The average rate of change between two points on a function is d t

Size: px
Start display at page:

Download "The average rate of change between two points on a function is d t"

Transcription

1 SM Dae: Secion: Objecive: The average rae of change beween wo poins on a funcion is d. For example, if he funcion ( ) represens he disance in miles ha a car has raveled afer hours, hen finding he slope of he line connecing he poins a = hour and = 4 hours will give he average speed of he car (in miles per hour) during hose hree hours. Slope Formula: The slope beween he poins ( x, y ) and (, ) Examples: Find he slope beween each pair of poins., 4 and, x y is a) (,5 ) and ( 4,9 ) b) ( ) ( ) c) ( 4, 7 ) and (, 5) Examples: For each of he following, draw he line ha connecs he wo poins. Wrie he coordinaes of he wo poins, hen calculae he average rae of change on he specified inerval. 3 a) f ( x) = x + on [ 3,3] b) f ( x) = x 8x 4 on [ 3,0] c) f ( x ) = x +5 on [ 0,3] d) f ( x) = ( x + ) 5 on [ 4,] 4

2 Example: Find he average rae of change for f ( x) = 3x 5x + 4 on he inerval [ ],3. Sep : he value of he funcion a x = and x = 3. f 3 = f ( ) = ( ) Sep :., 3, ( ) ( ) Sep 3:. Examples: Find he average rae of change for each funcion on he specified inerval. f x x 3 on 5,7 f x = x + 4 on 4, a) ( ) = + [ ] b) ( ) [ ] c) f ( x) = x on [, 4] d) f ( x) = ( x 3) 5 on [ 0,0] Examples: a) Many of he elderly are placed in nursing care faciliies. The cos of hese has risen significanly since 960. Use he able below o find he average rae of change from 000 o 00 and explain wha your resul means. Years Since 960 Nursing Care Cos (billions of dollars)

3 b) The graph below shows he heigh, in fee, of an objec launched sraigh up from an iniial heigh of 40 fee. Find he average rae of change from o 4 seconds and explain wha your answer means. Heigh (fee) Time (seconds) c) Suppose 5 flour beeles are lef undisurbed in a warehouse bin. The beele populaion doubles in size every week. The equaion ( ) 5 x P x = can be used o deermine he number of beeles afer x weeks. Complee he able below. Week Beele Populaion Calculae he average growh rae beween weeks and 3. Calculae he average growh rae for he firs five weeks [0,5]. Which average growh rae was higher? Why do you hink i is higher?

4 SM Dae: Secion: Objecive: Linear Funcions Can be wrien in he form y = mx + b. Graph is a sraigh line. Used o model sequences wih a common firs difference. o Each erm is obained by adding (or subracing) he same number o he previous erm. o e.g.),, 5, 8,, Exponenial Funcions x Can be wrien in he form y = ab. Variable is in he exponen. Used o model sequences wih a common raio. o Each erm is obained by muliplying (or dividing) he previous erm by he same number. o e.g.), 6, 8, 54, Quadraic Funcions Can be wrien in he form y = ax + bx + c, where a 0. Graph is a parabola. Can be formed by muliplying wo linear funcions. y = x + 5 x 3 o e.g.) ( )( ) Used o model sequences wih a common second difference. o The second difference is he difference beween he numbers in he firs difference. o e.g.), 8, 8, 3, 50, Examples: Deermine wheher he paern would be modeled by a linear funcion, an exponenial funcion, or a quadraic funcion. a) b) c) d) 54, 48, 4, 36, e), 3, 0,, 39, f) 8, 7, 9, 3,

5 Using a Graphing Calculaor o Find a Regression Equaion Use a graphing calculaor o deermine he quadraic funcion modeled by he given daa: x f ( x ) Inpuing Daa Ino a Calculaor Lis Press STAT. Choose Edi If you have daa in your liss, clear hem by highlighing he name of he lis, hen push CLEAR and ENTER. Do no push DEL. f x values ino L. Ener he x values ino L and he ( ) Push ND MODE o ge back o he home screen. Make a Scaer Plo Push ND Y= o bring up he STAT PLOT menu. Selec Plo Turn Plo on by pushing ENTER when On is highlighed. Make sure ha he scaer plo opion is highlighed. If i isn, selec i by pushing ENTER when he scaer plo graphic is highlighed. The Xlis should say L and he Ylis should say L. If i doesn, L can be enered by pushing ND and L by ND. Push GRAPH. If you wan a nice viewing window, push ZOOM, hen selec opion 9, ZoomSa. Creaing a Regression Equaion You do no need o graph a funcion o creae a regression, bu i is a good idea o compare your regression o he daa poins o make sure i is a good model. From he home screen, push STAT. Arrow righ o he CALC menu. Choose opion 5, QuadReg. (If you wan an exponenial regression, choose opion 0, ExpReg.) The home screen should say QuadReg. Type L, L, Y. o Press ND, comma (above he 7), ND, comma, VARS. Arrow righ o Y-VARS, selec opion, Funcion, hen selec Y. Push ENTER. The quadraic regression equaion is f ( x) = 3x x. I has been enered ino Y. Push GRAPH again o compare your regression o he daa.

6 Examples:. Use a graphing calculaor o find a quadraic funcion ha models he daa. x f ( x ) From 97 o 998 he U.S. Fish and Wildlife Service has kep a lis of endangered species in he Unied Saes. The able below shows he number of endangered species. Find an appropriae exponenial equaion o model he daa. Le x equal he number of years since 97. Year Number of Species The pesicide DDT was widely used in he Unied Saes unil is ban in 97. DDT is oxic o a wide range of animals and aquaic life, and is suspeced o cause cancer in humans. The half-life of DDT can be 5 or more years. Half-life is he amoun of ime i akes for half of he amoun of a subsance o decay. Scieniss and environmenaliss worry abou such subsances because hese hazardous maerials coninue o be dangerous for many years afer heir disposal. Wrie an equaion o model he daa below. Le x equal he number of years since 97. Year Amoun of DDT (grams) The able shows he average movie icke price in dollars for various years from 983 o 003. Find a model for he daa. Years Since 983, Movie Ticke Price, m

7 SM Dae: Secion: Objecive: Exponenial Growh: When a quaniy increases by a fixed percen each year, or oher period of ime, he amoun of ha quaniy, A, afer ime periods is given by he following formula: ( ) A = A + r 0 A 0 = iniial (saring) amoun r = growh rae, as a decimal = # of ime periods A = final amoun Exponenial Decay: When a quaniy decreases by a fixed percen each year, or oher period of ime, he amoun of ha quaniy, A, afer ime periods is given by he following formula: ( ) A = A r 0 A 0 = iniial (saring) amoun r = growh rae, as a decimal = # of ime periods A = final amoun Examples: Deermine wheher he equaion shows growh or decay and deermine he growh or decay rae. A = 400(.7) Growh or Decay? Rae: A =,000( 0.83) Growh or Decay? Rae: A = 987(.005) Growh or Decay? Rae: A = 347( ) Growh or Decay? Rae: Tips: If a sory problem gives you a saring amoun and an amoun afer ime period, you can find he Amoun of Change growh rae by using: Rae = Saring Amoun To solve an equaion like 500 = 300(.) graphically: x o Graph y = 500 and y = ( ) o Make he graphs fi in your window by pushing ZOOM. Choose 0:ZoomFi. If he graphs sill don fi, push WINDOW and change he x-coordinaes (make Xmax be a bigger number). o Find he inersecion of he wo graphs. Push ND TRACE. Choose 5:inersec. Move he cursor along one graph unil you are abou where he graphs cross. Hi ENTER. Repea for he oher graph. Hi ENTER again o mark your guess. o The x-coordinae on he boom of he screen is your answer. If a problem asks you wheher an equaion represens growh or decay and you can ell, graph he equaion and see if he graph goes up from lef o righ (growh) or down from lef o righ (decay). If a problem asks abou Effecive Ineres Rae, he answer will always be he choice ha is higher han he ineres rae he problem gives you.

8 Examples:. Ted wans o sar a new exercise program. He walks 0.5 miles on he firs day, and increases he disance he walks by 0% each day. a. Wrie an exponenial growh model ha describes he siuaion. b. How far will Ted walk on he 5 h day? c. Afer how many days will Ted be walking 3 miles? (Solve graphically).. The price of a scienific calculaor, which currenly sells for $89, decreases by 6% each year. a. Wrie an exponenial decay model ha describes he siuaion. b. How much will he calculaor cos afer 5 years? c. Afer how many years will he price of he calculaor be $50? (Solve graphically). 3. A blue whale calf weighed 5,000 pounds a birh (or a ime = 0). One week laer he baby blue whale weighed 6,750 pounds. a. Find he growh rae. b. Wrie an equaion o model he weigh of he blue whale, in pounds, a any ime. c. If i coninues growing a is curren rae, wha will he blue whale calf weigh in 8 weeks? d. When will he calf weigh 00,000 pounds? (Solve graphically). 4. Hugo wans o sell his car. The value of his car has been decreasing by 0% per year. Is curren value is $000. If he car is en years old, how much was i worh when he bough i? 5. A school has room for 500 sudens. The suden populaion is growing a a rae of 3.6% per year. If he school will be full in 6 years, how many sudens are here now?

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180 Algebra Chapers & : Trigonomeric Funcions of Angles and Real Numbers Chapers & : Trigonomeric Funcions of Angles and Real Numbers - Angle Measures Radians: - a uni (rad o measure he size of an angle. rad

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

Lesson 3.1 Recursive Sequences

Lesson 3.1 Recursive Sequences Lesson 3.1 Recursive Sequences 1) 1. Evaluae he epression 2(3 for each value of. a. 9 b. 2 c. 1 d. 1 2. Consider he sequence of figures made from riangles. Figure 1 Figure 2 Figure 3 Figure a. Complee

More information

Math 333 Problem Set #2 Solution 14 February 2003

Math 333 Problem Set #2 Solution 14 February 2003 Mah 333 Problem Se #2 Soluion 14 February 2003 A1. Solve he iniial value problem dy dx = x2 + e 3x ; 2y 4 y(0) = 1. Soluion: This is separable; we wrie 2y 4 dy = x 2 + e x dx and inegrae o ge The iniial

More information

Math 111 Midterm I, Lecture A, version 1 -- Solutions January 30 th, 2007

Math 111 Midterm I, Lecture A, version 1 -- Solutions January 30 th, 2007 NAME: Suden ID #: QUIZ SECTION: Mah 111 Miderm I, Lecure A, version 1 -- Soluions January 30 h, 2007 Problem 1 4 Problem 2 6 Problem 3 20 Problem 4 20 Toal: 50 You are allowed o use a calculaor, a ruler,

More information

Math 105 Second Midterm March 16, 2017

Math 105 Second Midterm March 16, 2017 Mah 105 Second Miderm March 16, 2017 UMID: Insrucor: Iniials: Secion: 1. Do no open his exam unil you are old o do so. 2. Do no wrie your name anywhere on his exam. 3. This exam has 9 pages including his

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

EQUATIONS REVIEW I Lesson Notes. Example 1. Example 2. Equations Review. 5 2 x = 1 6. Simple Equations

EQUATIONS REVIEW I Lesson Notes. Example 1. Example 2.  Equations Review. 5 2 x = 1 6. Simple Equations Equaions Review x + 3 = 6 EQUATIONS REVIEW I Example Simple Equaions a) a - 7 = b) m - 9 = -7 c) 6r = 4 d) 7 = -9x Example Simple Equaions a) 6p + = 4 b) 4 = 3k + 6 c) 9 + k = + 3k d) 8-3n = -8n + 3 EQUATIONS

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

FITTING EQUATIONS TO DATA

FITTING EQUATIONS TO DATA TANTON S TAKE ON FITTING EQUATIONS TO DATA CURRICULUM TIDBITS FOR THE MATHEMATICS CLASSROOM MAY 013 Sandard algebra courses have sudens fi linear and eponenial funcions o wo daa poins, and quadraic funcions

More information

4.1 - Logarithms and Their Properties

4.1 - Logarithms and Their Properties Chaper 4 Logarihmic Funcions 4.1 - Logarihms and Their Properies Wha is a Logarihm? We define he common logarihm funcion, simply he log funcion, wrien log 10 x log x, as follows: If x is a posiive number,

More information

1.6. Slopes of Tangents and Instantaneous Rate of Change

1.6. Slopes of Tangents and Instantaneous Rate of Change 1.6 Slopes of Tangens and Insananeous Rae of Change When you hi or kick a ball, he heigh, h, in meres, of he ball can be modelled by he equaion h() 4.9 2 v c. In his equaion, is he ime, in seconds; c represens

More information

The equation to any straight line can be expressed in the form:

The equation to any straight line can be expressed in the form: Sring Graphs Par 1 Answers 1 TI-Nspire Invesigaion Suden min Aims Deermine a series of equaions of sraigh lines o form a paern similar o ha formed by he cables on he Jerusalem Chords Bridge. Deermine he

More information

Phys1112: DC and RC circuits

Phys1112: DC and RC circuits Name: Group Members: Dae: TA s Name: Phys1112: DC and RC circuis Objecives: 1. To undersand curren and volage characerisics of a DC RC discharging circui. 2. To undersand he effec of he RC ime consan.

More information

6. Solve by applying the quadratic formula.

6. Solve by applying the quadratic formula. Dae: Chaper 7 Prerequisie Skills BLM 7.. Apply he Eponen Laws. Simplify. Idenify he eponen law ha you used. a) ( c) ( c) ( c) ( y)( y ) c) ( m)( n ). Simplify. Idenify he eponen law ha you used. 8 w a)

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of 4 Soluionbank Edexcel AS and A Level Modular Mahemaics Exercise A, Quesion Quesion: Skech he graphs of (a) y = e x + (b) y = 4e x (c) y = e x 3 (d) y = 4 e x (e) y = 6 + 0e x (f) y = 00e x + 0

More information

LabQuest 24. Capacitors

LabQuest 24. Capacitors Capaciors LabQues 24 The charge q on a capacior s plae is proporional o he poenial difference V across he capacior. We express his wih q V = C where C is a proporionaliy consan known as he capaciance.

More information

3 at MAC 1140 TEST 3 NOTES. 5.1 and 5.2. Exponential Functions. Form I: P is the y-intercept. (0, P) When a > 1: a = growth factor = 1 + growth rate

3 at MAC 1140 TEST 3 NOTES. 5.1 and 5.2. Exponential Functions. Form I: P is the y-intercept. (0, P) When a > 1: a = growth factor = 1 + growth rate 1 5.1 and 5. Eponenial Funcions Form I: Y Pa, a 1, a > 0 P is he y-inercep. (0, P) When a > 1: a = growh facor = 1 + growh rae The equaion can be wrien as The larger a is, he seeper he graph is. Y P( 1

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Math 10C: Relations and Functions PRACTICE EXAM

Math 10C: Relations and Functions PRACTICE EXAM Mah C: Relaions and Funcions PRACTICE EXAM. Cailin rides her bike o school every day. The able of values shows her disance from home as ime passes. An equaion ha describes he daa is: ime (minues) disance

More information

Analyze patterns and relationships. 3. Generate two numerical patterns using AC

Analyze patterns and relationships. 3. Generate two numerical patterns using AC envision ah 2.0 5h Grade ah Curriculum Quarer 1 Quarer 2 Quarer 3 Quarer 4 andards: =ajor =upporing =Addiional Firs 30 Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 andards: Operaions and Algebraic Thinking

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Exponential and Logarithmic Functions -- ANSWERS -- Logarithms Practice Diploma ANSWERS 1

Exponential and Logarithmic Functions -- ANSWERS -- Logarithms Practice Diploma ANSWERS 1 Eponenial and Logarihmic Funcions -- ANSWERS -- Logarihms racice Diploma ANSWERS www.puremah.com Logarihms Diploma Syle racice Eam Answers. C. D 9. A 7. C. A. C. B 8. D. D. C NR. 8 9. C 4. C NR. NR 6.

More information

MATH ANALYSIS HONORS UNIT 6 EXPONENTIAL FUNCTIONS TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /19 10/22 10/23 10/24 10/25 10/26 10/29 10/30

MATH ANALYSIS HONORS UNIT 6 EXPONENTIAL FUNCTIONS TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /19 10/22 10/23 10/24 10/25 10/26 10/29 10/30 NAME DATE PERIOD MATH ANALYSIS HONORS UNIT 6 EXPONENTIAL FUNCTIONS DATE TOPIC ASSIGNMENT 10 0 10/19 10/ 10/ 10/4 10/5 10/6 10/9 10/0 10/1 11/1 11/ TOTAL Mah Analysis Honors Workshee 1 Eponenial Funcions

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

Section 7.4 Modeling Changing Amplitude and Midline

Section 7.4 Modeling Changing Amplitude and Midline 488 Chaper 7 Secion 7.4 Modeling Changing Ampliude and Midline While sinusoidal funcions can model a variey of behaviors, i is ofen necessary o combine sinusoidal funcions wih linear and exponenial curves

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

UNIT #4 TEST REVIEW EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #4 TEST REVIEW EXPONENTIAL AND LOGARITHMIC FUNCTIONS Name: Par I Quesions UNIT #4 TEST REVIEW EXPONENTIAL AND LOGARITHMIC FUNCTIONS Dae: 1. The epression 1 is equivalen o 1 () () 6. The eponenial funcion y 16 could e rewrien as y () y 4 () y y. The epression

More information

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0.

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0. PHYSICS 20 UNIT 1 SCIENCE MATH WORKSHEET NAME: A. Sandard Noaion Very large and very small numbers are easily wrien using scienific (or sandard) noaion, raher han decimal (or posiional) noaion. Sandard

More information

SPH3U: Projectiles. Recorder: Manager: Speaker:

SPH3U: Projectiles. Recorder: Manager: Speaker: SPH3U: Projeciles Now i s ime o use our new skills o analyze he moion of a golf ball ha was ossed hrough he air. Le s find ou wha is special abou he moion of a projecile. Recorder: Manager: Speaker: 0

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

Notes 8B Day 1 Doubling Time

Notes 8B Day 1 Doubling Time Noes 8B Day 1 Doubling ime Exponenial growh leads o repeaed doublings (see Graph in Noes 8A) and exponenial decay leads o repeaed halvings. In his uni we ll be convering beween growh (or decay) raes and

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates Biol. 356 Lab 8. Moraliy, Recruimen, and Migraion Raes (modified from Cox, 00, General Ecology Lab Manual, McGraw Hill) Las week we esimaed populaion size hrough several mehods. One assumpion of all hese

More information

5.2. The Natural Logarithm. Solution

5.2. The Natural Logarithm. Solution 5.2 The Naural Logarihm The number e is an irraional number, similar in naure o π. Is non-erminaing, non-repeaing value is e 2.718 281 828 59. Like π, e also occurs frequenly in naural phenomena. In fac,

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff

Laplace transfom: t-translation rule , Haynes Miller and Jeremy Orloff Laplace ransfom: -ranslaion rule 8.03, Haynes Miller and Jeremy Orloff Inroducory example Consider he sysem ẋ + 3x = f(, where f is he inpu and x he response. We know is uni impulse response is 0 for

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel 15. Biccle Wheel The graph We moun a biccle wheel so ha i is free o roae in a verical plane. In fac, wha works easil is o pu an exension on one of he axles, and ge a suden o sand on one side and hold he

More information

Math 115 Final Exam December 14, 2017

Math 115 Final Exam December 14, 2017 On my honor, as a suden, I have neiher given nor received unauhorized aid on his academic work. Your Iniials Only: Iniials: Do no wrie in his area Mah 5 Final Exam December, 07 Your U-M ID # (no uniqname):

More information

Note: For all questions, answer (E) NOTA means none of the above answers is correct.

Note: For all questions, answer (E) NOTA means none of the above answers is correct. Thea Logarihms & Eponens 0 ΜΑΘ Naional Convenion Noe: For all quesions, answer means none of he above answers is correc.. The elemen C 4 has a half life of 70 ears. There is grams of C 4 in a paricular

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

SPH3U1 Lesson 03 Kinematics

SPH3U1 Lesson 03 Kinematics SPH3U1 Lesson 03 Kinemaics GRAPHICAL ANALYSIS LEARNING GOALS Sudens will Learn how o read values, find slopes and calculae areas on graphs. Learn wha hese values mean on boh posiion-ime and velociy-ime

More information

72 Calculus and Structures

72 Calculus and Structures 72 Calculus and Srucures CHAPTER 5 DISTANCE AND ACCUMULATED CHANGE Calculus and Srucures 73 Copyrigh Chaper 5 DISTANCE AND ACCUMULATED CHANGE 5. DISTANCE a. Consan velociy Le s ake anoher look a Mary s

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s) Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

1 Differential Equation Investigations using Customizable

1 Differential Equation Investigations using Customizable Differenial Equaion Invesigaions using Cusomizable Mahles Rober Decker The Universiy of Harford Absrac. The auhor has developed some plaform independen, freely available, ineracive programs (mahles) for

More information

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS

4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Funcions Modeling Change: A Preparaion for Calculus, 4h Ediion, 2011, Connally 4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Growing a a Consan Percen Rae Example 2 During he 2000 s, he populaion

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

Linear Time-invariant systems, Convolution, and Cross-correlation

Linear Time-invariant systems, Convolution, and Cross-correlation Linear Time-invarian sysems, Convoluion, and Cross-correlaion (1) Linear Time-invarian (LTI) sysem A sysem akes in an inpu funcion and reurns an oupu funcion. x() T y() Inpu Sysem Oupu y() = T[x()] An

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Final Exam. Tuesday, December hours

Final Exam. Tuesday, December hours San Francisco Sae Universiy Michael Bar ECON 560 Fall 03 Final Exam Tuesday, December 7 hours Name: Insrucions. This is closed book, closed noes exam.. No calculaors of any kind are allowed. 3. Show all

More information

, where P is the number of bears at time t in years. dt (a) If 0 100, lim Pt. Is the solution curve increasing or decreasing?

, where P is the number of bears at time t in years. dt (a) If 0 100, lim Pt. Is the solution curve increasing or decreasing? CALCULUS BC WORKSHEET 1 ON LOGISTIC GROWTH Work he following on noebook paper. Use your calculaor on 4(b) and 4(c) only. 1. Suppose he populaion of bears in a naional park grows according o he logisic

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Quesion A blood vessel is 6 millimeers (mm) long Disance wih circular cross secions of varying diameer. x (mm) 6 8 4 6 Diameer The able above gives he measuremens of he B(x)

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

Parametrics and Vectors (BC Only)

Parametrics and Vectors (BC Only) Paramerics and Vecors (BC Only) The following relaionships should be learned and memorized. The paricle s posiion vecor is r() x(), y(). The velociy vecor is v(),. The speed is he magniude of he velociy

More information

Logarithms Practice Exam - ANSWERS

Logarithms Practice Exam - ANSWERS Logarihms racice Eam - ANSWERS Answers. C. D 9. A 9. D. A. C. B. B. D. C. B. B. C NR.. C. B. B. B. B 6. D. C NR. 9. NR. NR... C 7. B. C. B. C 6. C 6. C NR.. 7. B 7. D 9. A. D. C Each muliple choice & numeric

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Fishing limits and the Logistic Equation. 1

Fishing limits and the Logistic Equation. 1 Fishing limis and he Logisic Equaion. 1 1. The Logisic Equaion. The logisic equaion is an equaion governing populaion growh for populaions in an environmen wih a limied amoun of resources (for insance,

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

APPM 2360 Homework Solutions, Due June 10

APPM 2360 Homework Solutions, Due June 10 2.2.2: Find general soluions for he equaion APPM 2360 Homework Soluions, Due June 10 Soluion: Finding he inegraing facor, dy + 2y = 3e µ) = e 2) = e 2 Muliplying he differenial equaion by he inegraing

More information

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e 66 CHAPTER PARAMETRIC EQUATINS AND PLAR CRDINATES SLUTIN We use a graphing device o produce he graphs for he cases a,,.5,.,,.5,, and shown in Figure 7. Noice ha all of hese curves (ecep he case a ) have

More information

Physics 20 Lesson 5 Graphical Analysis Acceleration

Physics 20 Lesson 5 Graphical Analysis Acceleration Physics 2 Lesson 5 Graphical Analysis Acceleraion I. Insananeous Velociy From our previous work wih consan speed and consan velociy, we know ha he slope of a posiion-ime graph is equal o he velociy of

More information

Precalculus An Investigation of Functions

Precalculus An Investigation of Functions Precalculus An Invesigaion of Funcions David Lippman Melonie Rasmussen Ediion.3 This book is also available o read free online a hp://www.openexbooksore.com/precalc/ If you wan a prined copy, buying from

More information

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time BULLSEYE Lab Name: ANSWER KEY Dae: Pre-AP Physics Lab Projecile Moion Weigh = 1 DIRECTIONS: Follow he insrucions below, build he ramp, ake your measuremens, and use your measuremens o make he calculaions

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

3, so θ = arccos

3, so θ = arccos Mahemaics 210 Professor Alan H Sein Monday, Ocober 1, 2007 SOLUTIONS This problem se is worh 50 poins 1 Find he angle beween he vecors (2, 7, 3) and (5, 2, 4) Soluion: Le θ be he angle (2, 7, 3) (5, 2,

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively:

( ) a system of differential equations with continuous parametrization ( T = R + These look like, respectively: XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

Section 5: Chain Rule

Section 5: Chain Rule Chaper The Derivaive Applie Calculus 11 Secion 5: Chain Rule There is one more ype of complicae funcion ha we will wan o know how o iffereniae: composiion. The Chain Rule will le us fin he erivaive of

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Mah 6 Pracice for Exam Generaed Ocober 3, 7 Name: SOLUTIONS Insrucor: Secion Number:. This exam has 5 quesions. Noe ha he problems are no of equal difficuly, so you may wan o skip over and reurn o a problem

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

04. Kinetics of a second order reaction

04. Kinetics of a second order reaction 4. Kineics of a second order reacion Imporan conceps Reacion rae, reacion exen, reacion rae equaion, order of a reacion, firs-order reacions, second-order reacions, differenial and inegraed rae laws, Arrhenius

More information

F.LE.A.4: Exponential Growth

F.LE.A.4: Exponential Growth Regens Exam Quesions F.LE.A.4: Exponenial Growh www.jmap.org Name: F.LE.A.4: Exponenial Growh 1 A populaion of rabbis doubles every days according o he formula P = 10(2), where P is he populaion of rabbis

More information

Dynamics. Option topic: Dynamics

Dynamics. Option topic: Dynamics Dynamics 11 syllabusref Opion opic: Dynamics eferenceence In his cha chaper 11A Differeniaion and displacemen, velociy and acceleraion 11B Inerpreing graphs 11C Algebraic links beween displacemen, velociy

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Direc Curren Physics for Scieniss & Engineers 2 Spring Semeser 2005 Lecure 16 This week we will sudy charges in moion Elecric charge moving from one region o anoher is called elecric curren Curren is all

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

x i v x t a dx dt t x

x i v x t a dx dt t x Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

Practicing Problem Solving and Graphing

Practicing Problem Solving and Graphing Pracicing Problem Solving and Graphing Tes 1: Jan 30, 7pm, Ming Hsieh G20 The Bes Ways To Pracice for Tes Bes If need more, ry suggesed problems from each new opic: Suden Response Examples A pas opic ha

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

EE100 Lab 3 Experiment Guide: RC Circuits

EE100 Lab 3 Experiment Guide: RC Circuits I. Inroducion EE100 Lab 3 Experimen Guide: A. apaciors A capacior is a passive elecronic componen ha sores energy in he form of an elecrosaic field. The uni of capaciance is he farad (coulomb/vol). Pracical

More information