04. Kinetics of a second order reaction

Size: px
Start display at page:

Download "04. Kinetics of a second order reaction"

Transcription

1 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, rrhenius Law, acivaion energy, conducance, conduciviy, molar conduciviy. Objecive In his experimen you will follow he reacion rae of a hydrolysis in ime by measuring he conducance of a reacion mixure. Mehyl-aceae hydrolyses in a basic medium according o second-order kineics. From his fac, and from he measured conducance ime funcion you can calculae he rae consan of his reacion. By carrying ou his measuremen a differen emperaures, he acivaion energy of his reacion can be calculaed using he rrhenius Law. From he compuer assised measuremen you will also learn how a compuer direcs and handles he daa sampling, daa ransforming and calculaing processes. Theoreical background Le s consider a general chemical reacion: + B P + Q. B Facors, represen soichiomeric coefficiens, while componens of reacion are he reacans ( and B) B, P, Q and he producs (P and Q). d P d Q The producs have posiive rae of producion (hese species are produced, > ), he reacans have d[ ] d[ B] negaive ones (hese species are consumed, < ). The reacion rae in a closed sysem under consan-volume condiions can be defined as: dc v P Q [ ] [ ] [ ] d[ B] d[ P] d[ Q] d For several reacions he reacion rae can be wrien in he following form (called rae equaion): B v k [ ][ B] We invesigae in his lab he hydrolyses of mehyl-aceae in a basic medium. The chemical equaion is he following: P Q CH COOCH + OH CH COO + CH OH () The reacion is a second-order one, herefore if he concenraions of he reacans are he same he inegraed reacion equaion has he following form: [ ] [ ] [ ] [ ] [ ] [ ] k (2) Since he elecric conducance significanly decreases during he reacion (he high mobile OH ions are replaced by he much slower aceae ions), he progress of he reacion can be followed by conducomery. Le s go hrough some basic quaniies relaed o conducomery! d The elecric resisance (Ω) of he conducomery cell is given as: R ρ where d is he disance beween wo parallel plaes and is he surface area of one of he plainum shees. The maerial consan, ρ is referred o as specific resisiviy. 2//25 4hou25

2 The specific conduciviy (Ω - m - ): κ ρ The conducance (Ω - ): G R The molar conduciviy (Ω - m - mol - m Ω - mol - m 2 ): κ λ c Here, we derive he kineic equaion in erms of a physical parameer ha is proporional o he concenraion. The elecric conducance (G) of a reacion mixure is summed up of he conduciviies of all he componens of he sysem. In general, for any physical quaniy (Y) ha is proporional o he concenraion of he componens, [M]: where z M is a proporionaliy consan. z M [ M] The oal (measurable) conducance of he reacion mixure: Y () Y (4) oal Ysolven + YMec. + Y - + Y - + Y + Y Na + OH c MeOH The conducance of he solven and he consan: Y Y + Y + consan solven Na + Na ion does no change during he reacion, since heir concenraion is Due o small conribuion of he mehyl-aceae and mehanol heir conducance can be negleced: Y +Y Mec. Taking ino accoun hese he oal conducance: Y Y + Y + Y z OH + z c + Y (5) oal OH c consan OH MeOH [ ] [ ] consan where z - and z - are proporionaliy consans. OH c Le us noe he reacan concenraion by []. From he soichiomery of he reacion we know ha c. [ ] [ ] [ ] he beginning of he reacion ( ) [] [] and [c ], herefore Y, hus he iniial oal conducance, Y : c - c [ OH ] + Yconsan z [ ] Yconsan Y + z OH OH fer he compleion of he reacion ( ) [] and he final oal conducance, Y : [ c ] + Yconsan z - [ ] consan Y z + (7) - Y c c because he amoun of aceae formed is he same as ha of OH ions reaced. (6) The elecric conducance during he reacion is: Y z OH + z c + Y z + z + Y [ ] [ ] [ ] [ ] [ ] OH C consan OH C ( ) consan (8) Then we receive he following expressions from equaion (6)-(8): Y ( z z ) [ ] C OH ( z z ) [ ] [ ] The inegraed rae law can be subsequenly ransformed: Y (9) C OH ( ) Y Y () 2//25 4hou25 2

3 k Y Y [ ] Y Y () In anoher form: Y Y Ploing he Y Y Y Y Y Y k[ ] quaniy (le us denoe i as Z) as he funcion of ime (), he reacion rae consan (k), can be compued from he slope of he linear relaionship (m) if we know he iniial concenraion,[ ] : Z m () (2) Therefore he reacion rae consan is: m k (4) [ ] The ask: The elecric conducance has o be during he hydrolysis reacion a leas a wo emperaures. The sudens will also ge five slope values of he Z - funcion belonging o five emperaures from a daabase. The acivaion energy should be deermined from he given daa only. The apparaus The measuremen is performed using an on-line daa collecing sysem. The scheme of he apparaus is shown in Figure. 2//25 4hou25

4 The asks of he individual unis: - The hermosa keeps he emperaure of he reacion mixure consan. - The conducomeer wih he conducance cell is used o measure he elecric conducance of he reacion mixure. The conducance cell conains a pair of plainized plainum shee for deecing conduciviy. The conduciviy of liquid volume beween he shees is measured. The parallel oriened shees are in a proecing glass ube. Mos of he elecrochemical reacions do no proceed on plainum (noble meal), herefore measuring added reacion resisance is eliminaed. - The analog-o-digial converer ransforms he volage signal of he conduciviy meer o a binary number usable for he compuer. - The inerface is a special elecric circui ha provides he connecion beween he compuer and he laboraory environmen, hrough which he compuer can read he digial signals of he /D converer. Tools, chemicals The sudens need he following ools and chemicals for he measuremen: Procedure - 2 cm plasic syringe; - 5 cm and cm graduaed cylinders; - vacuum pump; -, mol / dm NaOH soluion; - disilled waer; - mehyl-aceae; I is a pair-work. Every pair has wo measuremens a wo emperaures (beween o C, given by he insrucor). The conduciviy ime daa are colleced and parly evaluaed by he compuer.. Se he hermosa o a emperaure which is old you by he insrucor. 2. Fill he reacion vessel wih 57 ml disilled waer and 4 ml of. mol/dm NaOH. Sar he sirrer. Wai approximaely minues while he reacion vessel conaining he 2 ml liquid reaches is equilibrium emperaure.. Sar he daa collecing program by he command: meacgy. Your insrucor will help you in filling ou he fron page of he program. Record he file name belonging o he firs measuremen in your lab repor. Check he emperaure of he reacion vessel by wriing down he emperaure readings every half minue. When he emperaure readings are he same in he las 5 minue inerval he kineics experimen is ready for a sar. 4. Turn he RNGE and CLIBRTION knobs on he conduciviy meer unil he oupu volage on he screen of he analog o digial converer (METEX digial mulimeer) will show 9 95 millivols. 5. DO THIS STEP ONLY IN THE FIRST EXPERIMENT! Fix he measure range of he METEX digial mulimeer pushing he R-H buon once. Please do no hi he buon more han once! 6. Take up ml of mehylaceae in a plasic syringe wihou bubble. 7. Choose he menu iem: MÉRÉS Hi ener and give he emperaure by one decimal precision for he reacion mixure and hi ener again. fer -2 seconds you have ime o injec mehylaceae down in he well mixed zone of he vessel. The graph consruced from he conduciviy ime daa appear on he monior. 8. fer a calculaed ime elapsed he compuer sops collecing daa and he measuremen is finished. Please do no sop he daa acquisiion sooner! 9. sk for he insrucor s help o evaluae he graph.. fer washing ou he mixure from he vessel and rinsing i wih disilled waer urn o he nex measuremen a an elevaed emperaure. Repea seps 9 (excep sep 5). The rrhenius plo Significan par of he homogeneous reacions (a leas for a narrow emperaure inerval) follows he rrhenius equaion: k e 2//25 4hou25 4 RT

5 where k is he reacion rae consan, is he pre-exponenial facor, E a is he acivaion energy, R is he gas consan and T is he hermodynamic emperaure. If we ake he based logarihm of his equaion we ge he linear form of he rrhenius equaion: lg( k ) lg( ) RT ln If we plo he logarihm of he rae consan versus he reciprocal emperaure (creae he rrhenius plo) we ge a line. The slope of he line: m R ln Therefore, he acivaion energy can be calculaed from he slope of he rrhenius line: E R ln m Resuls o hand in a - he iniial concenraion calculaed from he concenraion of he NaOH soluion in mol/dm uni aking he diluion ino accoun (4 significan figures); - elecric conducance ime graphs for wo emperaures; - Z ime graphs for wo emperaures; - he able conaining five slope values of he Z - funcions measured a five differen emperaures; he lg( k / dm mol s ) - T / K graph wih he fied line and he value of he slope (4 significan figures); - he acivaion energy in kj/mol uni (4 significan figures). Sample quesions and answers for he enrance quiz. These quesions are devoed for pracicing and preparing o labs a home. Please noe ha hese are samples only and he quesion of he enrance quiz are no resriced o hese ones! MLT Q and : Q. Give he chemical reacion of mehyl aceae wih sodium hydroxide and he formal order of his reacion.. CH COOCH + NaOH CH COONa +CH OH, I is a second order process overall in he direcion of produc formaion. Q2. Wha is he value of reacion order of in he following equaions? dc dc 2 k c k c 2. The exponens of concenraion in hese rae equaions are one and wo, herefore he reacion order is and 2, respecively. Q. Which componens cause he ime dependence of he elecric conduciviy for he reacion mixure?. The concenraion of Na + is no alered during he reacion. One OH produces one aceae anion which process is accompanied a decrease in elecric conduciviy. The conduciviy of mehanol and mehyl aceae are negligible. Q4. How can be he general inegraed rae law of second order kineics made simpler? 4. In he general he second order rae equaion can be given for he process + B P in he following form: [ ] d d k[ ][ B] The inegraed rae law: 2//25 4hou25 5

6 k [ ] [ B] ln [ ][ B] [ ] [ B] By choosing he saring concenraions of he reacans o be equal (i.e. [] [B], he rae equaion can be given [ ] d k [ ] 2 and he inegraed rae law is much more simplified: k [ ] [ ] We apply his laer condiion in his pracice. Q5. Wha are he main pars of a conducance cell? 5. The conducance cell conains a pair of plainized plainum shee for deecing conduciviy. The conduciviy of liquid volume beween he shees is measured. The parallel oriened shees are in a proecing glass ube. Q6. Give he emperaure dependence of rae consan. Find a linearized form of rrhenius law. 6. The rrhenius law in is exponenial form: RT k e where k is he reacion rae consan, is he pre-exponenial facor, E a is he acivaion energy, R is he gas consan and T is he hermodynamic emperaure. If we ake he based logarihm of his equaion we ge he linear form of he rrhenius equaion: ln k ln RT Q7. Calculae he acivaion energy using he linearized rrhenius equaion from he ln k /T plo. Daa: slope 6 K, R 8.4 J mol - K When ploing ln k agains he slope of his funcion is T E a ( ln k) slope R T R 6K J mol molk T ( ln k) J Q8. Calculae he saring concenraion of he reacion mixure! 8. [] can be calculaed from daa given in Procedure par: "Fill he reacion vessel wih 57 ml disilled waer and 4 ml of. mol/dm NaOH. Sar he sirrer.", Take up ml of mehylaceae in a plasic syringe wihou bubble.,...injec mehylaceae down in he well mixed zone of he vessel. n.4 dm. mol/dm [ ].6479 mol/dm V dm ( ) Q9. Summarize he main seps of he experimenal procedure! 9.. Se he hermosa o he desired emperaure. 2. Fill he reacion vessel wih disilled waer, NaOH soluion and sar he sirrer. Wai minues for he hermal equilibrium.. Sar he daa acquisiion program and fill he fields. 4. djus your conduciviy meer and is oupu o he desired values. 5. If his is he firs experimen push he R-H buon of he digial mulimeer once. 2//25 4hou25 6

7 6. Take up ml of mehylaceae in a plasic syringe wihou bubble and sar he daa collecion. 7. fer -2 seconds injec mehylaceae. 8. Wai ill he program ends he daa collecion. 9. Clean he reacion vessel. Q. Draw a schemaic picure abou he apparaus you are using in his lab!. See Figure. 2//25 4hou25 7

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence

CHEMICAL KINETICS: 1. Rate Order Rate law Rate constant Half-life Temperature Dependence CHEMICL KINETICS: Rae Order Rae law Rae consan Half-life Temperaure Dependence Chemical Reacions Kineics Chemical ineics is he sudy of ime dependence of he change in he concenraion of reacans and producs.

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

Chapter 13 Homework Answers

Chapter 13 Homework Answers Chaper 3 Homework Answers 3.. The answer is c, doubling he [C] o while keeping he [A] o and [B] o consan. 3.2. a. Since he graph is no linear, here is no way o deermine he reacion order by inspecion. A

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

AP Chemistry--Chapter 12: Chemical Kinetics

AP Chemistry--Chapter 12: Chemical Kinetics AP Chemisry--Chaper 12: Chemical Kineics I. Reacion Raes A. The area of chemisry ha deals wih reacion raes, or how fas a reacion occurs, is called chemical kineics. B. The rae of reacion depends on he

More information

Chapter 14 Homework Answers

Chapter 14 Homework Answers 4. Suden responses will vary. (a) combusion of gasoline (b) cooking an egg in boiling waer (c) curing of cemen Chaper 4 Homework Answers 4. A collision beween only wo molecules is much more probable han

More information

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts?

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts? AP Chemisry Tes (Chaper 12) Muliple Choice (40%) 1) Which of he following is a kineic quaniy? A) Enhalpy B) Inernal Energy C) Gibb s free energy D) Enropy E) Rae of reacion 2) Of he following quesions,

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

CHEMICAL KINETICS Rate Order Rate law Rate constant Half-life Molecularity Elementary. Complex Temperature dependence, Steady-state Approximation

CHEMICAL KINETICS Rate Order Rate law Rate constant Half-life Molecularity Elementary. Complex Temperature dependence, Steady-state Approximation CHEMICL KINETICS Rae Order Rae law Rae consan Half-life Moleculariy Elemenary Complex Temperaure dependence, Seady-sae pproximaion Chemical Reacions Kineics Chemical ineics is he sudy of ime dependence

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Polymerization Technology Laboratory

Polymerization Technology Laboratory Versuch eacion Calorimery Polymerizaion Technology Laboraory eacion Calorimery 1. Subjec Isohermal and adiabaic emulsion polymerizaion of mehyl mehacrylae in a bach reacor. 2. Theory 2.1 Isohermal and

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18

A First Course on Kinetics and Reaction Engineering. Class 19 on Unit 18 A Firs ourse on Kineics and Reacion Engineering lass 19 on Uni 18 Par I - hemical Reacions Par II - hemical Reacion Kineics Where We re Going Par III - hemical Reacion Engineering A. Ideal Reacors B. Perfecly

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

Advanced Organic Chemistry

Advanced Organic Chemistry Lalic, G. Chem 53A Chemisry 53A Advanced Organic Chemisry Lecure noes 1 Kineics: A racical Approach Simple Kineics Scenarios Fiing Experimenal Daa Using Kineics o Deermine he Mechanism Doughery, D. A.,

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018

UCLA: Math 3B Problem set 3 (solutions) Fall, 2018 UCLA: Mah 3B Problem se 3 (soluions) Fall, 28 This problem se concenraes on pracice wih aniderivaives. You will ge los of pracice finding simple aniderivaives as well as finding aniderivaives graphically

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

המחלקה : ביולוגיה מולקולרית הפקולטה למדעי הטבע

המחלקה : ביולוגיה מולקולרית הפקולטה למדעי הטבע טל : 03-9066345 פקס : 03-9374 ראש המחלקה: ד"ר אלברט פנחסוב המחלקה : ביולוגיה מולקולרית הפקולטה למדעי הטבע Course Name: Physical Chemisry - (for Molecular Biology sudens) כימיה פיזיקאלית )לסטודנטים לביולוגיה

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9:

EE650R: Reliability Physics of Nanoelectronic Devices Lecture 9: EE65R: Reliabiliy Physics of anoelecronic Devices Lecure 9: Feaures of Time-Dependen BTI Degradaion Dae: Sep. 9, 6 Classnoe Lufe Siddique Review Animesh Daa 9. Background/Review: BTI is observed when he

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Reaction Order Molecularity. Rate laws, Reaction Orders. Determining Reaction Order. Determining Reaction Order. Determining Reaction Order

Reaction Order Molecularity. Rate laws, Reaction Orders. Determining Reaction Order. Determining Reaction Order. Determining Reaction Order Rae laws, Reacion Orders The rae or velociy of a chemical reacion is loss of reacan or appearance of produc in concenraion unis, per uni ime d[p] d[s] The rae law for a reacion is of he form Rae d[p] k[a]

More information

EE 301 Lab 2 Convolution

EE 301 Lab 2 Convolution EE 301 Lab 2 Convoluion 1 Inroducion In his lab we will gain some more experience wih he convoluion inegral and creae a scrip ha shows he graphical mehod of convoluion. 2 Wha you will learn This lab will

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

6.003 Homework 1. Problems. Due at the beginning of recitation on Wednesday, February 10, 2010.

6.003 Homework 1. Problems. Due at the beginning of recitation on Wednesday, February 10, 2010. 6.003 Homework Due a he beginning of reciaion on Wednesday, February 0, 200. Problems. Independen and Dependen Variables Assume ha he heigh of a waer wave is given by g(x v) where x is disance, v is velociy,

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

Math 2214 Solution Test 1A Spring 2016

Math 2214 Solution Test 1A Spring 2016 Mah 14 Soluion Tes 1A Spring 016 sec Problem 1: Wha is he larges -inerval for which ( 4) = has a guaraneed + unique soluion for iniial value (-1) = 3 according o he Exisence Uniqueness Theorem? Soluion

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

APPM 2360 Homework Solutions, Due June 10

APPM 2360 Homework Solutions, Due June 10 2.2.2: Find general soluions for he equaion APPM 2360 Homework Soluions, Due June 10 Soluion: Finding he inegraing facor, dy + 2y = 3e µ) = e 2) = e 2 Muliplying he differenial equaion by he inegraing

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

Math 2214 Solution Test 1B Fall 2017

Math 2214 Solution Test 1B Fall 2017 Mah 14 Soluion Tes 1B Fall 017 Problem 1: A ank has a capaci for 500 gallons and conains 0 gallons of waer wih lbs of sal iniiall. A soluion conaining of 8 lbsgal of sal is pumped ino he ank a 10 galsmin.

More information

Exam 1 Solutions. 1 Question 1. February 10, Part (A) 1.2 Part (B) To find equilibrium solutions, set P (t) = C = dp

Exam 1 Solutions. 1 Question 1. February 10, Part (A) 1.2 Part (B) To find equilibrium solutions, set P (t) = C = dp Exam Soluions Februar 0, 05 Quesion. Par (A) To find equilibrium soluions, se P () = C = = 0. This implies: = P ( P ) P = P P P = P P = P ( + P ) = 0 The equilibrium soluion are hus P () = 0 and P () =..

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

MA Study Guide #1

MA Study Guide #1 MA 66 Su Guide #1 (1) Special Tpes of Firs Order Equaions I. Firs Order Linear Equaion (FOL): + p() = g() Soluion : = 1 µ() [ ] µ()g() + C, where µ() = e p() II. Separable Equaion (SEP): dx = h(x) g()

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

Faculty of Natural Sciences and Technology RAPPORT. Felleslab, TKP 4105 og TKP 4110

Faculty of Natural Sciences and Technology RAPPORT. Felleslab, TKP 4105 og TKP 4110 NTNU Norwegian Universiy of Science and Technology Faculy of Naural Sciences and Technology Deparmen of Chemical Engineering RAPPORT Felleslab, TKP 4105 og TKP 4110 - Tiel: Kineic Sudy of Ehyl Iodide and

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x . 1 Mah 211 Homework #3 February 2, 2001 2.4.3. y + (2/x)y = (cos x)/x 2 Answer: Compare y + (2/x) y = (cos x)/x 2 wih y = a(x)x + f(x)and noe ha a(x) = 2/x. Consequenly, an inegraing facor is found wih

More information

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures. HOMEWORK # 2: MATH 2, SPRING 25 TJ HITCHMAN Noe: This is he las soluion se where I will describe he MATLAB I used o make my picures.. Exercises from he ex.. Chaper 2.. Problem 6. We are o show ha y() =

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics /5/4 Chaper 4 Chemical Kineics Chemical Kineics Raes of Reacions Chemical Kineics is he sudy of he rae of reacion. How fas does i ake place? Very Fas Reacions Very Slow Reacions Acid/Base Combusion Rusing

More information

2. For a one-point fixed time method, a pseudo-first order reaction obeys the equation 0.309

2. For a one-point fixed time method, a pseudo-first order reaction obeys the equation 0.309 Chaper 3. To derive an appropriae equaion we firs noe he following general relaionship beween he concenraion of A a ime, [A], he iniial concenraion of A, [A], and he concenraion of P a ime, [P] [ P] Subsiuing

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Section 4.4 Logarithmic Properties

Section 4.4 Logarithmic Properties Secion. Logarihmic Properies 5 Secion. Logarihmic Properies In he previous secion, we derived wo imporan properies of arihms, which allowed us o solve some asic eponenial and arihmic equaions. Properies

More information

Section 4.4 Logarithmic Properties

Section 4.4 Logarithmic Properties Secion. Logarihmic Properies 59 Secion. Logarihmic Properies In he previous secion, we derived wo imporan properies of arihms, which allowed us o solve some asic eponenial and arihmic equaions. Properies

More information

9. Alternating currents

9. Alternating currents WS 9. Alernaing currens 9.1 nroducion Besides ohmic resisors, capaciors and inducions play an imporan role in alernaing curren (AC circuis as well. n his experimen, one shall invesigae heir behaviour in

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

Sterilization D Values

Sterilization D Values Seriliaion D Values Seriliaion by seam consis of he simple observaion ha baceria die over ime during exposure o hea. They do no all live for a finie period of hea exposure and hen suddenly die a once,

More information

EEEB113 CIRCUIT ANALYSIS I

EEEB113 CIRCUIT ANALYSIS I 9/14/29 1 EEEB113 CICUIT ANALYSIS I Chaper 7 Firs-Order Circuis Maerials from Fundamenals of Elecric Circuis 4e, Alexander Sadiku, McGraw-Hill Companies, Inc. 2 Firs-Order Circuis -Chaper 7 7.2 The Source-Free

More information

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry

Acceleration. Part I. Uniformly Accelerated Motion: Kinematics & Geometry Acceleraion Team: Par I. Uniformly Acceleraed Moion: Kinemaics & Geomery Acceleraion is he rae of change of velociy wih respec o ime: a dv/d. In his experimen, you will sudy a very imporan class of moion

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

PHYS 1401 General Physics I Test 3 Review Questions

PHYS 1401 General Physics I Test 3 Review Questions PHYS 1401 General Physics I Tes 3 Review Quesions Ch. 7 1. A 6500 kg railroad car moving a 4.0 m/s couples wih a second 7500 kg car iniially a res. a) Skech before and afer picures of he siuaion. b) Wha

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11.

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11. 1 Mah 334 Tes 1 KEY Spring 21 Secion: 1 Insrucor: Sco Glasgow Daes: Ma 1 and 11. Do NOT wrie on his problem saemen bookle, excep for our indicaion of following he honor code jus below. No credi will be

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Fall 04 ME 39 Mechanical Engineering Analsis Eam # Soluions Direcions: Open noes (including course web posings). No books, compuers, or phones. An calculaor is fair game. Problem Deermine he posiion of

More information

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in

Circuit Variables. AP 1.1 Use a product of ratios to convert two-thirds the speed of light from meters per second to miles per second: 1 ft 12 in Circui Variables 1 Assessmen Problems AP 1.1 Use a produc of raios o conver wo-hirds he speed of ligh from meers per second o miles per second: ( ) 2 3 1 8 m 3 1 s 1 cm 1 m 1 in 2.54 cm 1 f 12 in 1 mile

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

not to be republished NCERT MATHEMATICAL MODELLING Appendix 2 A.2.1 Introduction A.2.2 Why Mathematical Modelling?

not to be republished NCERT MATHEMATICAL MODELLING Appendix 2 A.2.1 Introduction A.2.2 Why Mathematical Modelling? 256 MATHEMATICS A.2.1 Inroducion In class XI, we have learn abou mahemaical modelling as an aemp o sudy some par (or form) of some real-life problems in mahemaical erms, i.e., he conversion of a physical

More information

LAB 5: Computer Simulation of RLC Circuit Response using PSpice

LAB 5: Computer Simulation of RLC Circuit Response using PSpice --3LabManualLab5.doc LAB 5: ompuer imulaion of RL ircui Response using Ppice PURPOE To use a compuer simulaion program (Ppice) o invesigae he response of an RL series circui o: (a) a sinusoidal exciaion.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 9: Faraday s Law of Induction

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 9: Faraday s Law of Induction MASSACHUSETTS INSTITUTE OF TECHNOLOY Deparmen of Physics 8.02 Spring 2005 OBJECTIVES Experimen 9: Faraday s Law of Inducion 1. To become familiar wih he conceps of changing magneic flux and induced curren

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Northern Arizona University Exam #1. Section 2, Spring 2006 February 17, 2006

Northern Arizona University Exam #1. Section 2, Spring 2006 February 17, 2006 Norhern Arizona Universiy Exam # CHM 52, General Chemisry II Dr. Brandon Cruickshank Secion 2, Spring 2006 February 7, 2006 Name ID # INSTRUCTIONS: Code he answers o he True-False and Muliple-Choice quesions

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Direc Curren Physics for Scieniss & Engineers 2 Spring Semeser 2005 Lecure 16 This week we will sudy charges in moion Elecric charge moving from one region o anoher is called elecric curren Curren is all

More information

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure Lab 4: Synchronous Sae Machine Design Summary: Design and implemen synchronous sae machine circuis and es hem wih simulaions in Cadence Viruoso. Learning Objecives: Pracice designing and simulaing digial

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

4.1 - Logarithms and Their Properties

4.1 - Logarithms and Their Properties Chaper 4 Logarihmic Funcions 4.1 - Logarihms and Their Properies Wha is a Logarihm? We define he common logarihm funcion, simply he log funcion, wrien log 10 x log x, as follows: If x is a posiive number,

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information