EE 330 Lecture 15. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs

Size: px
Start display at page:

Download "EE 330 Lecture 15. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs"

Transcription

1 EE 330 Lecture 15 evices in Semiconuctor Processes ioes Capacitors MOSFETs

2 Review from Last Lecture Basic evices an evice Moels Resistor ioe Capacitor MOSFET BJT

3 Review from Last Lecture

4 Review from Last Lecture pn Junctions Physical Bounary Separating n-type an p-type regions f oping levels ientical, epletion region extens equally into n-type an p-type regions

5 Review from Last Lecture Analysis of Nonlinear Circuits (Circuits with one or more nonlinear evices) What analysis tools or methos can be use? KCL? KL? Superposition? Noal Analysis Mesh Analysis Two-Port Subcircuits oltage ivier? Current ivier? Thevenin an Norton Equivalent Circuits?

6 Review from Last Lecture ioe Moels (amps) ioe Characteristics (volts) (amps) ioe Characteristics (volts) ioe Characteristics (amps) (volts) Which moel shoul be use? The simplest moel that will give acceptable results in the analysis of a circuit

7 Review from Last Lecture ioe Equation ioe Moels t e 1 S (amps) ioe Characteristics (volts) ioe Characteristics if if (amps) (volts) ioe Characteristics Piecewise Linear Moels R if if (amps) (volts) 0 if 0 0 if 0

8 0 0 0 if if 0 ioe Moels ioe Equation 1 e t S Piecewise Linear Moels R When are the piecewise-linear moels aequate? When it oesn t make much ifference whether =0.6 or =0.7 is use When is the ieal PWL moel aequate? When it oesn t make much ifference whether =0 or =0.7 is use

9 aliate Moel Select Moel Example: etermine OUT for the following circuit 10K OUT 12 1 Solution: Strategy: 1. Assume PWL moel with =0.6, R =0 2. Guess state of ioe (ON) 3. Analyze circuit with moel 4. aliate state of guess in step 2 (verify the if conition in moel) 5. Assume PWL with = Guess state of ioe (ON) 7. Analyze circuit with moel 8. aliate state of guess in step 6 (verify the if conition in moel) 9. Show ifference between results using these two moels is small 10. f ifference is not small, must use a ifferent moel

10 Solution: 1. Assume PWL moel with =0.6, R =0 2. Guess state of ioe (ON) 10K OUT Analyze circuit with moel = 1. 14mA OUT 10K 4. aliate state of guess in step 2 To valiate state, must show >0 = OUT =1.14mA>0

11 Solution: 5. Assume PWL moel with =0.7, R =0 6. Guess state of ioe (ON) 10K OUT Analyze circuit with moel = 1. 13mA OUT 10K 8. aliate state of guess in step 6 To valiate state, must show >0 = OUT =1.13mA>0

12 Solution: 9. Show ifference between results using these two moels is small =1.14mA an =1.13 ma are close OUT OUT Thus, can conclue OUT 1.14mA

13 Example: etermine OUT for the following circuit 10K 0.8 OUT 1 Solution: Strategy: 1. Assume PWL moel with =0.6, R =0 2. Guess state of ioe (ON) 3. Analyze circuit with moel 4. aliate state of guess in step 2 5. Assume PWL with = Guess state of ioe (ON) 7. Analyze circuit with moel 8. aliate state of guess in step 6 9. Show ifference between results using these two moels is small 10. f ifference is not small, must use a ifferent moel

14 Solution: 1. Assume PWL moel with =0.6, R =0 2. Guess state of ioe (ON) 10K 0.8 OUT Analyze circuit with moel = OUT 10K 20 A 4. aliate state of guess in step 2 To valiate state, must show >0 = =20A>0 OUT

15 Solution: 5. Assume PWL moel with =0.7, R =0 6. Guess state of ioe (ON) 10K 0.8 OUT Analyze circuit with moel = OUT 10K 10 A 8. aliate state of guess in step 6 To valiate state, must show >0 = =10A>0 OUT

16 Solution: 9. Show ifference between results using these two moels is small =10A an =20A are not close OUT OUT 10. f ifference is not small, must use a ifferent moel Thus must use ioe equation to moel the evice OUT OUT 0.8- = 10K = e S t K OUT 0.6 Solve simultaneously, assume t =25m, S =1fA Solving these two equations by iteration, obtain = an OUT =18.60μA

17 Use of Piecewise Moels for Nonlinear evices when Analyzing Electronic Circuits Process: Observations: 1. Guess state of the evice 2. Analyze circuit 3. erify State 4. Repeat steps 1 to 3 if verification fails 5. erify moel (if necessary) o Analysis generally simplifie ramatically (particularly if piecewise moel is linear) o Approach applicable to wie variety of nonlinear evices o Close-form solutions give insight into performance of circuit o Usually much faster than solving the nonlinear circuit irectly o Wrong guesses in the state of the evice o not compromise solution (verification will fail) o Helps to guess right the first time o Moel is often not necessary with most nonlinear evices

18 Use of Piecewise Moels for Nonlinear evices when Analyzing Electronic Circuits Process: 1. Guess state of the evice 2. Analyze circuit 3. erify State 4. Repeat steps 1 to 3 if verification fails 5. erify moel (if necessary) What about nonlinear circuits (using piecewise moels) with time-varying inputs? 1K out 80sin500t 1 1K Same process except state verification (step 3) may inclue a range where solution is vali

19 Example: etermine OUT for N =80sin500t 1K 80sin500t N 1 out 1K Guess 1 ON (will use ieal ioe moel) 1K N 1 out 1K OUT = N =80sin(500t) ali for >0 Thus vali for N > 0 N 1K

20 Example: etermine OUT for N =80sin500t 1K 80sin500t N 1 out 1K Guess 1 OFF (will use ieal ioe moel) 1K N 1 out 1K OUT = N /2=40sin(500t) ali for <0 2 Thus vali for N < 0 N

21 Example: etermine OUT for N =80sin500t 1K 80sin500t N 1 out 1K Thus overall solution N 80 OUT 80sin 500t for N 0 40sin 500t forn 0 t OUT 80 t -40

22 Use of Piecewise Moels for Nonlinear evices when Analyzing Electronic Circuits Process: 1. Guess state of the evice 2. Analyze circuit 3. erify State 4. Repeat steps 1 to 3 if verification fails 5. erify moel (if necessary) What about circuits (using piecewise moels) with multiple nonlinear evices? 1K 20 out Guess state for each evice (multiple combinations possible) 4K

23 Example: Obtain OUT 1K 20 out K

24 Example: Obtain OUT 1K 20 out Guess 1 an 2 on 4K 1K 20 out OUT =-20 ali for 1 >0 an 2 > mA 0 4K mA 0 1K 4K Since valiates, solution is vali

25 Types of ioes pn junction ioes Signal or Rectifier Pin or Photo Light Emitting LE Laser ioe Metal-semiconuctor junction ioes Zener aractor or aricap Schottky Barrier

26 Basic evices an evice Moels Resistor ioe Capacitor MOSFET BJT

27 Capacitors Types Parallel Plate Fringe Junction

28 Parallel Plate Capacitors con 2 con 1 A 1 A 2 C insulator A = area of intersection of A 1 & A 2 One (top) plate intentionally C A size smaller to etermine C

29 Parallel Plate Capacitors f C Cap unit area where C C C ε A C ε A

30 Fringe Capacitors C C ε A A is the area where the two plates are parallel Only a single layer is neee to make fringe capacitors

31 Fringe Capacitors C

32 Junction Capacitor Capacitance C C 1 jo φ p C A A B n n for FB φ 2 φ B 0.6 n ; 0.5 B C epletion region Note: is voltage epenent -capacitance is voltage epenent -usually parasitic caps -varicaps or varactor ioes exploit voltage ep. of C

33 Capacitance Junction Capacitor C Cj0A C C 1 jo φ A B n for FB φ 2 φ B 0.6 n ; 0.5 B oltage epenence is substantial

34 Basic evices an evice Moels Resistor ioe Capacitor MOSFET BJT

35 n-channel MOSFET Poly n-active Gate oxie p-sub

36 n-channel MOSFET Source Gate L rain W L EFF Bulk

37 n-channel MOSFET Poly Gate oxie n-active p-sub epletion region (electrically inuce)

38 n-channel MOSFET Operation an Moel S GS BS B G Apply small GS ( S an BS assume to be small) epletion region electrically inuce in channel Terme cutoff region of operation =0 G =0 B =0

39 n-channel MOSFET Operation an Moel S GS BS B G ncrease GS ( S an BS assume to be small) epletion region in channel becomes larger =0 G =0 B =0

40 n-channel MOSFET Operation an Moel S GS BS B G =0 G =0 B =0 Moel in Cutoff Region

41 n-channel MOSFET Operation an Moel S Critical value of GS that creates inversion layer terme threshol voltage, T ) BS B GS G ( S an BS small) ncrease GS more nversion layer forms in channel nversion layer will support current flow from to S Channel behaves as thin-film resistor R CH = S G =0 B =0

42 Trioe Region of Operation G S R CH S GS B BS = 0 For S small R G CH L W W μcox L 0 B 1 GS T COX GS T S Behaves as a resistor between rain an source Moel in eep Trioe Region

43 Trioe Region of Operation G R CH GS B BS = 0 R CH For S small L W 1 GS T COX Resistor is controlle by the voltage GS Terme a oltage Controlle Resistor (CR)

44 n-channel MOSFET Operation an Moel S GS BS B G ( S an BS small) ncrease GS more nversion layer in channel thickens R CH will ecrease Terme ohmic or trioe region of operation R CH = S G =0 B =0

45 n-channel MOSFET Operation an Moel S GS BS B G ( BS small) ncrease S nversion layer thins near rain =? G =0 no longer linearly epenent upon S Still terme ohmic or trioe region of operation B =0

46 Trioe Region of Operation G S GS B BS = 0 R For S larger CH L W 1 GS T COX G μc B OX 0 W L GS T 2 S S Moel in Trioe Region

47 n-channel MOSFET Operation an Moel S GS BS B G ( BS small) ncrease S even more nversion layer isappears near rain Terme saturation region of operation Saturation first occurs when S = GS - T =? G =0 B =0

48 Saturation Region of Operation G S GS B For S at onset of saturation BS = 0 or or μc μc OX W L W L equivalently OX equivalently GS GS T T 2 S GS S 2 T GS T G μcoxw 2L 0 B GS T 2

49 n-channel MOSFET Operation an Moel S GS BS B G ( BS small) ncrease S even more (beyon GS - T ) Nothing much changes!! Terme saturation region of operation =? G =0 B =0

50 Saturation Region of Operation G S GS B BS = 0 For S in Saturation G μcoxw 2L 0 B GS T 2 Moel in Saturation Region

51 Moel Summary G S GS B 0 GS T W μc S OX GS T S GS S GS T L 2 T W 2 μcox GS T GS T S GS T = =0 G B 2L BS = 0 Cutoff Trioe Saturation This is a piecewise moel (not piecewise linear though) Note: This is the thir moel we have introuce for the MOSFET (eep trioe special case of trioe where S is small ) R CH L W 1 GS T COX

52 Moel Summary G GS S B BS W μc BS = 0 0 μc OX OX W L 2L = = 0 G B GS GS T T 2 2 S S GS GS GS T T T S S GS GS T T Observations about this moel (evelope for BS =0): = f, 1 GS S = f, G 2 GS S = f, B 3 GS S This is a nonlinear moel characterize by the functions f 1, f 2, an f 3 where we have assume that the port voltages GS an S are the inepenent variables an the rain currents are the epenent variables

53 En of Lecture 15

EE 330 Lecture 14. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs

EE 330 Lecture 14. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs EE 330 Lecture 14 Devices in Semiconuctor Processes Dioes Capacitors MOSFETs Reminer: Exam 1 Friay Feb 16 Stuents may bring one page of notes (front an back) but no electronic ata storage or remote access

More information

EE 330 Lecture 13. Devices in Semiconductor Processes. Diodes Capacitors Transistors

EE 330 Lecture 13. Devices in Semiconductor Processes. Diodes Capacitors Transistors EE 330 Lecture 13 evices in Semiconuctor Processes ioes Capacitors Transistors Review from Last Lecture pn Junctions Physical Bounary Separating n-type an p-type regions Extens farther into n-type region

More information

EE 330 Lecture 12. Devices in Semiconductor Processes. Diodes

EE 330 Lecture 12. Devices in Semiconductor Processes. Diodes EE 330 Lecture 12 evices in Semiconuctor Processes ioes Review from Last Lecture http://www.ayah.com/perioic/mages/perioic%20table.png Review from Last Lecture Review from Last Lecture Silicon opants in

More information

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00

More information

EE 330 Lecture 12. Devices in Semiconductor Processes. Resistors Diodes

EE 330 Lecture 12. Devices in Semiconductor Processes. Resistors Diodes EE 330 Lecture 12 evices in Semiconductor Processes Resistors iodes Exam 1 Friday Feb 16 Students may bring 1 page of notes HW assignment of week of Feb 11 due on Wed Sfeb 14 at beginning of class No 5:00

More information

EE 330 Lecture 13. Devices in Semiconductor Processes. Diodes

EE 330 Lecture 13. Devices in Semiconductor Processes. Diodes EE 330 Lecture 13 evices in Semiconductor Processes iodes Exam 1 Friday Sept 22 Students may bring 1 page of notes Next weeks HW assignment due on Wed Sept 20 at beginning of class No 5:00 p.m extension

More information

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances EE 435 Lecture 37 Parasitic Capacitances in MOS Devices String DAC Parasitic Capacitances Parasitic Capacitors in MOSFET (will initially consider two) Parasitic Capacitors in MOSFET C GCH Parasitic Capacitors

More information

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: n-channel MOSFET Source Gate L Drain W L EFF Poly Gate oxide n-active p-sub depletion region (electrically

More information

EE 434 Lecture 12. Process Flow (wrap up) Device Modeling in Semiconductor Processes

EE 434 Lecture 12. Process Flow (wrap up) Device Modeling in Semiconductor Processes EE 434 Lecture 12 Process Flow (wrap up) Device Modeling in Semiconductor Processes Quiz 6 How have process engineers configured a process to assure that the thickness of the gate oxide for the p-channel

More information

Electronic Devices and Circuit Theory

Electronic Devices and Circuit Theory Instructor s Resource Manual to accompany Electronic Devices an Circuit Theory Tenth Eition Robert L. Boylesta Louis Nashelsky Upper Sale River, New Jersey Columbus, Ohio Copyright 2009 by Pearson Eucation,

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues EE105 - Fall 006 Microelectronic evices and Circuits Prof. Jan M. Rabaey (jan@eecs Lecture 8: MOS Small Signal Model Some Administrative Issues REIEW Session Next Week Tu Sept 6 6:00-7:30pm; 060 alley

More information

Lecture contents. Metal-semiconductor contact

Lecture contents. Metal-semiconductor contact 1 Lecture contents Metal-semiconuctor contact Electrostatics: Full epletion approimation Electrostatics: Eact electrostatic solution Current Methos for barrier measurement Junctions: general approaches,

More information

EE 330 Lecture 25. Small Signal Modeling

EE 330 Lecture 25. Small Signal Modeling EE 330 Lecture 25 Small Signal Modeling Review from Last Lecture Amplification with Transistors From Wikipedia: Generall, an amplifier or simpl amp, is an device that changes, usuall increases, the amplitude

More information

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods EE 230 Lecture 20 Nonlinear Op Amp Applications The Comparator Nonlinear Analysis Methods Quiz 14 What is the major purpose of compensation when designing an operatinal amplifier? And the number is? 1

More information

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A - β β VXX Q 2

More information

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

More information

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1 LECTURE 210 PHYSICAL ASPECTS OF ICs (READING: Text-Sec. 2.5, 2.6, 2.8) INTRODUCTION Objective Illustrate the physical aspects of integrated circuits

More information

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow EE 330 Lecture 17 MOSFET Modeling CMOS Process Flow Review from Last Lecture Limitations of Existing Models V DD V OUT V OUT V DD?? V IN V OUT V IN V IN V DD Switch-Level Models V DD Simple square-law

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

Lecture 11: J-FET and MOSFET

Lecture 11: J-FET and MOSFET ENE 311 Lecture 11: J-FET and MOSFET FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.

More information

Two Dimensional Numerical Simulator for Modeling NDC Region in SNDC Devices

Two Dimensional Numerical Simulator for Modeling NDC Region in SNDC Devices Journal of Physics: Conference Series PAPER OPEN ACCESS Two Dimensional Numerical Simulator for Moeling NDC Region in SNDC Devices To cite this article: Dheeraj Kumar Sinha et al 2016 J. Phys.: Conf. Ser.

More information

Chapter 6: Field-Effect Transistors

Chapter 6: Field-Effect Transistors Chapter 6: Field-Effect Transistors slamic University of Gaza Dr. Talal Skaik FETs vs. BJTs Similarities: Amplifiers Switching devices mpedance matching circuits Differences: FETs are voltage controlled

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

A Novel Decoupled Iterative Method for Deep-Submicron MOSFET RF Circuit Simulation

A Novel Decoupled Iterative Method for Deep-Submicron MOSFET RF Circuit Simulation A Novel ecouple Iterative Metho for eep-submicron MOSFET RF Circuit Simulation CHUAN-SHENG WANG an YIMING LI epartment of Mathematics, National Tsing Hua University, National Nano evice Laboratories, an

More information

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model EE 330 Lecture 25 Amplifier Biasing (precursor) Two-Port Amplifier Model Review from Last Lecture Exam Schedule Exam 2 Friday March 24 Review from Last Lecture Graphical Analysis and Interpretation 2 OX

More information

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors CMOS Devices PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors PN Junctions Diffusion causes depletion region D.R. is insulator and establishes barrier

More information

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives:

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives: Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives: Apply previously learn circuit techniques to sinusoidal steady-state analysis. Learn how to apply nodal and mesh analysis in the frequency

More information

FET Inrush Protection

FET Inrush Protection FET Inrush Protection Chris Pavlina https://semianalog.com 2015-11-23 CC0 1.0 Universal Abstract It is possible to use a simple one-transistor FET circuit to provie inrush protection for low voltage DC

More information

EE 230 Lecture 21. Nonlinear Op Amp Applications. Nonlinear analysis methods Comparators with Hysteresis

EE 230 Lecture 21. Nonlinear Op Amp Applications. Nonlinear analysis methods Comparators with Hysteresis EE 230 Lecture 2 Nonlinear Op Amp Applications Nonlinear analysis methods Comparators with Hysteresis Quiz 5 Plot the transfer charactristics of the following circuit. Assume the op amp has =2 and SATL

More information

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET Calculation of t and Important 2 nd Order Effects SmallSignal Signal MOSFET Model Summary Material from: CMOS LSI Design By Weste

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

A Parametric Device Study for SiC Power Electronics

A Parametric Device Study for SiC Power Electronics A Parametric evice Stuy for SiC Power Electronics Burak Ozpineci urak@ieee.org epartment of Electrical an Computer Engineering The University of Tennessee Knoxville TN 7996- Leon M. Tolert tolert@utk.eu

More information

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors EE 330 Lecture 16 Devices in Semiconductor Processes MOS Transistors Review from Last Time Model Summary I D I V DS V S I B V BS = 0 0 VS VT W VDS ID = μcox VS VT VDS VS V VDS VS VT L T < W μc ( V V )

More information

ECE321 Electronics I

ECE321 Electronics I ECE321 Electronics I Lecture 4: Physics of Semiconductor iodes Payman Zarkesh-Ha Office: ECE Bldg. 230B Office hours: Tuesday 2:00-3:00PM or by appointment E-mail: pzarkesh.unm.edu Slide: 1 Review of Last

More information

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring

More information

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Outline 1. The saturation region 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 6.012 Spring 2009 Lecture

More information

Conservation laws a simple application to the telegraph equation

Conservation laws a simple application to the telegraph equation J Comput Electron 2008 7: 47 51 DOI 10.1007/s10825-008-0250-2 Conservation laws a simple application to the telegraph equation Uwe Norbrock Reinhol Kienzler Publishe online: 1 May 2008 Springer Scienceusiness

More information

MOSFET Capacitance Model

MOSFET Capacitance Model MOSFET Capacitance Model So far we discussed the MOSFET DC models. In real circuit operation, the device operates under time varying terminal voltages and the device operation can be described by: 1 small

More information

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn ) The Inverted MO Capacitor (V > V Tn ) We consider the surface potential as Þxed (ÒpinnedÓ) at φ s,max = - φ p φ(x).5 V. V V ox Charge torage in the MO tructure Three regions of operation: Accumulation:

More information

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow EE 330 Lecture 16 MOFET Modeling CMO Process Flow Review from Last Lecture Limitations of Existing Models V V OUT V OUT V?? V IN V OUT V IN V IN V witch-level Models V imple square-law Model Logic ate

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 10/02/2007 MS Junctions, Lecture 2 MOS Cap, Lecture 1 Reading: finish chapter14, start chapter16 Announcements Professor Javey will hold his OH at

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Moule 2 DC Circuit Lesson 9 Analysis of c resistive network in presence of one non-linear element Objectives To unerstan the volt (V ) ampere ( A ) characteristics of linear an nonlinear elements. Concept

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

FIRST ORDER QUASI STATIC MOSFET CHANNEL CAPACITANCE MODEL SAMEER SHARMA

FIRST ORDER QUASI STATIC MOSFET CHANNEL CAPACITANCE MODEL SAMEER SHARMA FIRST ORDER QUASI STATIC MOSFET CHANNEL CAPACITANCE MODEL By SAMEER SHARMA Bachelor of Science in Electrical Engineering Punjab Engineering College Chanigarh, Inia 1994 Master of Science in Electrical

More information

FIELD-EFFECT TRANSISTORS

FIELD-EFFECT TRANSISTORS FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation

More information

Long Channel MOS Transistors

Long Channel MOS Transistors Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended to Metal-Oxide-Semiconductor Field-Effect transistors (MOSFET) by considering the following structure:

More information

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow EE 330 Lecture 16 MOSFET Modeling CMOS Process Flow Model Extensions 300 Id 250 200 150 100 50 300 0 0 1 2 3 4 5 Vds Existing Model 250 200 Id 150 100 50 Slope is not 0 0 0 1 2 3 4 Actual Device Vds Model

More information

Compact Modeling of Graphene Barristor for Digital Integrated Circuit Design

Compact Modeling of Graphene Barristor for Digital Integrated Circuit Design Compact Moeling of Graphene Barristor for Digital Inteate Circuit Design Zhou Zhao, Xinlu Chen, Ashok Srivastava, Lu Peng Division of Electrical an Computer Engineering Louisiana State University Baton

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

Class 05: Device Physics II

Class 05: Device Physics II Topics: 1. Introduction 2. NFET Model and Cross Section with Parasitics 3. NFET as a Capacitor 4. Capacitance vs. Voltage Curves 5. NFET as a Capacitor - Band Diagrams at V=0 6. NFET as a Capacitor - Accumulation

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 16

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 16 EECS 16A Designing Information Devices an Systems I Spring 218 Lecture Notes Note 16 16.1 Touchscreen Revisite We ve seen how a resistive touchscreen works by using the concept of voltage iviers. Essentially,

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 igital Integrated Circuits A esign Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The evices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps EE 435 ecture 2: Basic Op Amp Design - Single Stage ow Gain Op Amps 1 Review from last lecture: How does an amplifier differ from an operational amplifier?? Op Amp Amplifier Amplifier used in open-loop

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow EE 330 Lecture 16 MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow Review from Last Time Operation Regions by Applications Id I D 300 250 200 150

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

MOSFETs - An Introduction

MOSFETs - An Introduction Chapter 17. MOSFETs An Introduction Sung June Kim kimsj@snu.ac.kr http://helios.snu.ac.kr CONTENTS Qualitative Theory of Operation Quantitative I Relationships Subthreshold Swing ac Response Qualitative

More information

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process EECS240 Spring 202 CMOS Cross Section Metal p - substrate p + diffusion Lecture 2: CMOS Technology and Passive Devices Poly n - well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 Today s Lecture

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

EE 435. Lecture 22. Offset Voltages

EE 435. Lecture 22. Offset Voltages EE 435 Lecture Offset Voltages . Review from last lecture. Offset Voltage Definition: The input-referred offset voltage is the differential dc input voltage that must be applied to obtain the desired output

More information

EE 434 Lecture 13. Basic Semiconductor Processes Devices in Semiconductor Processes

EE 434 Lecture 13. Basic Semiconductor Processes Devices in Semiconductor Processes EE 434 Lecture 3 Basic Semiconductor Processes Devices in Semiconductor Processes Quiz 9 The top view of a device fabricated in a bulk CMOS process is shown in the figure below a) Identify the device b)

More information

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor

More information

Robert W. Brodersen EECS140 Analog Circuit Design

Robert W. Brodersen EECS140 Analog Circuit Design INTRODUCTION University of California Berkeley College of Engineering Department of Electrical Engineering and Computer Science Robert. Brodersen EECS40 Analog Circuit Design ROBERT. BRODERSEN LECTURE

More information

Modeling time-varying storage components in PSpice

Modeling time-varying storage components in PSpice Moeling time-varying storage components in PSpice Dalibor Biolek, Zenek Kolka, Viera Biolkova Dept. of EE, FMT, University of Defence Brno, Czech Republic Dept. of Microelectronics/Raioelectronics, FEEC,

More information

PARALLEL-PLATE CAPACITATOR

PARALLEL-PLATE CAPACITATOR Physics Department Electric an Magnetism Laboratory PARALLEL-PLATE CAPACITATOR 1. Goal. The goal of this practice is the stuy of the electric fiel an electric potential insie a parallelplate capacitor.

More information

ECE321 Electronics I

ECE321 Electronics I EE31 Electronics I Lecture 8: MOSET Threshold Voltage and Parasitic apacitances Payman Zarkesh-Ha Office: EE Bldg. 3B Office hours: Tuesday :-3:PM or by appointment E-mail: payman@ece.unm.edu Slide: 1

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 5: January 25, 2018 MOS Operating Regions, pt. 1 Lecture Outline! 3 Regions of operation for MOSFET " Subthreshold " Linear " Saturation!

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

Lecture #23. Warning for HW Assignments and Exams: Make sure your writing is legible!! OUTLINE. Circuit models for the MOSFET

Lecture #23. Warning for HW Assignments and Exams: Make sure your writing is legible!! OUTLINE. Circuit models for the MOSFET Lecture #23 arning for H Assignments and Exams: Make sure your writing is legible!! OUTLINE MOFET I s. V characteristic Circuit models for the MOFET resistie switch model small-signal model Reference Reading

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

Homework 7 Due 18 November at 6:00 pm

Homework 7 Due 18 November at 6:00 pm Homework 7 Due 18 November at 6:00 pm 1. Maxwell s Equations Quasi-statics o a An air core, N turn, cylinrical solenoi of length an raius a, carries a current I Io cos t. a. Using Ampere s Law, etermine

More information

Extensive reading materials on reserve, including

Extensive reading materials on reserve, including Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals EE143 Ali Javey Bond Model of Electrons and Holes Si Si Si Si Si Si Si

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

The Gradual Channel Approximation for the MOSFET:

The Gradual Channel Approximation for the MOSFET: 6.01 - Electronic Devices and Circuits Fall 003 The Gradual Channel Approximation for the MOSFET: We are modeling the terminal characteristics of a MOSFET and thus want i D (v DS, v GS, v BS ), i B (v

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

SYNCHRONOUS SEQUENTIAL CIRCUITS

SYNCHRONOUS SEQUENTIAL CIRCUITS CHAPTER SYNCHRONOUS SEUENTIAL CIRCUITS Registers an counters, two very common synchronous sequential circuits, are introuce in this chapter. Register is a igital circuit for storing information. Contents

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller EECS 105 Spring 2017, Module 4 Frequency Response Prof. Ali M. Niknejad Department of EECS Announcements l HW9 due on Friday 2 Review: CD with Current Mirror 3 Review: CD with Current Mirror 4 Review:

More information

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13 RevisionLecture 1: E1.1 Analysis of Circuits (2014-4530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer

More information

Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS )

Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS ) Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS ) 1 Simulation Review: Circuit Fixed V GS, Sweep V DS I

More information

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! MOS Capacitances.  Extrinsic.  Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

FIELD EFFECT TRANSISTORS:

FIELD EFFECT TRANSISTORS: Chapter 10 FIEL EFFECT TRANITOR: MOFET The following overview gures describe important issues related to the most important electronic device. NUMBER OF ACTIVE EVICE/CHIP MOORE' LAW Gordon Moore, co-founder

More information

Capacitance: The ability to store separated charge C=Q/V. Capacitors! Capacitor. Capacitance Practice SPH4UW 24/08/2010 Q = CV

Capacitance: The ability to store separated charge C=Q/V. Capacitors! Capacitor. Capacitance Practice SPH4UW 24/08/2010 Q = CV SPH4UW Capacitors! Capacitance: The ability to store separate charge C=Q/V Charge Q on plates V = V V B = E 0 Charge 2Q on plates V = V V B =2E 0 E=E 0 B E=2E 0 B Physics 102: Lecture 4, Slie 1 Potential

More information

EE1320: Measurement Science Lecture 2: Sensors

EE1320: Measurement Science Lecture 2: Sensors EE1320: Measurement Science Lecture 2: Sensors Dr. ir. Michiel Pertijs, Electronic Instrumentation Laboratory April 26, 2013 Delft University of Technology Challenge the future Course program 2013 week

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 10 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits Exam No. 2 Thursday, November 5, 2009 7:30 to

More information

Announcements. EE105 - Fall 2005 Microelectronic Devices and Circuits. Lecture Material. MOS CV Curve. MOSFET Cross Section

Announcements. EE105 - Fall 2005 Microelectronic Devices and Circuits. Lecture Material. MOS CV Curve. MOSFET Cross Section Announcements EE0 - Fall 00 Microelectronic evices and Circuits ecture 7 Homework, due today Homework due net week ab this week Reading: Chapter MO Transistor ecture Material ast lecture iode currents

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage

More information

junctions produce nonlinear current voltage characteristics which can be exploited

junctions produce nonlinear current voltage characteristics which can be exploited Chapter 6 P-N DODES Junctions between n-and p-type semiconductors are extremely important foravariety of devices. Diodes based on p-n junctions produce nonlinear current voltage characteristics which can

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Lecture 12: FET AC Properties

Lecture 12: FET AC Properties Lecture 1: FET AC Properties 016-0- Lecture 11, Hih Spee evices 016 1 Lecture 1: FET AC Properties Quasi-static operation iffusive an Ballistic FETs y-parameters Hybri p-moel Non-quasi Static effects Reain

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

15.9 TWO-PORTS* . (15.114) R Thout = v 2a

15.9 TWO-PORTS* . (15.114) R Thout = v 2a 15.9 TWOPORTS* It should be obvious by now that circuits with dependent sources can perform much more interesting and useful signal processing than those constructed solely from twoterminal resistive elements.

More information

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling ELEC 3908, Physical Electronics, Lecture 26 MOSFET Small Signal Modelling Lecture Outline MOSFET small signal behavior will be considered in the same way as for the diode and BJT Capacitances will be considered

More information