Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller


 Ethan Daniels
 2 years ago
 Views:
Transcription
1 EECS 105 Spring 2017, Module 4 Frequency Response Prof. Ali M. Niknejad Department of EECS
2 Announcements l HW9 due on Friday 2
3 Review: CD with Current Mirror 3
4 Review: CD with Current Mirror 4
5 Review: CD with Current Mirror 5
6 Capacitors in MOS Device C gs = (2 / 3)WLC ox + C ov C gd = C ov C sb = C jsb (area + perimeter) junction C db = C jdb (area + perimeter) junction 6
7 CommonSource Voltage Amplifier Smallsignal model: C sb is connected to gnd on both sides, therefore can be ignored R S Can solve problem directly by nodal analysis or using 2port models of transistor OK if circuit is small (12 nodes) 7 We can find the complete transfer function of the circuit, but in many cases it s good enough to get an estimate of the 3dB bandwidth
8 CS Voltage Amp SmallSignal Model Two Nodes! Easy For now we will ignore C db to simplify the math 8
9 Frequency Response KCL at input and output nodes; analysis is made complicated V out = g m r o R L V in 1+ jω /ω p1 [ ]( 1 jω /ω z ) ( )( 1+ jω /ω p2 ) Zero Lowfrequency gain: ( ) ( )( 1+ j0) V out = g r R m o L 1 j0 V in 1+ j0 Two Poles g m r o R L ü Zero: ω z = g m C gs + C gd 9
10 Calculating the Poles ω p1 1 R s C gs + ( 1+ g m R out )C gd { } + R out C gd ω p2 R out / R S R S C gs + ( 1+ g m R out )C gd { } + R out C gd Usually >> 1 Results of complete analysis: not exact and little insight 10 These poles are calculated after doing some algebraic manipulations on the circuit. It s hard to get any intuition from the above expressions. There must be an easier way!
11 Method: The Miller Effect 11
12 The Miller Effect 12
13 Using The Miller Effect Effective input capacitance: C in = 1 jωc Miller = 1 1 A v,cgd 1 jωc gd = 1 jω ( 1 A vcgd )C gd 13
14 CS Voltage Amp SmallSignal Model Modified SmallSignal Model with Miller Effect: C gs +C Miller We can approximate the first pole by using Miller capacitance This gives us a good approximation of the 3dB bandwidth 14
15 Comparison with Exact Analysis Miller result (calculate RC time constant of input pole): Exact result: ω p1 1 = R S C gs + ( 1+ g m R out ʹ )C gd ω p1 1 = R S C gs + ( 1+ g m R out ʹ )C gd + R out ʹ C gd As a result of the Miller effect there is a fundamental gainbandwidth tradeoff 15
16 Common Drain Amplifier Calculate Bandwidth of the Common Drain (Source Follower) 16 Procedure: 1. Replace current source with MOSFETbased current mirror 2. Draw smallsignal model with capacitors (for simplicity, we will focus on C gd and C gs ) 3. Find the DC smallsignal gain 4. Use the Miller effect to calculate the input capacitance 5. Calculate the dominant pole
17 TwoPort CC Model with Capacitors R S 17 Find DC Gain Find Miller capacitor for C gs  note that the gatesource capacitor is between the input and output!
18 Voltage Gain Across C gs Write KCL at output node: v out r o r oc = g m v gs = g m (v in v out ) 1 v out + g m r o r = g v m in oc v out v in = r o g m 1 + g r m oc = g m (r o r oc ) 1+ g m (r o r oc ) = A vcgs 18
19 Compute Miller Effected Capacitance Now use the Miller Effect to compute C in : Remember that C gs is the capacitor from the input to the output R S C in = C gd + C M C in = C gd + (1 A vcgs )C gs Miller Cap C in = C gd + (1 g m (r o r oc ) 1+ g m (r o r oc ) )C gs 1 C in = C gd + ( 1+ g m (r o r oc ) )C gs 19 C in C gd (for large g m (r o //r oc ))
20 Bandwidth of Source Follower Input lowpass filter s 3 db frequency: C ω 1 p = R S C gd + gs 1+ g m (r o r oc ) Substitute favorable values of R S, r o : R 1/ S g m r o >>1/ g m ω p 1 1/ g m ( ) C gd + C gs C gd / g m 1+ BIG Very high frequency! Model not valid at these high frequencies ω p g m / C gd 20
21 Some Examples Common source amplifier: A vcgd = Negative, large number (100) C Miller = (1 A V,Cgd )C gd 100C gd Miller Multiplied Cap has detrimental impact on bandwidth Common drain amplifier: A vcgs = Slightly less than 1 C Miller = (1 A V,Cgs )C gs! 0 Bootstrapped cap has negligible impact on bandwidth! 21
22
EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)
EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband
More informationLecture 37: Frequency response. Context
EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in
More informationI. Frequency Response of Voltage Amplifiers
I. Frequency Response of Voltage Amplifiers A. CommonEmitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o >, r oc >, R L > Find V BIAS such that I C
More informationThe Miller Approximation
The Miller Approximation The exact analysis is not particularly helpful for gaining insight into the frequency response... consider the effect of C µ on the input only I t C µ V t g m V t R'out = r o r
More informationAssignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.
Page 1 of 3 ELEC 312: ELECTRONICS II : ASSIGNMENT3 Department of Electrical and Computer Engineering Winter 2012 1. A commonemitter amplifier that can be represented by the following equivalent circuit,
More informationChapter 9 Frequency Response. PART C: High Frequency Response
Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cutoff frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance
More information6.012 Electronic Devices and Circuits Spring 2005
6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) OPEN BOOK Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):
More informationECE343 Test 1: Feb 10, :008:00pm, Closed Book. Name : SOLUTION
ECE343 Test : Feb 0, 00 6:008:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z
More informationEE 330. Lecture 35. Parasitic Capacitances in MOS Devices
EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A  β β VXX Q 2
More informationLecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005
6.02 Microelectronic Devices and Circuits Fall 2005 Lecture 23 Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier December, 2005 Contents:. Introduction 2. Intrinsic frequency response
More informationLecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:
Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I curve (SquareLaw Model)
More informationECEN 326 Electronic Circuits
ECEN 326 Electronic Circuits Frequency Response Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering HighFrequency Model BJT & MOS B or G r x C f C or D r
More informationECE 546 Lecture 11 MOS Amplifiers
ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase
More informationMultistage Amplifier Frequency Response
Multistage Amplifier Frequency Response * Summary of frequency response of singlestages: CE/CS: suffers from Miller effect CC/CD: wideband  see Section 0.5 CB/CG: wideband  see Section 0.6 (wideband
More informationLecture 23  Frequency Resp onse of Amplifiers (I) CommonSource Amplifier. May 6, 2003
6.0 Microelectronic Devices and Circuits Spring 003 Lecture 3 Lecture 3 Frequency Resp onse of Amplifiers (I) CommonSource Amplifier May 6, 003 Contents:. Intro duction. Intrinsic frequency resp onse of
More informationMetalOxideSemiconductor Field Effect Transistor (MOSFET)
MetalOxideSemiconductor ield Effect Transistor (MOSET) Source Gate Drain p p n substrate  SUB MOSET is a symmetrical device in the most general case (for example, in an integrating circuit) In a separate
More informationECE343 Test 2: Mar 21, :008:00, Closed Book. Name : SOLUTION
ECE343 Test 2: Mar 21, 2012 6:008:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may
More informationEECS 105: FALL 06 FINAL
University of California College of Engineering Department of Electrical Engineering and Computer Sciences Jan M. Rabaey TuTh 23:30 Wednesday December 13, 12:303:30pm EECS 105: FALL 06 FINAL NAME Last
More informationElectronic Circuits Summary
Electronic Circuits Summary Andreas Biri, DITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent
More informationEE 240B Spring Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models. Elad Alon Dept. of EECS
EE 240B Spring 2018 Advanced Analog Integrated Circuits Lecture 2: MOS Transistor Models Elad Alon Dept. of EECS Square Law Model? Assumptions made to come up with this model: Charge density determined
More informationECE342 Test 3: Nov 30, :008:00, Closed Book. Name : Solution
ECE342 Test 3: Nov 30, 2010 6:008:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown
More informationExact Analysis of a CommonSource MOSFET Amplifier
Exact Analysis of a CommonSource MOSFET Amplifier Consider the commonsource MOSFET amplifier driven from signal source v s with Thévenin equivalent resistance R S and a load consisting of a parallel
More informationLecture 10 MOSFET (III) MOSFET Equivalent Circuit Models
Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;
More informationLecture 23: Negative Resistance Osc, Differential Osc, and VCOs
EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,
More informationVoltage AmpliÞer Frequency Response
Voltage AmpliÞer Frequency Response Chapter 9 multistage voltage ampliþer 5 V M 7B M 7 M 5 R 35 kω M 6B M 6 Q 4 100 µa X M 3 Q B Q v OUT V s M 1 M 8 M9 V BIAS M 10 Approaches: 1. brute force OCTC  do
More informationLecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation
Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Text sec 1.2 pp. 2832; sec 3.2 pp. 128129 Current source Ideal goal Small signal model: Open
More informationUniversity of Toronto. Final Exam
University of Toronto Final Exam Date  Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer  D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last
More informationECE 255, Frequency Response
ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.
More informationSampleandHolds David Johns and Ken Martin University of Toronto
SampleandHolds David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 18 SampleandHold Circuits Also called trackandhold circuits Often needed in A/D converters
More informationEE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
More informationCommon Drain Stage (Source Follower) Claudio Talarico, Gonzaga University
Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i  v o V DD v bs  v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs  C
More informationRefinements to Incremental Transistor Model
Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for nonideal transistor behavior Incremental output port resistance Incremental changes
More informationEECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology
EECS240 Spring 2013 Lecture 2: CMOS Technology and Passive Devices Lingkai Kong EECS Today s Lecture EE240 CMOS Technology Passive devices Motivation Resistors Capacitors (Inductors) Next time: MOS transistor
More informationHomework Assignment 09
Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More informationBerkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad
Berkeley Matching Networks Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad February 9, 2016 1 / 33 Impedance Matching R S i i i o Z in + v i Matching Network + v o Z out RF design
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam
More informationHomework 6 Solutions and Rubric
Homework 6 Solutions and Rubric EE 140/40A 1. KW Tube Amplifier b) Load Resistor e) Commoncathode a) Input Diff Pair f) CathodeFollower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure
More informationMOS Transistor Theory
MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors
More informationLecture 14: Electrical Noise
EECS 142 Lecture 14: Electrical Noise Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2008 by Ali M. Niknejad A.M.Niknejad University of California, Berkeley EECS 142 Lecture 14 p.1/20
More informationEEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #2: MOSFET Structure and Basic Operation Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Announcements Lab 1 this week, report due next week Bring
More informationCE/CS Amplifier Response at High Frequencies
.. CE/CS Amplifier Response at High Frequencies INEL 4202  Manuel Toledo August 20, 2012 INEL 4202  Manuel Toledo CE/CS High Frequency Analysis 1/ 24 Outline.1 High Frequency Models.2 Simplified Method.3
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationDesign of Analog Integrated Circuits
Design of Analog Integrated Circuits Chapter 11: Introduction to Switched Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 SwitchedCapacitor Amplifiers 13.4
More information3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti
Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +
More information6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers
6.776 High Speed Communication Circuits Lecture 10 Noise Modeling in Amplifiers Michael Perrott Massachusetts Institute of Technology March 8, 2005 Copyright 2005 by Michael H. Perrott Notation for Mean,
More informationLecture 3: CMOS Transistor Theory
Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos IV Characteristics pmos IV Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors
More informationLecture 10 MOSFET (III) MOSFET Equivalent Circuit Models
Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;
More informationLecture 04: Single Transistor Ampliers
Lecture 04: Single Transistor Ampliers Analog IC Design Dr. Ryan Robucci Department of Computer Science and Electrical Engineering, UMBC Spring 2015 Dr. Ryan Robucci Lecture IV 1 / 37 SingleTransistor
More informationECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120
ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of
More informationSophomore Physics Laboratory (PH005/105)
CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision
More informationCMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process
EECS240 Spring 202 CMOS Cross Section Metal p  substrate p + diffusion Lecture 2: CMOS Technology and Passive Devices Poly n  well n + diffusion Elad Alon Dept. of EECS EECS240 Lecture 2 4 Today s Lecture
More informationLecture 06: Current Mirrors
Lecture 06: Current Mirrors Analog IC Design Dr. Ryan Robucci Department of Computer Science and Electrical Engineering, UMBC Spring 2015 Dr. Ryan Robucci Lecture VI 1 / 26 Lowered Resistance Looking into
More informationEE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing
EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104113) S R on D CMOS Manufacturing Process (pp. 3646) S S C GS G G C GD
More informationEE 466/586 VLSI Design. Partha Pande School of EECS Washington State University
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time
More informationTwoPort Noise Analysis
Berkeley TwoPort Noise Analysis Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2015 by Ali M. Niknejad 1/26 Equivalent Noise Generators v 2 n Noisy TwoPort i 2 n Noiseless TwoPort Any noisy two port
More informationElectronic Devices and Circuits Lecture 18  Single Transistor Amplifier Stages  Outline Announcements. Notes on Single Transistor Amplifiers
6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,
More informationDigital Microelectronic Circuits ( )
Digital Microelectronic ircuits (36113021 ) Presented by: Dr. Alex Fish Lecture 5: Parasitic apacitance and Driving a Load 1 Motivation Thus far, we have learned how to model our essential building block,
More informationLecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER
Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multistage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier
More informationEE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region
EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel
More informationChapter 13 SmallSignal Modeling and Linear Amplification
Chapter 13 SmallSignal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 131 Chapter Goals Understanding of concepts related to: Transistors
More informationElectronics II. Final Examination
The University of Toledo f6fs_elct7.fm  Electronics II Final Examination Problems Points. 5. 0 3. 5 Total 40 Was the exam fair? yes no The University of Toledo f6fs_elct7.fm  Problem 5 points Given is
More informationEE C245 ME C218 Introduction to MEMS Design Fall 2011
EE C245 ME C218 Introduction to MEMS Design Fall 2011 Prof. Clark T.C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:
More informationElectronics II. Final Examination
The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11
More informationMOS Transistor Theory
CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal IV Characteristics 3. Nonideal IV Effects 4. CV Characteristics 5. DC Transfer Characteristics 6. Switchlevel RC Delay Models MOS
More informationThe Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction
More informationLecture 12 CMOS Delay & Transient Response
EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 12 CMOS Delay & Transient Response Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology
More informationEEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 8 Lecture #5: CMOS Inverter AC Characteristics Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation Acknowledgments Slides due to Rajit Manohar from ECE 547 Advanced
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.
More informationLecture Stage Frequency Response  I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E.
Lecture 070 Stage Frequency esponse I (/0/0) Page 070 LECTUE 070 SINGLESTAGE FEQUENCY ESPONSE I (EADING: GHLM 488504) Objective The objective of this presentation is:.) Illustrate the frequency analysis
More information6.301 SolidState Circuits Recitation 14: OpAmps and Assorted Other Topics Prof. Joel L. Dawson
First, let s take a moment to further explore device matching for current mirrors: I R I 0 Q 1 Q 2 and ask what happens when Q 1 and Q 2 operate at different temperatures. It turns out that grinding through
More informationD is the voltage difference = (V +  V  ).
1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V , and one output terminal Y. It provides a gain A, which is usually
More informationPractice 7: CMOS Capacitance
Practice 7: CMOS Capacitance Digital Electronic Circuits Semester A 2012 MOSFET Capacitances MOSFET Capacitance Components 3 Gate to Channel Capacitance In general, the gate capacitance is similar to a
More informationChargeStorage Elements: BaseCharging Capacitance C b
ChargeStorage Elements: BaseCharging Capacitance C b * Minority electrons are stored in the base  this charge q NB is a function of the baseemitter voltage * base is still neutral... majority carriers
More informationAdvanced Current Mirrors and Opamps
Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 WideSwing Current Mirrors I bias I V I in out out = I in V W L bias 
More informationSwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto
SwitchedCapacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually
More informationAnnouncements. EE141 Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power
 Fall 2002 Lecture 7 MOS Capacitances Inverter Delay Power Announcements Wednesday 123pm lab cancelled Lab 4 this week Homework 2 due today at 5pm Homework 3 posted tonight Today s lecture MOS capacitances
More information! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!
More informationCMOS Analog Circuits
CMOS Analog Circuits L6: Common Source Amplifier1 (.8.13) B. Mazhari Dept. of EE, IIT Kanpur 19 Problem statement : Design an amplifier which has the following characteristics: + CC O in R L  CC A 100
More informationESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems
ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable
More informationChapter 2 SwitchedCapacitor Circuits
Chapter 2 SwitchedCapacitor Circuits Abstract his chapter introduces SC circuits. A brief description is given for the main building blocks of a SC filter (operational amplifiers, switches, capacitors,
More informationEE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2
EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages
More informationThe Gradual Channel Approximation for the MOSFET:
6.01  Electronic Devices and Circuits Fall 003 The Gradual Channel Approximation for the MOSFET: We are modeling the terminal characteristics of a MOSFET and thus want i D (v DS, v GS, v BS ), i B (v
More informationIn this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents
In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents around an electrical circuit. This is a short lecture,
More informationEE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances
EE 435 Lecture 37 Parasitic Capacitances in MOS Devices String DAC Parasitic Capacitances Parasitic Capacitors in MOSFET (will initially consider two) Parasitic Capacitors in MOSFET C GCH Parasitic Capacitors
More informationChapter 10 Feedback. PART C: Stability and Compensation
1 Chapter 10 Feedback PART C: Stability and Compensation Example: Noninverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits
More informationFinal Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.
Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the opamp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at
More informationECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 119 in the exam: please make sure all are there.
ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages 9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit
More informationMOS Transistor IV Characteristics and Parasitics
ECEN454 Digital Integrated Circuit Design MOS Transistor IV Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes
More informationHw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today
EECS141 1 Hw 8 Posted Last one to be graded Due Friday April 30 Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today EECS141 2 1 6 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 Frequency
More information55:041 Electronic Circuits The University of Iowa Fall Final Exam
Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a classb amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered
More informationDevice Models (PN Diode, MOSFET )
Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed
More information1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)
HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn
More informationDesigning Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A
EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Discussion 5A Transfer Function When we write the transfer function of an arbitrary circuit, it always takes the
More informationFigure 1: MOSFET symbols.
c Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The MOSFET Device Symbols Whereas the JFET has a diode junction between
More informationCircuit Topologies & Analysis Techniques in HF ICs
Circuit Topologies & Analysis Techniques in HF ICs 1 Outline Analog vs. Microwave Circuit Design Impedance matching Tuned circuit topologies Techniques to maximize bandwidth Challenges in differential
More informationEE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits
EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00
More informationStability and Frequency Compensation
類比電路設計 (3349)  2004 Stability and Frequency ompensation hingyuan Yang National hunghsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,
More informationECEN474/704: (Analog) VLSI Circuit Design Spring 2018
ECEN474/704: (Analog) SI Circuit Design Spring 2018 ecture 2: MOS ransistor Modeling Sam Palermo Analog & MixedSignal Center exas A&M University Announcements If you haven t already, turn in your 0.18um
More informationCARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130
ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED
More information