical Levels, Timing & Delays haper 3: Karnaugh-Veich-Maps

More information

Features / Advantages: Applications: Package: Y4

Features / Advantages: Applications: Package: Y4 IGBT (NPT) Module CES = 12 I C25 = 16 = 2.2 CE(sa) Buck Chopper + free wheeling Diode Par number MDI145-123 Backside: isolaed 1 7 6 3 2 Feaures / dvanages: pplicaions: Package: Y4 NPT IGBT echnology low

More information

Features / Advantages: Applications: Package: Y4

Features / Advantages: Applications: Package: Y4 IGBT (NPT) Module CES = 12 I C2 = 16 = 2.2 CE(sa) Boos Chopper + free wheeling Diode Par number MID14-123 Backside: isolaed 1 3 4 2 Feaures / dvanages: pplicaions: Package: Y4 NPT IGBT echnology low sauraion

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

Fundamentals of Power Electronics Second edition. Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder

Fundamentals of Power Electronics Second edition. Robert W. Erickson Dragan Maksimovic University of Colorado, Boulder Fundamenals of Power Elecronics Second ediion Rober W. Erickson Dragan Maksimovic Universiy of Colorado, Boulder Chaper 1: Inroducion 1.1. Inroducion o power processing 1.2. Some applicaions of power elecronics

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 35 Chaper 8: Second Order Circuis Daniel M. Liynski, Ph.D. ECE 1 Circui Analysis Lesson 3-34 Chaper 7: Firs Order Circuis (Naural response RC & RL circuis, Singulariy funcions,

More information

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers A ircuis A ircui wih only A circui wih only A circui wih only A circui wih phasors esonance Transformers Phys 435: hap 31, Pg 1 A ircuis New Topic Phys : hap. 6, Pg Physics Moivaion as ime we discovered

More information

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect

HV513 8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect H513 8-Channel Serial o Parallel Converer wih High olage Push-Pull s, POL, Hi-Z, and Shor Circui Deec Feaures HCMOS echnology Operaing oupu volage of 250 Low power level shifing from 5 o 250 Shif regiser

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Converter - Brake - Inverter Module (CBI2)

Converter - Brake - Inverter Module (CBI2) Converer - Brake - Inverer Module (CBI2) 21 22 D11 D13 D15 1 2 3 7 D7 16 15 T1 D1 T3 D3 T5 D5 18 6 17 5 19 4 D12 D14 D16 T7 T2 D2 T4 D4 T6 D6 23 14 24 11 12 13 NTC 8 9 Three Phase Brake Chopper Three Phase

More information

Silicon Controlled Rectifiers UNIT-1

Silicon Controlled Rectifiers UNIT-1 Silicon Conrolled Recifiers UNIT-1 Silicon Conrolled Recifier A Silicon Conrolled Recifier (or Semiconducor Conrolled Recifier) is a four layer solid sae device ha conrols curren flow The name silicon

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

( ) = Q 0. ( ) R = R dq. ( t) = I t

( ) = Q 0. ( ) R = R dq. ( t) = I t ircuis onceps The addiion of a simple capacior o a circui of resisors allows wo relaed phenomena o occur The observaion ha he ime-dependence of a complex waveform is alered by he circui is referred o as

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

Converter - Brake - Inverter Module (CBI2)

Converter - Brake - Inverter Module (CBI2) Converer - Brake - Inverer Module (CBI2) 21 22 D11 D13 D1 1 2 3 7 D7 16 1 T1 D1 T3 D3 T D 18 2 6 17 19 4 D12 D14 D16 T7 T2 D2 T4 D4 T6 D6 23 14 24 11 1 12 13 NTC 8 9 Three Phase Brake Chopper Three Phase

More information

p h a s e - o u t Three Phase Rectifier Bridge with IGBT and Fast Recovery Diode for Braking System VVZB 135 = 1600 V = 135 A Recommended replacement:

p h a s e - o u t Three Phase Rectifier Bridge with IGBT and Fast Recovery Diode for Braking System VVZB 135 = 1600 V = 135 A Recommended replacement: VVZB 5 Three Phase Recifier Bridge wih IGBT and Fas Recovery Diode for Braking Sysem V RRM I dvm = 6 V = 5 V RRM Type + 6 5 4 NTC 9 + V 6 VVZB 5-6 NO 6+7 4+5 + Symbol Condiions Maximum Raings V RRM 6 V

More information

Experimental Buck Converter

Experimental Buck Converter Experimenal Buck Converer Inpu Filer Cap MOSFET Schoky Diode Inducor Conroller Block Proecion Conroller ASIC Experimenal Synchronous Buck Converer SoC Buck Converer Basic Sysem S 1 u D 1 r r C C R R X

More information

Converter - Brake - Inverter Module (CBI2)

Converter - Brake - Inverter Module (CBI2) MUBW 5-6 7 Converer - Brake - Inverer Module (CBI2) 2 22 D D3 D5 2 3 7 D7 6 5 T D T3 D3 T5 D5 8 2 6 7 5 9 4 D2 D4 D6 T7 T2 D2 T4 D4 T6 D6 23 4 24 2 3 NTC 8 9 Three Phase Brake Chopper Three Phase Recifier

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direc Curren Circuis February 19, 2014 Physics for Scieniss & Engineers 2, Chaper 26 1 Ammeers and Volmeers! A device used o measure curren is called an ammeer! A device used o measure poenial difference

More information

EE 301 Lab 2 Convolution

EE 301 Lab 2 Convolution EE 301 Lab 2 Convoluion 1 Inroducion In his lab we will gain some more experience wih he convoluion inegral and creae a scrip ha shows he graphical mehod of convoluion. 2 Wha you will learn This lab will

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation

Outline. Chapter 2: DC & Transient Response. Introduction to CMOS VLSI. DC Response. Transient Response Delay Estimation Inroducion o CMOS VLSI Design Chaper : DC & Transien Response David Harris, 004 Updaed by Li Chen, 010 Ouline DC Response Logic Levels and Noise Margins Transien Response Delay Esimaion Slide 1 Aciviy

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

Chapter 5-4 Operational amplifier Department of Mechanical Engineering

Chapter 5-4 Operational amplifier Department of Mechanical Engineering MEMS08 Chaper 5-4 Operaional amplifier Deparmen of Mechanical Engineering Insrumenaion amplifier Very high inpu impedance Large common mode rejecion raio (CMRR) Capabiliy o amplify low leel signals Consisen

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

Module 10 SCR. 2. To understand two Transistor Static and Transient Models. 3. To learn the SCR Turn-on and Turn-off methods

Module 10 SCR. 2. To understand two Transistor Static and Transient Models. 3. To learn the SCR Turn-on and Turn-off methods 1 Module 1 SR 1. Inroducion 2. SR characerisics 3. Two ransisor saic and ransien models 4. SR urnon mehods 5. SR urnoff mehods 6. SR proecion and Triggering circuis 7. ae proecion circuis 8. Summary Learning

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

EECS 141: FALL 00 MIDTERM 2

EECS 141: FALL 00 MIDTERM 2 Universiy of California College of Engineering Deparmen of Elecrical Engineering and Compuer Science J. M. Rabaey TuTh9:30-11am ee141@eecs EECS 141: FALL 00 MIDTERM 2 For all problems, you can assume he

More information

Converter - Brake - Inverter Module (CBI3)

Converter - Brake - Inverter Module (CBI3) MUBW 35-12 8 Converer - Brake - Inverer Module (CBI3) 21 22 D11 D13 D15 1 2 3 7 D7 1 15 T1 D1 T3 D3 T5 D5 18 2 17 5 19 4 D12 D14 D1 23 14 24 T7 11 1 T2 D2 T4 D4 T D 12 13 See ouline drawing for pin arrangemen

More information

2.9 Modeling: Electric Circuits

2.9 Modeling: Electric Circuits SE. 2.9 Modeling: Elecric ircuis 93 2.9 Modeling: Elecric ircuis Designing good models is a ask he compuer canno do. Hence seing up models has become an imporan ask in modern applied mahemaics. The bes

More information

The problem with linear regulators

The problem with linear regulators he problem wih linear regulaors i in P in = i in V REF R a i ref i q i C v CE P o = i o i B ie P = v i o o in R 1 R 2 i o i f η = P o P in iref is small ( 0). iq (quiescen curren) is small (probably).

More information

SFH636. Optocoupler, Phototransistor Output, 1 Mbd, 10 kv/ms CMR, Split CollectorTransistor Output VISHAY. Vishay Semiconductors.

SFH636. Optocoupler, Phototransistor Output, 1 Mbd, 10 kv/ms CMR, Split CollectorTransistor Output VISHAY. Vishay Semiconductors. Opocoupler, Phooransisor Oupu, Mbd, kv/ms CMR, Spli CollecorTransisor Oupu Feaures High Speed Opocoupler wihou Base Connecion Isolaion Tes Volage: 3 V RMS GaAlAs Emier Inegraed Deecor wih Phoo diode and

More information

3~ Rectifier Bridge, half-controlled (high-side) + Brake Unit + NTC /20 NTC. Features / Advantages: Applications: Package: E2-Pack

3~ Rectifier Bridge, half-controlled (high-side) + Brake Unit + NTC /20 NTC. Features / Advantages: Applications: Package: E2-Pack ZB3-6ioX hyrisor Module M = 6 I = D FSM = 7 I 3~ ecifier Brake hopper ES = 2 I = 2 2 E(sa) =,8 3~ ecifier Bridge, half-conrolled (high-side) + Brake Uni + N Par number ZB3-6ioX Backside: isolaed / 3 2

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY

UNIVERSITY OF CALIFORNIA AT BERKELEY Homework #10 Soluions EECS 40, Fall 2006 Prof. Chang-Hasnain Due a 6 pm in 240 Cory on Wednesday, 04/18/07 oal Poins: 100 Pu (1) your name and (2) discussion secion number on your homework. You need o

More information

Smart Highside Power Switch PROFET

Smart Highside Power Switch PROFET Smar ighside Power Swich PROFET BTS 410E2 Feaures TO220AB/ Overload proecion Curren limiaion Shor circui proecion Thermal shudown 1 1 Overvolage proecion (including Sandard Sraigh leads SMD load dump)

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

XPT IGBT Module MIXA450PF1200TSF. Phase leg + free wheeling Diodes + NTC MIXA450PF1200TSF. Part number

XPT IGBT Module MIXA450PF1200TSF. Phase leg + free wheeling Diodes + NTC MIXA450PF1200TSF. Part number XPT IGBT Module CS 2x 12 I C25 1.8 C(sa) Phase leg + free wheeling Diodes + NTC Par number Backside: isolaed 5 2 1 8 7 9 3 4 /11 Feaures / dvanages: pplicaions: Package: SimBus F High level of inegraion

More information

IXGH48N60C3D1. GenX3 TM 600V IGBT with Diode V CES = 600V I C110. = 48A V CE(sat) 2.5V t fi(typ) = 38ns. High speed PT IGBT for kHz Switching

IXGH48N60C3D1. GenX3 TM 600V IGBT with Diode V CES = 600V I C110. = 48A V CE(sat) 2.5V t fi(typ) = 38ns. High speed PT IGBT for kHz Switching GenX3 TM 6V IGBT wih Diode High speed PT IGBT for 4-1kHz Swiching IXGH48N6C3D1 V CES = 6V 11 = 48A V CE(sa) 2.V fi(yp) = 38ns TO-247 Symbol Tes Condiions Maximum Raings V CES = C o C 6 V V CGR = C o C,

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

9. Alternating currents

9. Alternating currents WS 9. Alernaing currens 9.1 nroducion Besides ohmic resisors, capaciors and inducions play an imporan role in alernaing curren (AC circuis as well. n his experimen, one shall invesigae heir behaviour in

More information

Chapter 5: Discontinuous conduction mode. Introduction to Discontinuous Conduction Mode (DCM)

Chapter 5: Discontinuous conduction mode. Introduction to Discontinuous Conduction Mode (DCM) haper 5. The isconinuous onducion Mode 5.. Origin of he disconinuous conducion mode, and mode boundary 5.. Analysis of he conversion raio M(,K) 5.3. Boos converer example 5.4. Summary of resuls and key

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

MC3x063A 1.5-A Peak Boost/Buck/Inverting Switching Regulators

MC3x063A 1.5-A Peak Boost/Buck/Inverting Switching Regulators MC3303A, MC3403A SLLS3N DECEMBER 004 REVISED JANUARY 05 MC3x03A.5-A Peak Boos/Buck/Invering Swiching Regulaors Feaures 3 Descripion Wide Inpu Volage Range: 3 V o 40 V The MC3303A and MC3403A devices are

More information

NDP4050L / NDB4050L N-Channel Logic Level Enhancement Mode Field Effect Transistor

NDP4050L / NDB4050L N-Channel Logic Level Enhancement Mode Field Effect Transistor April 996 NP45L / NB45L N-Channel Logic Level Enhancemen Mode Field Effec Transisor General escripion Feaures These logic level N-Channel enhancemen mode power field effec ransisors are produced using

More information

SFH636. Pb Pb-free. Optocoupler, Phototransistor Output, 1 Mbd, 10 kv/ms CMR, Split CollectorTransistor Output VISHAY. Vishay Semiconductors

SFH636. Pb Pb-free. Optocoupler, Phototransistor Output, 1 Mbd, 10 kv/ms CMR, Split CollectorTransistor Output VISHAY. Vishay Semiconductors Opocoupler, Phooransisor Oupu, Mbd, kv/ms CMR, Spli CollecorTransisor Oupu Feaures High Speed Opocoupler wihou Base Connecion Isolaion Tes Volage: 3 V RMS GaAlAs Emier Inegraed Deecor wih Phoo diode and

More information

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits

Sequential Logic. Digital Integrated Circuits A Design Perspective. Latch versus Register. Naming Conventions. Designing Sequential Logic Circuits esigning Sequenial Logic Circuis Adaped from Chaper 7 of igial egraed Circuis A esign Perspecive Jan M. Rabaey e al. Copyrigh 23 Prenice Hall/Pearson Sequenial Logic pus Curren Sae COMBINATIONAL LOGIC

More information

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure Lab 4: Synchronous Sae Machine Design Summary: Design and implemen synchronous sae machine circuis and es hem wih simulaions in Cadence Viruoso. Learning Objecives: Pracice designing and simulaing digial

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Universià degli Sudi di Roma Tor Vergaa Diparimeno di Ingegneria Eleronica Analogue Elecronics Paolo Colanonio A.A. 2015-16 Diode circui analysis The non linearbehaviorofdiodesmakesanalysisdifficul consider

More information

Power MOSFET Stage for Boost Converters

Power MOSFET Stage for Boost Converters UM 33-5N Power MOSFET Sage for Boos Converers Module for Power Facor Correcion 5 = 7 DSS = 5 R DS(on) =. Ω RRM (Diode) DSS Type 5 3 7 3 5 UM 33-5N 5 7 Symbol Condiions Maximum Raings DSS T J = 5 C o 5

More information

Chapter 28 - Circuits

Chapter 28 - Circuits Physics 4B Lecure Noes Chaper 28 - Circuis Problem Se #7 - due: Ch 28 -, 9, 4, 7, 23, 38, 47, 53, 57, 66, 70, 75 Lecure Ouline. Kirchoff's ules 2. esisors in Series 3. esisors in Parallel 4. More Complex

More information

Lecture 28: Single Stage Frequency response. Context

Lecture 28: Single Stage Frequency response. Context Lecure 28: Single Sage Frequency response Prof J. S. Sih Conex In oday s lecure, we will coninue o look a he frequency response of single sage aplifiers, saring wih a ore coplee discussion of he CS aplifier,

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

Standard Rectifier Module

Standard Rectifier Module UB2-6NOX Sandard ecifier Module M = 6 I = 8 D 3~ ecifier I SM = Brake hopper ES = 2 I = 8 25 E(sa) =.7 3~ ecifier Bridge + Brake Uni Par number UB2-6NOX M/O S Backside: isolaed ~6 ~E6 ~K6 U/ W M/O W U

More information

Physics 310 Lecture 8a Digital Circuits

Physics 310 Lecture 8a Digital Circuits Mon. 3/2 Wed. 3/4 Thurs. 3/5 Fri. 3/6 h : Digial ircuis h s & 2: Digial ircuis Lab 8: Digial ircuis More of e same Quiz h s & 2 Physics 30 Mon. 3/29 h 4.,.6-.0; pp 373-374 (Sampling Frequency); 2.6: AD

More information

UNIT- III DC CHOPPERS

UNIT- III DC CHOPPERS UN- D HPPES NDUN A chopper is a saic device which is used o obain a variable dc volage from a consan dc volage source. A chopper is also known as dc-o-dc converer. he hyrisor converer offers greaer efficiency,

More information

Non-sinusoidal Signal Generators

Non-sinusoidal Signal Generators Non-sinusoidal Signal Geneaos ecangle, iangle, saw ooh, pulse, ec. Muliibao cicuis: asable no sable saes (wo quasi-sable saes; i emains in each sae fo pedeemined imes) monosable one sable sae, one unsable

More information

SFH6345. High Speed Optocoupler, 1 Mbd, 15 kv/ms CMR, Transistor Output Features VISHAY. Vishay Semiconductors. Agency Approvals.

SFH6345. High Speed Optocoupler, 1 Mbd, 15 kv/ms CMR, Transistor Output Features VISHAY. Vishay Semiconductors. Agency Approvals. High Speed Opocoupler, Mbd, kv/ms CMR, Transisor Oupu Feaures Direc Replacemen for HCPL43 High Speed Opocoupler wihou Base Connecion Isolaion Tes Volage: 3 V RMS GaAlAs Emier Inegraed Deecor wih Phoo diode

More information

LAB 5: Computer Simulation of RLC Circuit Response using PSpice

LAB 5: Computer Simulation of RLC Circuit Response using PSpice --3LabManualLab5.doc LAB 5: ompuer imulaion of RL ircui Response using Ppice PURPOE To use a compuer simulaion program (Ppice) o invesigae he response of an RL series circui o: (a) a sinusoidal exciaion.

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

Lecture 040 Digital Phase Lock Loops (DPLLs) (09/01/03) Page 040-1

Lecture 040 Digital Phase Lock Loops (DPLLs) (09/01/03) Page 040-1 Lecure 040 Digial Phase Lock Loops (DPLLs) (09/01/03) Page 040-1 LECTURE 040 DIGITAL PHASE LOCK LOOPS (DPLLs) INTRODUCTION Inroducion Objecive: Undersand he operaing principles and classificaion of DPLLs.

More information

Features / Advantages: Applications: Package: SMPD

Features / Advantages: Applications: Package: SMPD X0PLB XP GB x CES C CE(sa). SOPLUS Surface Moun Power Device Phase leg SCR / GB Par number X0PLB Backside: isolaed E664 6 4 Feaures / dvanages: pplicaions: Package: SMPD XP GB - low sauraion volage - posiive

More information

Type Ordering Code Package TLE 4729 G Q67006-A9225 P-DSO-24-3 (SMD)

Type Ordering Code Package TLE 4729 G Q67006-A9225 P-DSO-24-3 (SMD) 2-Phase Sepper-Moor Driver Bipolar-IC TE 4729 G Feaures 2.7 amp. full bridge oupus Inegraed driver, conrol logic and curren conrol (chopper) ery low curren consumpion in inhibi mode Fas free-wheeling diodes

More information

Smart Highside Power Switch

Smart Highside Power Switch Smar ighside Power Swich Feaures Overload proecion Curren limiaion Shor circui proecion Thermal shudown Overvolage proecion (including load dump) Fas demagneizaion of inducive loads Reverse baery proecion

More information

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context

Reading. Lecture 28: Single Stage Frequency response. Lecture Outline. Context Reading Lecure 28: Single Sage Frequency response Prof J. S. Sih Reading: We are discussing he frequency response of single sage aplifiers, which isn reaed in he ex unil afer uli-sae aplifiers (beginning

More information

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive

EE 330 Lecture 41. Digital Circuits. Propagation Delay With Multiple Levels of Logic Overdrive EE 330 Lecure 41 Digial ircuis Propagaion Delay Wih Muliple Levels of Logic Overdrive Review from Las Time The Reference Inverer Reference Inverer V DD R =R PD PU = IN= 4OX WMIN LMIN V IN M 2 M 1 L VTn.2VDD

More information

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies

Application Note AN Software release of SemiSel version 3.1. New semiconductor available. Temperature ripple at low inverter output frequencies Applicaion Noe AN-8004 Revision: Issue Dae: Prepared by: 00 2008-05-21 Dr. Arend Winrich Ke y Words: SemiSel, Semiconducor Selecion, Loss Calculaion Sofware release of SemiSel version 3.1 New semiconducor

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges.

Section 2.2 Charge and Current 2.6 b) The current direction is designated as the direction of the movement of positive charges. Chaper Soluions Secion. Inroducion. Curren source. Volage source. esisor.4 Capacior.5 Inducor Secion. Charge and Curren.6 b) The curren direcion is designaed as he direcion of he movemen of posiive charges..7

More information