RC, RL and RLC circuits

Size: px
Start display at page:

Download "RC, RL and RLC circuits"

Transcription

1 Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in hese circuis when volages are suddenly applied or removed. To change he volage suddenly, a funcion generaor will be used. In order o observe hese rapid changes we will use an oscilloscope. 1. The square wave generaor Inroducion We can quickly charge and discharge a capacior by using a funcion generaor se o generae a square wave. The oupu of his volage source is shown in Figure T Figure 1: Oupu of square-wave generaor One conrol on he generaor les you vary he ampliude, 0. You can change he ime period over which he cycle repeas iself, T, by adjusing he repeiion frequency f = 1/T. The generaor is no an ideal volage source because i has an inernal resisance 50Ω. Thus, for purpose of analysis, he square-wave generaor may be replaced by he wo circuis shown in Figure 2. When he volage is on, he circui is a baery wih an EMF of 0 vols in series wih a 50Ω resisor. When he volage is off, he circui is simply a 50Ω resisor. R R 0 + On Off Figure 2: Square-wave generaor equivalen circui 1

2 Procedure To learn how o operae he oscilloscope and funcion generaor, se he funcion generaor for square wave oupu and connec he generaor o he verical inpu of he oscilloscope. Adjus he oscilloscope o obain each of he paerns shown in Figure 3. Try changing he ampliude and repeiion frequency of he generaor and observe wha corresponding changes are needed in he oscilloscope conrols o keep he race on he screen he same. Now se he funcion generaor o a frequency of abou 100 Hz. Observe he paern and adjus he frequency unil he period T = 10.0 ms. Funcion Generaor Oscilloscope Figure 3: Observing he oupu of he square-wave generaor 2. Resisance-capaciance circuis Inroducion We have previously sudied he behavior of capaciors and looked a he way a capacior discharges hrough a resisor. Theory (see exbook) shows ha for a capacior, C, charging hough a resisor, R, he volage across he capacior,, varies wih ime according o () ( - RC = 0 1- e ) (1) where 0 is he final seady-sae volage. When he same capacior discharges hrough he same resisor, () - RC = 0 e (2) The produc of he resisance and capaciance, RC, governs he ime scale wih which he changes ake place. For his reason i is called he ime consan, which we call τ (au). I can be found indirecly by measuring he ime required for he volage o fall o 0 /2 (see Figure 4 below). This ime inerval is called he half-life, T 1/2, and is given by he equaion T 1/2 = (ln2)τ, so T 1 2 T1 2 τ = = (3) ln

3 / T 1/2 Figure 4: Discharge of a capacior Procedure Assemble he circui shown in Figure 5. R = 10 kω C = 0.1 μf Funcion Generaor Figure 5: Invesigaing an RC circui Oscilloscope Wih iniial values R = 10 kω, C = 0.1 µf, and f = 100 Hz, observe one period of he charge and discharge of he capacior. Make sure he repeiion frequency is low enough so ha he volage across he capacior has ime o reach is final values, 0 and 0. Figure 6 shows one complee cycle of he inpu square-wave ha is being applied across he resisor and capacior. Superimpose on he square-wave a skech of he waveform you observed, which illusraes he volage across he capacior as a funcion of ime. Figure 6: Capacior volage vs. ime 3

4 Wha is he larges volage, 0, across he capacior? Wha is he larges charge, q 0, on he capacior? 0 = q 0 = Use he ohmmeer o measure R. (Recall ha a resisor should be removed from he circui before you measure is resisance wih an ohmmeer.) R = To measure T 1/2 change oscilloscope gain (vols/cm) and sweep rae (ms/cm) unil you have a large paern on he screen, like he paern shown in Figure 7a. Make sure he sweep speed is in he calibraed posiion so he ime can be read off he x- axis. Cener he paern on he screen so ha he horizonal axis is in he cener of he paern. Tha is, so ha he waveform exends equal disances above and below he axis. Move he waveform o he righ unil he sar of he discharge of he capacior is on he verical axis as shown in Figure 7b. The half-life is jus he horizonal disance shown on Figure 7b. Figure 7a and b: Measuring he half-life Measure he half-life, T 1/2, and from his compue he ime consan τ using Equaion 3. Make sure o include unis wih your resuls T 1/2 = τ = 4

5 You have jus deermined his circui s ime consan from he capacior discharging curve. Theoreically, he ime consan is given by he produc of he resisance and capaciance in he circui, RC. Compue RC from componen values. Show your calculaion in he space below. Noe ha, as described above, he square-wave generaor has an inernal resisance of 50Ω. Thus, he oal resisance hrough which he RC circui charges and discharges is R + 50Ω. τ = When his calculaion is carried ou using ohms for resisance and Farads for capaciance, he produc has unis of seconds. Use dimensional analysis o show ha his is indeed he case. Wihin he uncerainies of he olerances (10%) of he resisor and capacior, do your measuremens suppor he equaion τ = RC? (If here is more han 20% disagreemen, consul your insrucor.) Alhough you have been old ha he inernal resisance of he funcion generaor is 50Ω, le s say we had kep his piece of informaion from you. Wihou using an ohmmeer, ouline a procedure for measuring he inernal resisance of your funcion generaor. 5

6 Adjus he funcion generaor o ry differen values of f and hence, T, while keeping τ fixed by no changing eiher R or C. On he lef graph below skech wha you saw when he period T of he square wave was much less han he ime consan, τ. On he righ graph below skech wha you saw when he period T of he square wave was much greaer han he ime consan. τ>> T τ = T = τ<< T τ = T = 3. Resisance-inducance circuis Inroducion In his secion we conduc a similar sudy of a circui conaining a resisor and an inducor, L. Consider he circui shown in Figure 8 below. The ex shows ha if we sar wih he baery conneced o he LR circui, afer a long ime he curren reaches a seady-sae value, i 0 = 0 /R. R 0 L Figure 8: A model circui wih an inducor and resisor If we call = 0 he ime when we suddenly hrow he swich o remove he baery, allowing curren o flow o ground, hen curren changes wih ime according o he equaion () -( R/L) i = i0 e (4) If, a a new = 0, we hrow he swich so he baery is conneced, he curren increases according o he equaion () ( -( R/L) i = i0 1- e ) (5) The ime consan for boh equaions is L/R and 6

7 T 1 L 2 = τ = (6) R We can find he curren as a funcion of ime by measuring he volage across he resisor wih he oscilloscope and using he relaionship i() = ()/R. Noe ha wha we would see firs is he growh of curren given by Equaion 5, where he final curren depends on he square-wave ampliude 0. Then, when he square wave drops o zero, he curren decays according o Equaion 4. The ime consan should be he same in boh cases. Procedure Se up he circui shown in Figure 9 below. L = 25 mh R = 1 kω Funcion Generaor Oscilloscope Figure 9: Invesigaing he LR circui Wih iniial values R = 1kΩ and L = 25mH, se he oscilloscope o view one period of exponenial growh and decay. Again, make sure ha f is low enough for he curren o reach is final values, i 0 and 0. Sar wih f = 5 khz. Superimpose a skech of he waveform you observe on he single cycle of he inpu square-wave shown below. Wha is he larges curren hrough he inducor? i 0 = Measure he half-life. From his value, compue he ime consan. T 1/2 = τ = 7

8 Measure he value of R and he dc resisance of he inducor wih an ohmmeer. Finally add he inernal resisance of he square-wave generaor o obain he oal resisance. Compue he value of L/R from he componens values. R (of resisor) = R (of inducor) = R (of funcion generaor) = R (oal) = τ = L/R = Wihin he uncerainies of he manufacuring olerances (10%) of he resisor and inducance, do your measuremens suppor he equaion τ = L/R? When his calculaion is carried ou using ohms for resisance and Henries for inducance, he raio has unis of seconds. Use dimensional analysis o show ha his is indeed he case. Adjus he funcion generaor o ry differen values of f and hence, T, while keeping τ fixed by no changing eiher R or L. On he lef graph below skech wha you saw when he period T of he square wave was much less han he ime consan, τ. On he righ graph below skech wha you saw when he period T of he square wave was much greaer han he ime consan. 8

9 τ>> T τ = T = τ<< T τ = T = 4. Resisance-inducance-capaciance circuis Inroducion As discussed in he exbook, a circui conaining an inducor and a capacior, an LC circui, is an elecrical analog o a simple harmonic oscillaor, consising of a block on a spring fasened o a rigid wall. L C k M Figure 10: LC Circui and is analog, a mechanical SHM Sysem In he same way ha, in he mechanical sysem, energy can be in he form of kineic energy of he block of mass M, or poenial energy of he spring wih spring consan k; in 1 2 he LC circui energy can reside in he magneic field of he inducor U = Li, or he 1 2 elecric field of he capacior, U = 2 q C. Boh he curren and he charge hen change in a sinusoidal manner. The frequency of he oscillaion is given by 1 ω 0 = (7) LC All circuis have some resisance, and in he same way fricional forces damp mechanical SHM, resisance causes energy loss (i 2 R) which makes he charge decay in ime. () - τ q q e cos( ω ) (8) = 0 1τ ( 2 2 ω - ) 1 2 ω (9) 1 = 0 1 τ 2 9

10 where τ = 2L/R or T = ln 2(2 L R) = 0.693(2L ) (10) 1 2 R For large τ he sysem is underdamped and he charge oscillaes, aking a long ime o reurn o zero. 2 2 Noe from Equaion 9 ha when ω 0 = 1 τ, ω 1, which appears in he argumen of he cosine funcion of Equaion 8, is zero a all imes. This condiion is called criical damping. Criical damping occurs when R = 2 L C. When he resisor is larger han he criical value he sysem is overdamped. The charge acually akes longer o reurn o zero han in he criically damped case. The decaying oscillaions in he LRC circui can be observed using he same echnique as used o observe exponenial decay. Again, a square-wave generaor produces he same effec as a baery swiched on and off periodically. The oscilloscope measures he volage across C as a funcion of ime. a. Observing oscillaions in a RLC circui Procedure Assemble he circui of Figure 11. Use a small value of R, say, 47Ω. Be sure o reduce he signal generaor frequency o 100 Hz or below so you can see he enire damped oscillaion. R L = 25 mh C = 0.1 μf Funcion Generaor Oscilloscope Figure 11: Invesigaing he LRC circui Measure he period and calculae he frequency of he oscillaions. (The period is NOT 0.01 s = 1/100 Hz, he repeiion frequency of he square wave.) Measured period = Calculaed f 1 = ω = πf = Calculae ω 0 from componen values. ω 0 = 1 LC = 10

11 Compare he ω 1 you measured wih ω0 ha you calculaed from componen values. In heory, ω 1, he damped frequency, is only slighly less han ω 0, he undamped frequency, making his a valid comparison of heory wih experimen. b. Criical damping and overdamping in a RLC circui Procedure Noe ha in he equaions for his circui, R represens he sum of he resisance of he inducor, he inernal resisance of he square-wave generaor, 50Ω, and he resisance of he resisor. To sudy criical damping and overdamping, remove your fixed resisor and pu in is place a 5-kΩ variable resisor. Sar wih he variable resisor se o a small value of R. For small R you should see he oscillaions ha are characerisic of underdamping. On he firs graph below skech he waveform ha appears on he oscilloscope. Increase R unil criical damping is reached; ha is, unil he oscillaions disappear. Skech his curve on he middle graph above. Use he ohmmeer o measure he value of he variable resisor a criical damping. (Don forge o disconnec he variable resisor from he circui when measuring is resisance.) R (variable resisor a criical damping) = Calculae he oal resisance in he circui a criical damping by adding he dc resisance of he inducor and 50Ω for he funcion generaor o he resul above. R (oal a criical damping) = Compare his value of he circui resisance a criical damping o he prediced value for criical damping, R = 2 LC. 11

12 Wha happens o he waveform when he resisance is larger han he criicaldamping value? Skech your resuls on he righmos graph above. c. Underdamping in a RLC circui Inroducion When he circui is underdamped, Equaion (8) applies. This means ha he ampliude of he oscillaion will decay exponenially, wih he ime consan for he decay being: 2L τ = (11) R Recall ha when an exponenial decay is ploed on a semi-log scale he resuling graph is a sraigh line wih a slope equal o -1/τ. You can find he slope of a line on a semi-log graph by idenifying he wo end poins of he line. Noe he ime and volage a each poin 1 and 1, 2 and 2. Calculae he naural log of he wo volages. Then, ln( 2) ln( 1 ) 1 slope = = 2 1 τ The following seps describe how o measure he ime consan of he decay of he oscillaions. (12) Procedure Adjus he variable resisor so ha he circui is underdamped and oscillaes abou seven or eigh imes before he oscillaions become oo small o be easily seen on he oscilloscope. Cener he oscillaion paern verically on he screen so ha when he oscillaions have decayed he line on he oscilloscope coincides wih he ime axis. In he able below record he volage of each oscillaion peak, and he corresponding ime for each peak. When your able is complee you should have six or seven ses of daa recorded. Peak Heigh () Time ( ) Table 1 12

13 Creae a semi-log graph of your daa. (You can use Excel o creae a semi-log graph.) Following he procedure described above, deermine he ime consan for your circui. This is your experimenal value for he ime consan. Show your calculaion and resul here. τ experimen = Remove he variable resisor from he circui and measure is resisance. Add his value o he resisance of he square-wave generaor (50 ohms) and he resisance of he inducor o ge he oal resisance of your circui. Show your calculaion and resul here. R oal = Using Equaion (11) calculae he heoreical decay ime consan for your circui. Show your work. τ heory = Compare his heoreical value o he experimenal value you found above. They should agree wihin en or weny percen. If hey do no, consul your insrucor. 13

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit V() R L C 513 Elecrical Circuis Tools Used in Lab 13 Series Circuis Damped Vibraions: Energy Van der Pol Circui A series circui wih an inducor, resisor, and capacior can be represened by Lq + Rq + 1, a

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Chapter 10 INDUCTANCE Recommended Problems:

Chapter 10 INDUCTANCE Recommended Problems: Chaper 0 NDUCTANCE Recommended Problems: 3,5,7,9,5,6,7,8,9,,,3,6,7,9,3,35,47,48,5,5,69, 7,7. Self nducance Consider he circui shown in he Figure. When he swich is closed, he curren, and so he magneic field,

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1

Direct Current Circuits. February 19, 2014 Physics for Scientists & Engineers 2, Chapter 26 1 Direc Curren Circuis February 19, 2014 Physics for Scieniss & Engineers 2, Chaper 26 1 Ammeers and Volmeers! A device used o measure curren is called an ammeer! A device used o measure poenial difference

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch.

i L = VT L (16.34) 918a i D v OUT i L v C V - S 1 FIGURE A switched power supply circuit with diode and a switch. 16.4.3 A SWITHED POWER SUPPY USINGA DIODE In his example, we will analyze he behavior of he diodebased swiched power supply circui shown in Figure 16.15. Noice ha his circui is similar o ha in Figure 12.41,

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder#

R.#W.#Erickson# Department#of#Electrical,#Computer,#and#Energy#Engineering# University#of#Colorado,#Boulder# .#W.#Erickson# Deparmen#of#Elecrical,#Compuer,#and#Energy#Engineering# Universiy#of#Colorado,#Boulder# Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance,

More information

2.4 Cuk converter example

2.4 Cuk converter example 2.4 Cuk converer example C 1 Cuk converer, wih ideal swich i 1 i v 1 2 1 2 C 2 v 2 Cuk converer: pracical realizaion using MOSFET and diode C 1 i 1 i v 1 2 Q 1 D 1 C 2 v 2 28 Analysis sraegy This converer

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II Module 3: The Damped Oscillaor-II Lecure 3: The Damped Oscillaor-II 3. Over-damped Oscillaions. This refers o he siuaion where β > ω (3.) The wo roos are and α = β + α 2 = β β 2 ω 2 = (3.2) β 2 ω 2 = 2

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 The Complee Response of RL and RC Circuis Seoul Naional Universiy Deparmen of Elecrical and Compuer Engineering Wha is Firs Order Circuis? Circuis ha conain only one inducor or only one capacior

More information

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17

Designing Information Devices and Systems I Spring 2019 Lecture Notes Note 17 EES 16A Designing Informaion Devices and Sysems I Spring 019 Lecure Noes Noe 17 17.1 apaciive ouchscreen In he las noe, we saw ha a capacior consiss of wo pieces on conducive maerial separaed by a nonconducive

More information

Section 3.8, Mechanical and Electrical Vibrations

Section 3.8, Mechanical and Electrical Vibrations Secion 3.8, Mechanical and Elecrical Vibraions Mechanical Unis in he U.S. Cusomary and Meric Sysems Disance Mass Time Force g (Earh) Uni U.S. Cusomary MKS Sysem CGS Sysem fee f slugs seconds sec pounds

More information

Pulse Generators. Any of the following calculations may be asked in the midterms/exam.

Pulse Generators. Any of the following calculations may be asked in the midterms/exam. ulse Generaors ny of he following calculaions may be asked in he miderms/exam.. a) capacior of wha capaciance forms an RC circui of s ime consan wih a 0 MΩ resisor? b) Wha percenage of he iniial volage

More information

Name: Total Points: Multiple choice questions [120 points]

Name: Total Points: Multiple choice questions [120 points] Name: Toal Poins: (Las) (Firs) Muliple choice quesions [1 poins] Answer all of he following quesions. Read each quesion carefully. Fill he correc bubble on your scanron shee. Each correc answer is worh

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution: Example: The inpu o each of he circuis shown in Figure 10-N1 is he volage source volage. The oupu of each circui is he curren i( ). Deermine he oupu of each of he circuis. (a) (b) (c) (d) (e) Figure 10-N1

More information

CHAPTER 6: FIRST-ORDER CIRCUITS

CHAPTER 6: FIRST-ORDER CIRCUITS EEE5: CI CUI T THEOY CHAPTE 6: FIST-ODE CICUITS 6. Inroducion This chaper considers L and C circuis. Applying he Kirshoff s law o C and L circuis produces differenial equaions. The differenial equaions

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 35 Chaper 8: Second Order Circuis Daniel M. Liynski, Ph.D. ECE 1 Circui Analysis Lesson 3-34 Chaper 7: Firs Order Circuis (Naural response RC & RL circuis, Singulariy funcions,

More information

Basic Circuit Elements Professor J R Lucas November 2001

Basic Circuit Elements Professor J R Lucas November 2001 Basic Circui Elemens - J ucas An elecrical circui is an inerconnecion of circui elemens. These circui elemens can be caegorised ino wo ypes, namely acive and passive elemens. Some Definiions/explanaions

More information

Inductor Energy Storage

Inductor Energy Storage School of Compuer Science and Elecrical Engineering 5/5/ nducor Energy Sorage Boh capaciors and inducors are energy sorage devices They do no dissipae energy like a resisor, bu sore and reurn i o he circui

More information

Chapter 28 - Circuits

Chapter 28 - Circuits Physics 4B Lecure Noes Chaper 28 - Circuis Problem Se #7 - due: Ch 28 -, 9, 4, 7, 23, 38, 47, 53, 57, 66, 70, 75 Lecure Ouline. Kirchoff's ules 2. esisors in Series 3. esisors in Parallel 4. More Complex

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

non-linear oscillators

non-linear oscillators non-linear oscillaors The invering comparaor operaion can be summarized as When he inpu is low, he oupu is high. When he inpu is high, he oupu is low. R b V REF R a and are given by he expressions derived

More information

( ) = Q 0. ( ) R = R dq. ( t) = I t

( ) = Q 0. ( ) R = R dq. ( t) = I t ircuis onceps The addiion of a simple capacior o a circui of resisors allows wo relaed phenomena o occur The observaion ha he ime-dependence of a complex waveform is alered by he circui is referred o as

More information

9. Alternating currents

9. Alternating currents WS 9. Alernaing currens 9.1 nroducion Besides ohmic resisors, capaciors and inducions play an imporan role in alernaing curren (AC circuis as well. n his experimen, one shall invesigae heir behaviour in

More information

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers A ircuis A ircui wih only A circui wih only A circui wih only A circui wih phasors esonance Transformers Phys 435: hap 31, Pg 1 A ircuis New Topic Phys : hap. 6, Pg Physics Moivaion as ime we discovered

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

2.9 Modeling: Electric Circuits

2.9 Modeling: Electric Circuits SE. 2.9 Modeling: Elecric ircuis 93 2.9 Modeling: Elecric ircuis Designing good models is a ask he compuer canno do. Hence seing up models has become an imporan ask in modern applied mahemaics. The bes

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

Topic Astable Circuits. Recall that an astable circuit has two unstable states; Topic 2.2. Asable Circuis. Learning Objecives: A he end o his opic you will be able o; Recall ha an asable circui has wo unsable saes; Explain he operaion o a circui based on a Schmi inverer, and esimae

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode.

V L. DT s D T s t. Figure 1: Buck-boost converter: inductor current i(t) in the continuous conduction mode. ECE 445 Analysis and Design of Power Elecronic Circuis Problem Se 7 Soluions Problem PS7.1 Erickson, Problem 5.1 Soluion (a) Firs, recall he operaion of he buck-boos converer in he coninuous conducion

More information

EEEB113 CIRCUIT ANALYSIS I

EEEB113 CIRCUIT ANALYSIS I 9/14/29 1 EEEB113 CICUIT ANALYSIS I Chaper 7 Firs-Order Circuis Maerials from Fundamenals of Elecric Circuis 4e, Alexander Sadiku, McGraw-Hill Companies, Inc. 2 Firs-Order Circuis -Chaper 7 7.2 The Source-Free

More information

Chapter 4 AC Network Analysis

Chapter 4 AC Network Analysis haper 4 A Nework Analysis Jaesung Jang apaciance Inducance and Inducion Time-Varying Signals Sinusoidal Signals Reference: David K. heng, Field and Wave Elecromagneics. Energy Sorage ircui Elemens Energy

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

EE 301 Lab 2 Convolution

EE 301 Lab 2 Convolution EE 301 Lab 2 Convoluion 1 Inroducion In his lab we will gain some more experience wih he convoluion inegral and creae a scrip ha shows he graphical mehod of convoluion. 2 Wha you will learn This lab will

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

8.022 (E&M) Lecture 9

8.022 (E&M) Lecture 9 8.0 (E&M) Lecure 9 Topics: circuis Thevenin s heorem Las ime Elecromoive force: How does a baery work and is inernal resisance How o solve simple circuis: Kirchhoff s firs rule: a any node, sum of he currens

More information

The average rate of change between two points on a function is d t

The average rate of change between two points on a function is d t SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope

More information

This exam is formed of 4 obligatory exercises in four pages numbered from 1 to 4 The use of non-programmable calculators is allowed

This exam is formed of 4 obligatory exercises in four pages numbered from 1 to 4 The use of non-programmable calculators is allowed وزارةالتربیةوالتعلیمالعالي المدیریةالعامةللتربیة داي رةالامتحانات امتحاناتشھادةالثانویةالعامة فرع العلومالعامة مسابقةفي ال فیزیاء المدة:ثلاثساعات دورةسنة الاسم : الرقم : 005 ا لعادیة This exam is formed

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics E06 Embedded Elecronics Le Le3 Le4 Le Ex Ex P-block Documenaion, Seriecom Pulse sensors,, R, P, serial and parallel K LAB Pulse sensors, Menu program Sar of programing ask Kirchhoffs laws Node analysis

More information

First Order RC and RL Transient Circuits

First Order RC and RL Transient Circuits Firs Order R and RL Transien ircuis Objecives To inroduce he ransiens phenomena. To analyze sep and naural responses of firs order R circuis. To analyze sep and naural responses of firs order RL circuis.

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

copper ring magnetic field

copper ring magnetic field IB PHYSICS: Magneic Fields, lecromagneic Inducion, Alernaing Curren 1. This quesion is abou elecromagneic inducion. In 1831 Michael Faraday demonsraed hree ways of inducing an elecric curren in a ring

More information

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C :

dv 7. Voltage-current relationship can be obtained by integrating both sides of i = C : EECE202 NETWORK ANALYSIS I Dr. Charles J. Kim Class Noe 22: Capaciors, Inducors, and Op Amp Circuis A. Capaciors. A capacior is a passive elemen designed o sored energy in is elecric field. 2. A capacior

More information

SINUSOIDAL WAVEFORMS

SINUSOIDAL WAVEFORMS SINUSOIDAL WAVEFORMS The sinusoidal waveform is he only waveform whose shape is no affeced by he response characerisics of R, L, and C elemens. Enzo Paerno CIRCUIT ELEMENTS R [ Ω ] Resisance: Ω: Ohms Georg

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

LAB 5: Computer Simulation of RLC Circuit Response using PSpice

LAB 5: Computer Simulation of RLC Circuit Response using PSpice --3LabManualLab5.doc LAB 5: ompuer imulaion of RL ircui Response using Ppice PURPOE To use a compuer simulaion program (Ppice) o invesigae he response of an RL series circui o: (a) a sinusoidal exciaion.

More information

Physical Limitations of Logic Gates Week 10a

Physical Limitations of Logic Gates Week 10a Physical Limiaions of Logic Gaes Week 10a In a compuer we ll have circuis of logic gaes o perform specific funcions Compuer Daapah: Boolean algebraic funcions using binary variables Symbolic represenaion

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance:

Problem Set #1. i z. the complex propagation constant. For the characteristic impedance: Problem Se # Problem : a) Using phasor noaion, calculae he volage and curren waves on a ransmission line by solving he wave equaion Assume ha R, L,, G are all non-zero and independen of frequency From

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 1 Circui Analysis Lesson 37 Chaper 8: Second Order Circuis Discuss Exam Daniel M. Liynski, Ph.D. Exam CH 1-4: On Exam 1; Basis for work CH 5: Operaional Amplifiers CH 6: Capaciors and Inducor CH 7-8:

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Lecture -14: Chopper fed DC Drives

Lecture -14: Chopper fed DC Drives Lecure -14: Chopper fed DC Drives Chopper fed DC drives o A chopper is a saic device ha convers fixed DC inpu volage o a variable dc oupu volage direcly o A chopper is a high speed on/off semiconducor

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

555 Timer. Digital Electronics

555 Timer. Digital Electronics 555 Timer Digial Elecronics This presenaion will Inroduce he 555 Timer. 555 Timer Derive he characerisic equaions for he charging and discharging of a capacior. Presen he equaions for period, frequency,

More information

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK EE202 Circui Theory II 2018 2019, Spring Dr. Yılmaz KALKAN & Dr. Ailla DÖNÜK 1. Basic Conceps (Chaper 1 of Nilsson - 3 Hrs.) Inroducion, Curren and Volage, Power and Energy 2. Basic Laws (Chaper 2&3 of

More information

Experimental Buck Converter

Experimental Buck Converter Experimenal Buck Converer Inpu Filer Cap MOSFET Schoky Diode Inducor Conroller Block Proecion Conroller ASIC Experimenal Synchronous Buck Converer SoC Buck Converer Basic Sysem S 1 u D 1 r r C C R R X

More information

Physics 1502: Lecture 20 Today s Agenda

Physics 1502: Lecture 20 Today s Agenda Physics 152: Lecure 2 Today s Agenda Announcemens: Chap.27 & 28 Homework 6: Friday nducion Faraday's Law ds N S v S N v 1 A Loop Moving Through a Magneic Field ε() =? F() =? Φ() =? Schemaic Diagram of

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Physics 1402: Lecture 22 Today s Agenda

Physics 1402: Lecture 22 Today s Agenda Physics 142: ecure 22 Today s Agenda Announcemens: R - RV - R circuis Homework 6: due nex Wednesday Inducion / A curren Inducion Self-Inducance, R ircuis X X X X X X X X X long solenoid Energy and energy

More information

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter

L1, L2, N1 N2. + Vout. C out. Figure 2.1.1: Flyback converter page 11 Flyback converer The Flyback converer belongs o he primary swiched converer family, which means here is isolaion beween in and oupu. Flyback converers are used in nearly all mains supplied elecronic

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

ECE-205 Dynamical Systems

ECE-205 Dynamical Systems ECE-5 Dynamical Sysems Course Noes Spring Bob Throne Copyrigh Rober D. Throne Copyrigh Rober D. Throne . Elecrical Sysems The ypes of dynamical sysems we will be sudying can be modeled in erms of algebraic

More information

Electromagnetic Induction: The creation of an electric current by a changing magnetic field.

Electromagnetic Induction: The creation of an electric current by a changing magnetic field. Inducion 1. Inducion 1. Observaions 2. Flux 1. Inducion Elecromagneic Inducion: The creaion of an elecric curren by a changing magneic field. M. Faraday was he firs o really invesigae his phenomenon o

More information

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors Applicaion Noe Swiching losses for Phase Conrol and Bi- Direcionally Conrolled Thyrisors V AK () I T () Causing W on I TRM V AK( full area) () 1 Axial urn-on Plasma spread 2 Swiching losses for Phase Conrol

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Chapter 15 Oscillatory Motion I

Chapter 15 Oscillatory Motion I Chaper 15 Oscillaory Moion I Level : AP Physics Insrucor : Kim Inroducion A very special kind of moion occurs when he force acing on a body is proporional o he displacemen of he body from some equilibrium

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A.

Università degli Studi di Roma Tor Vergata Dipartimento di Ingegneria Elettronica. Analogue Electronics. Paolo Colantonio A.A. Universià degli Sudi di Roma Tor Vergaa Diparimeno di Ingegneria Eleronica Analogue Elecronics Paolo Colanonio A.A. 2015-16 Diode circui analysis The non linearbehaviorofdiodesmakesanalysisdifficul consider

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of.

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of. Inroducion o Nuerical Analysis oion In his lesson you will be aen hrough a pair of echniques ha will be used o solve he equaions of and v dx d a F d for siuaions in which F is well nown, and he iniial

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel 15. Biccle Wheel The graph We moun a biccle wheel so ha i is free o roae in a verical plane. In fac, wha works easil is o pu an exension on one of he axles, and ge a suden o sand on one side and hold he

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

dv i= C. dt 1. Assuming the passive sign convention, (a) i = 0 (dc) (b) (220)( 9)(16.2) t t Engineering Circuit Analysis 8 th Edition

dv i= C. dt 1. Assuming the passive sign convention, (a) i = 0 (dc) (b) (220)( 9)(16.2) t t Engineering Circuit Analysis 8 th Edition . Assuming he passive sign convenion, dv i= C. d (a) i = (dc) 9 9 (b) (22)( 9)(6.2) i= e = 32.8e A 9 3 (c) i (22 = )(8 )(.) sin. = 7.6sin. pa 9 (d) i= (22 )(9)(.8) cos.8 = 58.4 cos.8 na 2. (a) C = 3 pf,

More information

Combined Bending with Induced or Applied Torsion of FRP I-Section Beams

Combined Bending with Induced or Applied Torsion of FRP I-Section Beams Combined Bending wih Induced or Applied Torsion of FRP I-Secion Beams MOJTABA B. SIRJANI School of Science and Technology Norfolk Sae Universiy Norfolk, Virginia 34504 USA sirjani@nsu.edu STEA B. BONDI

More information

U(t) (t) -U T 1. (t) (t)

U(t) (t) -U T 1. (t) (t) Prof. Dr.-ng. F. Schuber Digial ircuis Exercise. () () A () - T T The highpass is driven by he square pulse (). alculae and skech A (). = µf, = KΩ, = 5 V, T = T = ms. Exercise. () () A () T T The highpass

More information

6.01: Introduction to EECS I Lecture 8 March 29, 2011

6.01: Introduction to EECS I Lecture 8 March 29, 2011 6.01: Inroducion o EES I Lecure 8 March 29, 2011 6.01: Inroducion o EES I Op-Amps Las Time: The ircui Absracion ircuis represen sysems as connecions of elemens hrough which currens (hrough variables) flow

More information

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing.

Wall. x(t) f(t) x(t = 0) = x 0, t=0. which describes the motion of the mass in absence of any external forcing. MECHANICS APPLICATIONS OF SECOND-ORDER ODES 7 Mechanics applicaions of second-order ODEs Second-order linear ODEs wih consan coefficiens arise in many physical applicaions. One physical sysems whose behaviour

More information