DISCRETE CONTROLLED PRE-DRIVER FIR MODEL FOR HYBRID IBIS MODEL AMS SIMULATION MAY 09, 2015, TURIN, ITALY

Size: px
Start display at page:

Download "DISCRETE CONTROLLED PRE-DRIVER FIR MODEL FOR HYBRID IBIS MODEL AMS SIMULATION MAY 09, 2015, TURIN, ITALY"

Transcription

1 DISCRETE CONTROLLED PRE-DRIVER FIR MODEL FOR HYBRID IBIS MODEL AMS SIMULATION IEEE Workshop on Signal and Power Integrity (SPI) MAY 09, 2015, TURIN, ITALY WAEL DGHAIS AND F. H. BELLAMINE Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Tunisia 1

2 PRESENTATION OUTLINES 1-Introductions/Motivations 2- IBIS Model for an Inverter -Input Signal Decomposition -Functions Decomposition 3-IBIS Hybrid Automaton Representation 4-Event-Driven IBIS Implementation 5-Verification/Validation Setup and Results 6- Conclusions 2

3 INTRODUCTION The driver s input signals are encoded as NRZ or PAM signals. Real digital (i.e. discrete) input waveforms have a finite non-zero rise and fall times that describe the switching between the DC high (H) and low (L) states. The buffered output signals that propagate through the PCB trace are analog. V 1 (t) A VDD PU Devices ih(t) VDD 0 dv 1 (t) dt 0 d 2 V 1 (t) dt 2 0 t r A/t r T t f time (s) time (s) -A/t f time (s) Trapezoidal input signal waveform and its derivatives V1 (t) I1 (t) Predriver Stage Control Circuit VSS PD Devices il(t) Driver Last Stage PAD I2 (t) V2(t) The I/O buffer s structure with its main electrical variables 3

4 MOTIVATIONS Methodology: Apply hybrid modelling procedure that integrates both the continuous electrical variables and discrete-controlled signals to describe the driver s model dynamics Previous work: nonlinear-accurate booleanization of continuous dynamics (ABCD-NL) was proposed to capture the AMS component s analog dynamic behavior using purely Boolean models [1]. Objective of this work: extend this approach [1] to analyze the predriver s circuit presented by the equivalent circuit IBIS model [3] and the other parametric approaches [4], [5] and develop a driver s model formulation and implementation. The model is based on a nonlinear hybrid automaton that combines the interaction between discrete-controlled models for capturing the switching behavior (i.e. finite state machine (FSM) model and the local models structure characterized by continuous evolving variables (e.g. nonlinear differential equation (NDE) model). 4

5 INPUT SIGNAL DECOMPOSITION At constant power supplies V DD and V SS, the driver s model NDE representation is : I 2 t = Φ V t, V t, V m t V t = [V 1 t, V 2 (t)] T is the vector of state variables. m describes the order of the system. Φ is a multivariable nonlinear function that defines a NDE relating the observable output current I 2 t with the vector of state variables and its higher derivatives. Model order reduction : The complexity of the NDE formulation can be reduced using a discretization of the driver s continuous nonlinear dynamic trajectory based on input signal or state variables decomposition/partitioning. The choice of an appropriate state quantization technique must be carefully considered in order to balance the modeling accuracy and running complexity 5

6 FUNCTIONS DECOMPOSITION The PU and PD output nonlinear admittances, are described by the F L and F H ( ) functions, while the input is kept at high and low levels and varying the output voltage V 2 t. I L t = F L V 2 t, V 2 t = Φ V 1 = 0, V 2 t, V 2 t I H t = F H V 2 t, V 2 t = Φ V 1 = V DD, V 2 t, V 2 t The function, Φ, can be analytically approximated as a product of two functions, knowing its two samples at two different DC inputs values (e.g. F L and F H ( ) functions), by a linear interpolation with respect to the variable V 1 : I 2 t = w H V 1 t F H V 2 t, V 2 t +w L V 1 t F L V 2 t, V 2 t 6

7 IBIS MODEL FOR AN INVERTER I 2 t = w H V 1 t F H V 2 t, V 2 t +w L V 1 t F L V 2 t, V 2 t w H t = V 1 t V SS and w V DD V L t = V DD V 1 t SS V DD V SS characteristics. (w H t + w L t = 1) capture the input port static switching This formulation has no dynamics reflected in the driver s input port. The transitions between the local models occur instantaneously and it is valid only for predicting signal distortion of one inverter at a low data rate However, commercial drivers require more sophisticated predriver s circuit in order to perform additional functions. 7

8 IBIS HYBRID AUTOMATON REPRESENTATION The switching between the local models is a continuous flow that occurs with respect to time. This switching behavior has to be integrated in the model in order to reflect the real hybrid device trajectories which traverse across this quantized continuous state space. The pre-driver s nonlinear dynamic manifest itself by asymmetry distortion of the input rising, (r), and falling, (f), edges. IBIS specifications introduce the four voltage-time (V-t) tables that are used to compute the scaling timing signals w L n t and w H n t in order to improve the switching accuracy. The event-driven model formulation is : I 2 t = w L n t F L V 2 t, V 2 t + w H n t F H V 2 t, V 2 t ; n = r, f 8

9 HYBRID AUTOMATON REPRESENTATION OF THE OUTPUT CURRENT V 1 (t)=v DD I 2 (t) COMPUTATIONAL PROCESS V 1 (t)=0 F H (V 2 (t),d/dt) F L (V 2 (t),d/dt) High state Low state V 1 (t)<v DD V 1 (t)=v DD V 1 (t)=0 V 1 (t)>0 f w H (t) F H (V 2 (t),d/dt) f c +w L (t) F L (V 2 (t),d/dt) r w H (t) F H (V 2 (t),d/dt) C r +w L (t) F L (V 2 (t),d/dt) Switching state from H to L 0<V 1 (t)<v DD 0<V 1 (t)<v DD Switching state from L to H 9

10 EVENT-DRIVEN IBIS IMPLEMENTATION (1) Instead of using a fixed timing V-t table stored in the EDA model library that will be time-driven controlled, Event-driven linear filter will be developed in order to assure the mapping from the NRZ input signal and the four timing signals, w(t). Assuming that the pre-driver behaves as a linear time invariant system for the rising and falling transitions inputs: An extraction of the impulse response, h(t), from the observable trapezoidal input response was carried out by computing the derivative of the w(t) signals providing the input-output V-t data: h L n t = dw L n t dt h H n t = dw H n t dt ; n = r, f 10

11 EVENT-DRIVEN IBIS IMPLEMENTATION (2) Detection/comparison block : generates the discrete signal controlling/synchronizing the multiplexing of the FIR filters output according to the duration of the high and low levels and the event occurring with rising and falling transitions V 1 t. V 1 (t) Comparision and detection r h H (t) f h H (t) f h L (t) r h L (t) MUX 2:1 MUX 2:1 w H (t) w L (t) The discrete controlled predriver FIR model yields scaling timing signals that controls the driver s trajectory as it crosses the boundaries between the input DC states of the PU and PD driver s stage currents. 11

12 VERIFICATION RESULTS w (t) H w (t) L IBIS IBIS r w (t) L f w (t) L r w (t) H filter filter filter time (ns) f w (t) H filter Predicted timing signals by the filter bank of the predriver s event-driven model implementation, 12

13 3 pf 500Ω VALIDATION SETUP V DD V 1 (t) I 2 (t) V 2 (t) Load V2(t) Pull-UP F H (V 2 (t),d/dt) V 1 (t) Predriver Stage FIR Filters with enable, trigger and control logic w H (t) w L (t) IL(t) Pull-Down F L (V 2 (t),d/dt) + + I2(t) R L - + RL.CL du/dt V2(t) Pre-Driver Model Last stage Model V2(t) I 2 / V 2 Load 13

14 E t (V) E(t) (V) V 2 t (V) V 2 (t) (V) time (ns) Behavioral Model VALIDATION RESULTS Physical TL Model time (ns) time (ns) Behavioral Model Physical TL Model time (ns) Comparison between the predicted output voltage waveform, V 2 t for input data rate of 700Mbps and tr=tf=500 ps. Comparison between the predicted output voltage waveform, V 2 t for input data rate of 400Mbps and tr=tf=500 ps. 14

15 The developed nonlinear hybrid automaton is a well suited modelling approach for capturing highly nonlinear AMS devices by defining the transient evolution of the hybrid AMS DC state under two-level NRZ or PAM multilevel signals excitation. 15 CONCLUSIONS The derivation of the hybrid automaton driver s model that manifests switching continuous behavior since it mixes the event-triggered predriver s switching dynamics with nonlinear continuous steady state dynamics of the PU and PD models of the driver s last stage, The extracted predriver s model is implemented as a discrete/boolean controlled bank of a finite impulse response (FIR) filters approximating its circuit s nonlinear dynamics based on quantized states of the input signal,

16 REFERENCES [1] A. V. Karthik, S. Ray, P. Nuzzo, A. Mishchenko, R. K. Brayton, and J. Roychowdhury. ABCD- NL: Approximating continuous non-linear dynamical systems using purely Boolean models for analog/mixed-signal verification. In ASPDAC 14: Proceedings of the 19th Asia and South Pacific DAC, pp , [2] T.A. Henzinger. The theory of hybrid automata. In Proc. 11th IEEE Symp. Logic in Computer Science, pp , [3] I/O Buffer Information Specification Version 5.1, 2012 [online] Available: ibis.org/pub/ibis/ver5.1/ver5-1.pdf [4] G. Signorini, C. Siviero, S. Grivet-Talocia, I. S. Stievano, Power and Signal Integrity cosimulation via compressed macromodels of highspeed transceivers, Proc. of the 2015 IEEE 18th Workshop on SPI), Berlin, Germany, May 10-13, [5] W. Dghais, T. R. Cunha, and J. C. Pedro A Novel Two-Port Behavioral Model for I/O Buffer Overclocking Simulation IEEE Trans. on Components, Packaging and Manufacturing Technology, pp: October [6] T. Dang, A. Donze, O. Maler, Verification of analog and mixed-signal circuits using hybrid systems techniques, Formal Methods for Computer Aided Design, vol in LNCS, pp Springer, Heidelberg (2004) 16

17 THANK YOU FOR YOUR ATTENTION QUESTIONS COMMENTS?

Multiport I/O Model Computation For Poweraware SI Simulation

Multiport I/O Model Computation For Poweraware SI Simulation Multiport I/O Model Computation For Poweraware SI Simulation EUROPEAN IBIS SUMMIT MAY 11, 216, TURIN, ITALY WAEL DGHAIS AND F. H. BELLAMINE waeldghais@ua.pt/wael.dghais@hotmail.co.uk Institut Supérieur

More information

Combined FDTD/Macromodel Simulation of Interconnected Digital Devices

Combined FDTD/Macromodel Simulation of Interconnected Digital Devices Combined FDTD/Macromodel Simulation of Interconnected Digital Devices S. Grivet-Talocia, I. S. Stievano, I. A. Maio, F. G. Canavero Dip. Elettronica, Politecnico di Torino, Torino, Italy (E-mail: grivet@polito.it)

More information

IC MACROMODELS FROM ON-THE-FLY TRANSIENT RESPONSES

IC MACROMODELS FROM ON-THE-FLY TRANSIENT RESPONSES IBIS Summit @ DATE, Mar. 1, 26 MACROMODELS FROM ON-THE-FLY TRANSIENT RESPONSES F.G.Canavero, I.A.Maio, I.S.Stievano Dipartimento di Elettronica, Politecnico di Torino, Italy http://www.emc.polito.it/ IBIS

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines. " Where transmission lines arise? " Lossless Transmission Line.

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines.  Where transmission lines arise?  Lossless Transmission Line. ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 24: April 19, 2018 Crosstalk and Wiring, Transmission Lines Lecture Outline! Crosstalk! Repeaters in Wiring! Transmission Lines " Where transmission

More information

Chapter 5 CMOS Logic Gate Design

Chapter 5 CMOS Logic Gate Design Chapter 5 CMOS Logic Gate Design Section 5. -To achieve correct operation of integrated logic gates, we need to satisfy 1. Functional specification. Temporal (timing) constraint. (1) In CMOS, incorrect

More information

EEE105 Teori Litar I Chapter 7 Lecture #3. Dr. Shahrel Azmin Suandi Emel:

EEE105 Teori Litar I Chapter 7 Lecture #3. Dr. Shahrel Azmin Suandi Emel: EEE105 Teori Litar I Chapter 7 Lecture #3 Dr. Shahrel Azmin Suandi Emel: shahrel@eng.usm.my What we have learnt so far? Chapter 7 introduced us to first-order circuit From the last lecture, we have learnt

More information

Electric Circuits. Overview. Hani Mehrpouyan,

Electric Circuits. Overview. Hani Mehrpouyan, Electric Circuits Hani Mehrpouyan, Department of Electrical and Computer Engineering, Lecture 15 (First Order Circuits) Nov 16 th, 2015 Hani Mehrpouyan (hani.mehr@ieee.org) Boise State c 2015 1 1 Overview

More information

Driver Waveform Computation for Timing Analysis with Multiple Voltage Threshold Driver Models

Driver Waveform Computation for Timing Analysis with Multiple Voltage Threshold Driver Models Driver Waveform Computation for Timing Analysis with Multiple Voltage Threshold Driver Models Peter Feldmann IBM T. J. Watson Research Center Yorktown Heights, NY Soroush Abbaspour, Debjit Sinha, Gregory

More information

EEE 421 VLSI Circuits

EEE 421 VLSI Circuits EEE 421 CMOS Properties Full rail-to-rail swing high noise margins» Logic levels not dependent upon the relative device sizes transistors can be minimum size ratioless Always a path to V dd or GND in steady

More information

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer General Description The MM74C150 and MM82C19 multiplex 16 digital lines to 1 output. A 4-bit address code determines

More information

Qualification of tabulated scattering parameters

Qualification of tabulated scattering parameters Qualification of tabulated scattering parameters Stefano Grivet Talocia Politecnico di Torino, Italy IdemWorks s.r.l. stefano.grivet@polito.it 4 th IEEE Workshop on Signal Propagation on Interconnects

More information

ECE 497 JS Lecture - 13 Projects

ECE 497 JS Lecture - 13 Projects ECE 497 JS Lecture - 13 Projects Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 ECE 497 JS - Projects All projects should be accompanied

More information

Preliminary Datasheet

Preliminary Datasheet Macroblock Preliminary Datasheet Features 3 output channels for RGB D lamps Output current invariant to load voltage change Programmable output current for each channel Built-in brightness control Constant

More information

UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC

UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC 16-BIT CONSTANT CURRENT LED SINK DRIVER DESCRIPTION The UTC L16B45 is designed for LED displays. UTC L16B45 contains a serial buffer and data latches

More information

Analysis for Dynamic of Analog Circuits by using HSPN

Analysis for Dynamic of Analog Circuits by using HSPN Proceedings of the 11th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 207 Analysis for Dynamic of Analog Circuits by using HSPN MENG ZHANG, SHENGBING

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Part II" Converter Dynamics and Control! 7.!AC equivalent circuit modeling! 8.!Converter transfer

More information

DM74S373 DM74S374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

DM74S373 DM74S374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops General Description These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or

More information

Transient Response of Transmission Lines and TDR/TDT

Transient Response of Transmission Lines and TDR/TDT Transient Response of Transmission Lines and TDR/TDT Tzong-Lin Wu, Ph.D. EMC Lab. Department of Electrical Engineering National Sun Yat-sen University Outlines Why do we learn the transient response of

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. September 2001 S7C256 5V/3.3V 32K X 8 CMOS SRM (Common I/O) Features S7C256

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS Logic Family Specifications The IC6 74C/CT/CU/CMOS Logic Package Information The IC6 74C/CT/CU/CMOS

More information

MOSFET and CMOS Gate. Copy Right by Wentai Liu

MOSFET and CMOS Gate. Copy Right by Wentai Liu MOSFET and CMOS Gate CMOS Inverter DC Analysis - Voltage Transfer Curve (VTC) Find (1) (2) (3) (4) (5) (6) V OH min, V V OL min, V V IH min, V V IL min, V OHmax OLmax IHmax ILmax NM L = V ILmax V OL max

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT VLSI UNIT - III GATE LEVEL DESIGN P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents GATE LEVEL DESIGN : Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time Delays, Driving large

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 18: March 27, 2018 Dynamic Logic, Charge Injection Lecture Outline! Sequential MOS Logic " D-Latch " Timing Constraints! Dynamic Logic " Domino

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 23: April 17, 2018 I/O Circuits, Inductive Noise, CLK Generation Lecture Outline! Packaging! Variation and Testing! I/O Circuits! Inductive

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards

Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards Electromagnetic Modeling and Signal Integrity Simulation of Power/Ground Networks in High Speed Digital Packages and Printed Circuit Boards Frank Y. Yuan Viewlogic Systems Group, Inc. 385 Del Norte Road

More information

From Electrical Switched Networks to Hybrid Automata. Alessandro Cimatti 1, Sergio Mover 2, Mirko Sessa 1,3

From Electrical Switched Networks to Hybrid Automata. Alessandro Cimatti 1, Sergio Mover 2, Mirko Sessa 1,3 1 2 3 From Electrical Switched Networks to Hybrid Automata Alessandro Cimatti 1, Sergio Mover 2, Mirko Sessa 1,3 Multidomain physical systems Multiple physical domains: electrical hydraulic mechanical

More information

Enforcement Passivity. Frequency Data. Wenliang Tseng, Sogo Hsu, Frank Y.C. Pai and Scott C.S. Li. Asian IBIS Summit, Taipei, Taiwan November 12, 2010

Enforcement Passivity. Frequency Data. Wenliang Tseng, Sogo Hsu, Frank Y.C. Pai and Scott C.S. Li. Asian IBIS Summit, Taipei, Taiwan November 12, 2010 Enforcement Passivity of S-parameter S Sampled Frequency Data Wenliang Tseng, Sogo Hsu, Frank Y.C. Pai and Scott C.S. Li Asian IBIS Summit, Taipei, Taiwan November 12, 2010 Agenda Causality and passivity

More information

ENGG 1203 Tutorial_9 - Review. Boolean Algebra. Simplifying Logic Circuits. Combinational Logic. 1. Combinational & Sequential Logic

ENGG 1203 Tutorial_9 - Review. Boolean Algebra. Simplifying Logic Circuits. Combinational Logic. 1. Combinational & Sequential Logic ENGG 1203 Tutorial_9 - Review Boolean Algebra 1. Combinational & Sequential Logic 2. Computer Systems 3. Electronic Circuits 4. Signals, Systems, and Control Remark : Multiple Choice Questions : ** Check

More information

DM74LS373 DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

DM74LS373 DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops DM74LS373 DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops General Description These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution . (a) (i) ( B C 5) H (A 2 B D) H S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution ( B C 5) H (A 2 B D) H = (FFFF 698) H (ii) (2.3) 4 + (22.3) 4 2 2. 3 2. 3 2 3. 2 (2.3)

More information

DDR4 Board Design and Signal Integrity Verification Challenges

DDR4 Board Design and Signal Integrity Verification Challenges DDR4 Board Design and Signal Integrity Verification Challenges Outline Enabling DDR4 Pseudo Open Drain Driver - Benefit POD SI effects VrefDQ Calculation Data Eye Simulating SSN New Drive Standards Difference

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

SC1301A/B. 2A High Speed Low-Side MOSFET Driver in SOT-23 POWER MANAGEMENT. Applications. Typical Application Circuit

SC1301A/B. 2A High Speed Low-Side MOSFET Driver in SOT-23 POWER MANAGEMENT. Applications. Typical Application Circuit 查询 SC1301B 供应商 Description The is a cost effective single-channel highspeed MOSFET driver. The driver is capable of driving a 1000pF load in 0ns rise/fall time and has a 60ns propagation delay time from

More information

Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials

Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials Prediction of Stochastic Eye Diagrams via IC Equivalents and Lagrange Polynomials Paolo Manfredi, Igor S. Stievano, Flavio G. Canavero Department of Electronics and Telecommunications (DET) Politecnico

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

Features Y Wide supply voltage range 3 0V to 15V. Y High noise immunity 0 45 VDD (typ ) Y Low power TTL fan out of 2 driving 74L

Features Y Wide supply voltage range 3 0V to 15V. Y High noise immunity 0 45 VDD (typ ) Y Low power TTL fan out of 2 driving 74L CD4025 CD4023BM CD4023BC Buffered Triple 3-Input NAND Gate CD4025BM CD4025BC Buffered Triple 3-Input NOR Gate General Description These triple gates are monolithic complementary MOS (CMOS) integrated circuits

More information

74LCXH Low Voltage 16-Bit D-Type Flip-Flop with Bushold and 26Ω Series Resistors in Outputs

74LCXH Low Voltage 16-Bit D-Type Flip-Flop with Bushold and 26Ω Series Resistors in Outputs February 2001 Revised October 2001 74LCXH162374 Low oltage 16-Bit D-Type Flip-Flop with Bushold and 26Ω Series Resistors in Outputs General Description The LCXH162374 contains sixteen non-inverting D-type

More information

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: n-channel MOSFET Source Gate L Drain W L EFF Poly Gate oxide n-active p-sub depletion region (electrically

More information

Properties of CMOS Gates Snapshot

Properties of CMOS Gates Snapshot MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic

More information

EE115C Digital Electronic Circuits Homework #4

EE115C Digital Electronic Circuits Homework #4 EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS ogic Family Specifications The IC06 74HC/HCT/HCU/HCMOS ogic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

April 2004 AS7C3256A

April 2004 AS7C3256A pril 2004 S7C3256 3.3V 32K X 8 CMOS SRM (Common I/O) Features Pin compatible with S7C3256 Industrial and commercial temperature options Organization: 32,768 words 8 bits High speed - 10/12/15/20 ns address

More information

Simplify the following Boolean expressions and minimize the number of literals:

Simplify the following Boolean expressions and minimize the number of literals: Boolean Algebra Task 1 Simplify the following Boolean expressions and minimize the number of literals: 1.1 1.2 1.3 Task 2 Convert the following expressions into sum of products and product of sums: 2.1

More information

74LCX16374 Low Voltage 16-Bit D-Type Flip-Flop with 5V Tolerant Inputs and Outputs

74LCX16374 Low Voltage 16-Bit D-Type Flip-Flop with 5V Tolerant Inputs and Outputs 74LCX16374 Low oltage 16-Bit D-Type Flip-Flop with 5 Tolerant Inputs and Outputs General Description The LCX16374 contains sixteen non-inverting D-type flip-flops with 3-STATE outputs and is intended for

More information

Predicting Short Circuit Power From Timing Models

Predicting Short Circuit Power From Timing Models Predicting Short Circuit Power From Timing Models Emrah Acar, Ravishankar Arunachalam* and Sani R. Nassif IBM Research, Austin *IBM Corporation (emrah, ravaru, nassif)@us.ibm.com 11501 Burnet Rd. Austin,

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

Slide Set 6. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 6. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 6 for ENEL 353 Fall 2017 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2017 SN s ENEL 353 Fall 2017 Slide Set 6 slide

More information

EE5780 Advanced VLSI CAD

EE5780 Advanced VLSI CAD EE5780 Advanced VLSI CAD Lecture 4 DC and Transient Responses, Circuit Delays Zhuo Feng 4.1 Outline Pass Transistors DC Response Logic Levels and Noise Margins Transient Response RC Delay Models Delay

More information

Section 4. Nonlinear Circuits

Section 4. Nonlinear Circuits Section 4 Nonlinear Circuits 1 ) Voltage Comparators V P < V N : V o = V ol V P > V N : V o = V oh One bit A/D converter, Practical gain : 10 3 10 6 V OH and V OL should be far apart enough Response Time:

More information

Unit 3 Session - 9 Data-Processing Circuits

Unit 3 Session - 9 Data-Processing Circuits Objectives Unit 3 Session - 9 Data-Processing Design of multiplexer circuits Discuss multiplexer applications Realization of higher order multiplexers using lower orders (multiplexer trees) Introduction

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUBJECT CODE: EC 1354 SUB.NAME : VLSI DESIGN YEAR / SEMESTER: III / VI UNIT I MOS TRANSISTOR THEORY AND

More information

Distributed by: www.jameco.com 1-800-831-4242 The content and copyrights of the attached material are the property of its owner. INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download:

More information

Standard & Canonical Forms

Standard & Canonical Forms 1 COE 202- Digital Logic Standard & Canonical Forms Dr. Abdulaziz Y. Barnawi COE Department KFUPM 2 Outline Minterms and Maxterms From truth table to Boolean expression Sum of minterms Product of Maxterms

More information

MICROCIRCUITS, DIGITAL, TTL, FLIP-FLOPS, MONOLITHIC SILICON. Inactive for new design after 7 September 1995

MICROCIRCUITS, DIGITAL, TTL, FLIP-FLOPS, MONOLITHIC SILICON. Inactive for new design after 7 September 1995 MILITARY SPECIFICATION INCH-POUND MIL-M-38510/2G 8 February 2005 SUPERSEDING MIL-M-38510/2E 24 December 1974 MIL-M-0038510/2F (USAF) 24 OCTOBER 1975 MICROCIRCUITS, DIGITAL, TTL, FLIP-FLOPS, MONOLITHIC

More information

HFB20HJ20C. Ultrafast, Soft Recovery Diode. Features. Description. Absolute Maximum Ratings. 1 PD A V R = 200V I F(AV) = 20A

HFB20HJ20C. Ultrafast, Soft Recovery Diode. Features. Description. Absolute Maximum Ratings.  1 PD A V R = 200V I F(AV) = 20A PD - 9469A HEXFRED TM Features Reduced RFI and EMI Reduced Snubbing Extensive Characterization of Recovery Parameters Hermetic Surface Mount Ultrafast, Soft Recovery Diode V R = 200V I F(AV) = 20A t rr

More information

3.3 V 256 K 16 CMOS SRAM

3.3 V 256 K 16 CMOS SRAM August 2004 AS7C34098A 3.3 V 256 K 16 CMOS SRAM Features Pin compatible with AS7C34098 Industrial and commercial temperature Organization: 262,144 words 16 bits Center power and ground pins High speed

More information

NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register

NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register NTE4035B Integrated Circuit CMOS, 4 Bit Parallel In/Parallel Out Shift Register Description: The NTE4035B is a 4 bit shift register in a 16 Lead DIP type package constructed with MOS P Channel an N Channel

More information

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, SCHOTTKY TTL, FLIP-FLOPS, CASCADABLE, MONOLITHIC SILICON

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, SCHOTTKY TTL, FLIP-FLOPS, CASCADABLE, MONOLITHIC SILICON INCH-POUND 2 November 2005 SUPERSEDING MIL-M-38510/71C 23 July 1984 MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, SCHOTTKY TTL, FLIP-FLOPS, CASCADABLE, MONOLITHIC SILICON This specification is

More information

DATA SHEET. HEF4031B MSI 64-stage static shift register. For a complete data sheet, please also download: INTEGRATED CIRCUITS

DATA SHEET. HEF4031B MSI 64-stage static shift register. For a complete data sheet, please also download: INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF,

More information

HN58C256 Series word 8-bit Electrically Erasable and Programmable CMOS ROM

HN58C256 Series word 8-bit Electrically Erasable and Programmable CMOS ROM 32768-word 8-bit Electrically Erasable and Programmable CMOS ROM ADE-203-092G (Z) Rev. 7.0 Nov. 29, 1994 Description The Hitachi HN58C256 is a electrically erasable and programmable ROM organized as 32768-word

More information

Computer Science Final Examination Friday December 14 th 2001

Computer Science Final Examination Friday December 14 th 2001 Computer Science 03 60 265 Final Examination Friday December 14 th 2001 Dr. Robert D. Kent and Dr. Alioune Ngom Last Name: First Name: Student Number: INSTRUCTIONS EXAM DURATION IS 3 HOURs. CALCULATORS,

More information

512K x 32 Static RAM CY7C1062AV33. Features. Functional Description. Logic Block Diagram. Selection Guide

512K x 32 Static RAM CY7C1062AV33. Features. Functional Description. Logic Block Diagram. Selection Guide 512K x 32 Static RAM Features High speed t AA = 8 ns Low active power 1080 mw (max.) Operating voltages of 3.3 ± 0.3V 2.0V data retention Automatic power-down when deselected TTL-compatible inputs and

More information

IBIS-AMI Concern for PAM4 Simulation

IBIS-AMI Concern for PAM4 Simulation IBIS-AMI Concern for PAM4 Simulation Asian IBIS Summit Tokyo, Japan November 16, 2015 Shinichi Maeda E-mail: KEI-Systems@jcom.home.ne.jp 56 Gbps coming soon How to realize 56 Gbps What is PAM4 How to simulate

More information

9-Channel 64steps Constant-Current LED Driver with SPI Control. Features

9-Channel 64steps Constant-Current LED Driver with SPI Control. Features BCT3119 with SPI Control General Description The BCT3119 is a constant current driver incorporating shift register and data latch. This CMOS device is designed for LED display applications. The max output

More information

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr. DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU http://csce.uark.edu +1 (479) 575-604 yrpeng@uark.edu Pass Transistors We have assumed source is

More information

Lecture 4: Implementing Logic in CMOS

Lecture 4: Implementing Logic in CMOS Lecture 4: Implementing Logic in CMOS Mark Mcermott Electrical and Computer Engineering The University of Texas at ustin Review of emorgan s Theorem Recall that: () = + and = ( + ) (+) = and + = ( ) ()

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

5.0 V 256 K 16 CMOS SRAM

5.0 V 256 K 16 CMOS SRAM February 2006 5.0 V 256 K 16 CMOS SRAM Features Pin compatible with AS7C4098 Industrial and commercial temperature Organization: 262,144 words 16 bits Center power and ground pins High speed - 10/12/15/20

More information

MODULE 5 Chapter 7. Clocked Storage Elements

MODULE 5 Chapter 7. Clocked Storage Elements MODULE 5 Chapter 7 Clocked Storage Elements 3/9/2015 1 Outline Background Clocked Storage Elements Timing, terminology, classification Static CSEs Latches Registers Dynamic CSEs Latches Registers 3/9/2015

More information

Chapter 8. Low-Power VLSI Design Methodology

Chapter 8. Low-Power VLSI Design Methodology VLSI Design hapter 8 Low-Power VLSI Design Methodology Jin-Fu Li hapter 8 Low-Power VLSI Design Methodology Introduction Low-Power Gate-Level Design Low-Power Architecture-Level Design Algorithmic-Level

More information

74LCX16374 Low Voltage 16-Bit D-Type Flip-Flop with 5V Tolerant Inputs and Outputs

74LCX16374 Low Voltage 16-Bit D-Type Flip-Flop with 5V Tolerant Inputs and Outputs 74LCX16374 Low oltage 16-Bit D-Type Flip-Flop with 5 Tolerant Inputs and Outputs General Description The LCX16374 contains sixteen non-inverting D-type flip-flops with 3-STATE outputs and is intended for

More information

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II

CSE241 VLSI Digital Circuits Winter Lecture 07: Timing II CSE241 VLSI Digital Circuits Winter 2003 Lecture 07: Timing II CSE241 L3 ASICs.1 Delay Calculation Cell Fall Cap\Tr 0.05 0.2 0.5 0.01 0.02 0.16 0.30 0.5 2.0 0.04 0.32 0.178 0.08 0.64 0.60 1.20 0.1ns 0.147ns

More information

64K x 18 Synchronous Burst RAM Pipelined Output

64K x 18 Synchronous Burst RAM Pipelined Output 298A Features Fast access times: 5, 6, 7, and 8 ns Fast clock speed: 100, 83, 66, and 50 MHz Provide high-performance 3-1-1-1 access rate Fast OE access times: 5 and 6 ns Optimal for performance (two cycle

More information

Lecture 4: DC & Transient Response

Lecture 4: DC & Transient Response Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide

More information

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB Power Consumption in CMOS 1 Power Dissipation in CMOS Two Components contribute to the power dissipation:» Static Power Dissipation Leakage current Sub-threshold current» Dynamic Power Dissipation Short

More information

Verifying Global Convergence for a Digital Phase-Locked Loop

Verifying Global Convergence for a Digital Phase-Locked Loop Verifying Global Convergence for a Digital Phase-Locked Loop Jijie Wei & Yan Peng & Mark Greenstreet & Grace Yu University of British Columbia Vancouver, Canada October 22, 2013 Wei & Peng & Greenstreet

More information

MM74C00 MM74C02 MM74C04 Quad 2-Input NAND Gate Quad 2-Input NOR Gate Hex Inverter

MM74C00 MM74C02 MM74C04 Quad 2-Input NAND Gate Quad 2-Input NOR Gate Hex Inverter MM74C00 MM74C02 MM74C04 Quad 2-Input NAND Gate Quad 2-Input NOR Gate Hex Inverter General Description The MM74C00, MM74C02, and MM74C04 logic gates employ complementary MOS (CMOS) to achieve wide power

More information

Sequential Equivalence Checking without State Space Traversal

Sequential Equivalence Checking without State Space Traversal Sequential Equivalence Checking without State Space Traversal C.A.J. van Eijk Design Automation Section, Eindhoven University of Technology P.O.Box 53, 5600 MB Eindhoven, The Netherlands e-mail: C.A.J.v.Eijk@ele.tue.nl

More information

EECS 141: FALL 05 MIDTERM 1

EECS 141: FALL 05 MIDTERM 1 University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 11-1:3 Thursday, October 6, 6:3-8:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION

More information

Signals and Systems Chapter 2

Signals and Systems Chapter 2 Signals and Systems Chapter 2 Continuous-Time Systems Prof. Yasser Mostafa Kadah Overview of Chapter 2 Systems and their classification Linear time-invariant systems System Concept Mathematical transformation

More information

Description. For Fairchild s definition of Eco Status, please visit:

Description. For Fairchild s definition of Eco Status, please visit: FSA2357 Low R ON 3:1 Analog Switch Features 10µA Maximum I CCT Current Over an Expanded Control Voltage Range: V IN=2.6V, V CC=4.5V On Capacitance (C ON): 70pF Typical 0.55Ω Typical On Resistance (R ON)

More information

MM82C19 16-Line to 1-Line Multiplexer

MM82C19 16-Line to 1-Line Multiplexer 16-Line to 1-Line Multiplexer General Description The multiplex 16 digital lines to 1 output. A 4-bit address code determines the particular 1-of-16 inputs which is routed to the output. The data is inverted

More information

Verification of analog and mixed-signal circuits using hybrid systems techniques

Verification of analog and mixed-signal circuits using hybrid systems techniques FMCAD, November 2004, Austin Verification of analog and mixed-signal circuits using hybrid systems techniques Thao Dang, Alexandre Donze, Oded Maler VERIMAG Grenoble, France Plan 1. Introduction 2. Verification

More information

HFB16HY20CC. Ultrafast, Soft Recovery Diode FRED. 1 PD B V R = 200V I F(AV) = 16A. t rr = 30ns CASE STYLE TO-257AA

HFB16HY20CC. Ultrafast, Soft Recovery Diode FRED.  1 PD B V R = 200V I F(AV) = 16A. t rr = 30ns CASE STYLE TO-257AA PD - 94223B HFB6HY20CC FRED Ultrafast, Soft Recovery Diode Features Reduced RFI and EMI Reduced Snubbing Extensive Characterization of Recovery Parameters Hermetic Ceramic Eyelets V R = 200V I F(AV) =

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC6 74HC/HCT/HCU/HCMOS Logic Package Information The IC6 74HC/HCT/HCU/HCMOS

More information

74LS244 Octal 3-STATE Buffer/Line Driver/Line Receiver

74LS244 Octal 3-STATE Buffer/Line Driver/Line Receiver 74LS244 Octal 3-STATE Buffer/Line Driver/Line Receiver General Description These buffers/line drivers are designed to improve both the performance and PC board density of 3-STATE buffers/ drivers employed

More information

Lecture 6: DC & Transient Response

Lecture 6: DC & Transient Response Lecture 6: DC & Transient Response Slides courtesy of Deming Chen Slides based on the initial set from David Harris CMOS VLSI Design Outline Pass Transistors DC Response Logic Levels and Noise Margins

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics

Lecture 23. Dealing with Interconnect. Impact of Interconnect Parasitics Lecture 23 Dealing with Interconnect Impact of Interconnect Parasitics Reduce Reliability Affect Performance Classes of Parasitics Capacitive Resistive Inductive 1 INTERCONNECT Dealing with Capacitance

More information

! Memory. " RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell. " Used in most commercial chips

! Memory.  RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell.  Used in most commercial chips ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 3, 8 Memory: Core Cells Today! Memory " RAM Memory " Architecture " Memory core " SRAM " DRAM " Periphery Penn ESE 57 Spring 8 - Khanna

More information

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter ECE 438: Digital Integrated Circuits Assignment #4 The Inverter Text: Chapter 5, Digital Integrated Circuits 2 nd Ed, Rabaey 1) Consider the CMOS inverter circuit in Figure P1 with the following parameters.

More information

Designing Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 1. This homework is due September 5, 2017, at 11:59AM.

Designing Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 1. This homework is due September 5, 2017, at 11:59AM. EECS 16 Designing Information Devices and Systems II Fall 017 Miki Lustig and Michel Maharbiz Homework 1 This homework is due September 5, 017, at 11:59M. 1. Fundamental Theorem of Solutions to Differential

More information

THE power transfer capability is one of the most fundamental

THE power transfer capability is one of the most fundamental 4172 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 9, SEPTEMBER 2012 Letters Power Characterization of Isolated Bidirectional Dual-Active-Bridge DC DC Converter With Dual-Phase-Shift Control Biao

More information