CSE477 VLSI Digital Circuits Fall Lecture 20: Adder Design

Size: px
Start display at page:

Download "CSE477 VLSI Digital Circuits Fall Lecture 20: Adder Design"

Transcription

1 CSE477 VLSI Digital Circuits Fall 22 Lecture 2: Adder Design Mary Jane Irwin ( ) [Adapted from Rabaey s Digital Integrated Circuits, 22, J. Rabaey et al.] CSE477 L2 Adder Design.1 Irwin&Vijay, PSU, 22

2 Review: Basic Building Blocks Datapath Execution units - Adder, multiplier, divider, shifter, etc. Register file and pipeline registers Multiplexers, decoders Control Finite state machines (PLA, ROM, random logic) Interconnect Switches, arbiters, buses Memory Caches (SRAMs), TLBs, DRAMs, buffers CSE477 L2 Adder Design.2 Irwin&Vijay, PSU, 22

3 The 1-bit Binary Adder A B C out S carry status A B 1-bit Full Adder (FA) S kill kill propagate propagate propagate C out G = A&B P = A B K =!A &!B propagate generate generate S = A B = P C out = A&B A& B& (majority function) = G P& How can we use it to build a 64-bit adder? How can we modify it easily to build an adder/subtractor? How can we make it better (faster, lower power, smaller)? CSE477 L2 Adder Design.3 Irwin&Vijay, PSU, 22

4 FA Gate Level Implementations The way you learned to design in CSE271 and CSE471 A B A B t1 t t2 t2 t1 t C out S C out S CSE477 L2 Adder Design.4 Irwin&Vijay, PSU, 22

5 Review: XOR FA A B S C out 16 transistors CSE477 L2 Adder Design.5 Irwin&Vijay, PSU, 22

6 Review: CPL FA!B B! A!S!A S B!B! A!C out B!A C out!b! 2+8 transistors, dual rail beware of threshold drops CSE477 L2 Adder Design.6 Irwin&Vijay, PSU, 22

7 Delay Balanced FA B!B!P Identical Delays for Carry and Sum B P P A p A P!C out S!B A!P P!P!P Sum generation Carry generation Signal set-up 2+2 transistors CSE477 L2 Adder Design.7 Irwin&Vijay, PSU, 22

8 Review: Mirror Adder 24+4 transistors A -propagate 1-propagate A 8 B B 8 B 8 A 8 6 C!C out!s in 4 A B 8 kill 4 A generate A 4 B B B A A B C out = A&B B& A& SUM = A&B& C OUT &(A B ) Sizing: Each input in the carry circuit has a logical effort of 2 so the optimal fan-out for each is also 2. Since!C out drives 2 internal and 2 inverter transistor gates (to form for the nms bit adder) should oversize the carry circuit. PMOS/NMOS ratio of 2. CSE477 L2 Adder Design.8 Irwin&Vijay, PSU, 22

9 Mirror Adder Features The NMOS and PMOS chains are completely symmetrical with a maximum of two series transistors in the carry circuitry, guaranteeing identical rise and fall transitions if the NMOS and PMOS devices are properly sized. When laying out the cell, the most critical issue is the minimization of the capacitances at node!c out (four diffusion capacitances, two internal gate capacitances, and two inverter gate capacitances). Shared diffusions can reduce the stack node capacitances. The transistors connected to are placed closest to the output. Only the transistors in the carry stage have to be optimized for optimal speed. All transistors in the sum stage can be minimal size. CSE477 L2 Adder Design.9 Irwin&Vijay, PSU, 22

10 A 64-bit Adder/Subtractor Ripple Carry Adder (RCA) built out of 64 FAs add/subt A C = 1-bit FA S Subtraction complement all subtrahend bits (xor gates) and set the low order carry-in RCA B B 1 A1 A 2 C 1 1-bit FA S 1 C 2 1-bit FA S 2 advantage: simple logic, so small (low cost) B 2... C 3 disadvantage: slow (O(N) for N bits) and lots of glitching (so lots of energy consumption) B 63 A 63 C 63 1-bit FA S 63 C 64 =C out CSE477 L2 Adder Design.1 Irwin&Vijay, PSU, 22

11 Ripple Carry Adder (RCA) A 3 B 3 A 2 B 2 A 1 B 1 A B C out =C 4 FA FA FA FA C = S 3 S 2 S 1 S T adder T FA (A,B C out ) + (N-2)T FA ( C out ) + T FA ( S) T = O(N) worst case delay Real Goal: Make the fastest possible carry path CSE477 L2 Adder Design.11 Irwin&Vijay, PSU, 22

12 Inversion Property Inverting all inputs to a FA results in inverted values for all outputs A B A B C out FA C out FA S S!S (A, B, ) = S(!A,!B,! )!C out (A, B, ) = C out (!A,!B,! ) CSE477 L2 Adder Design.12 Irwin&Vijay, PSU, 22

13 Exploiting the Inversion Property A 3 B 3 A 2 B 2 A 1 B 1 A B C out =C 4 FA FA FA FA C = S 3 S 2 S 1 S inverted cell regular cell Minimizes the critical path (the carry chain) by eliminating inverters between the FAs (will need to increase the transistor sizing on the carry chain portion of the mirror adder). Now need two flavors of FAs CSE477 L2 Adder Design.13 Irwin&Vijay, PSU, 22

14 Fast Carry Chain Design The key to fast addition is a low latency carry network What matters is whether in a given position a carry is generated G i = A i & B i = A i B i propagated P i = A i B i (sometimes use A i B i ) annihilated (killed) K i =!A i &!B i Giving a carry recurrence of C i+1 = G i P i C i C 1 = C 2 = C 3 = C 4 = CSE477 L2 Adder Design.14 Irwin&Vijay, PSU, 22

15 Fast Carry Chain Design The key to fast addition is a low latency carry network What matters is whether in a given position a carry is generated G i = A i & B i = A i B i propagated P i = A i B i (sometimes use A i B i ) annihilated (killed) K i =!A i &!B i Giving a carry recurrence of C i+1 = G i P i C i C 1 = G P C C 2 = G 1 P 1 G P 1 P C C 3 = G 2 P 2 G 1 P 2 P 1 G P 2 P 1 P C C 4 = G 3 P 3 G 2 P 3 P 2 G 1 P 3 P 2 P 1 G P 3 P 2 P 1 P C CSE477 L2 Adder Design.15 Irwin&Vijay, PSU, 22

16 Manchester Carry Chain Switches controlled by G i and P i!c i+1 G i Pi!C i clk Total delay of time to form the switch control signals G i and P i setup time for the switches signal propagation delay through N switches in the worst case CSE477 L2 Adder Design.16 Irwin&Vijay, PSU, 22

17 4-bit Sliced MCC Adder A 3 B 3 A 2 B 2 A 1 B 1 A B clk & G P & G P & G P & G P!C 4!C!C 3!C 2!C 1 S 3 S 2 S 1 S CSE477 L2 Adder Design.17 Irwin&Vijay, PSU, 22

18 Domino Manchester Carry Chain Circuit P 3 P 2 P 1 P clk C i, G 3 2 G 2 3 G 1 4 G 5 C i, clk!(g 2 P 2 G 1 P 2 P 1 G P 2 P 1 P C i, )!(G P C i, )!(G 1 P 1 G P 1 P C i, )!(G 3 P 3 G 2 P 3 P 2 G 1 P 3 P 2 P 1 G P 3 P 2 P 1 P C i, ) CSE477 L2 Adder Design.18 Irwin&Vijay, PSU, 22

19 Binary Adder Landscape synchronous word parallel adders ripple carry adders (RCA) T = O(N), A = O(N) carry prop min adders signed-digit fast carry prop residue adders adders adders T = O(1), A = O(N) Manchester carry parallel conditional carry carry chain select prefix sum skip T = O(N) A = O(N) T = O(log N) A = O(N log N) T = O( N), A = O(N) CSE477 L2 Adder Design.19 Irwin&Vijay, PSU, 22

20 Carry-Skip (Carry-Bypass) Adder A 3 B 3 A 2 B 2 A 1 B 1 A B C o,3 FA FA FA FA C i, C o,3 S 3 S 2 S 1 S BP = P P 1 P 2 P 3 Block Propagate If (P & P 1 & P 2 & P 3 = 1) then C o,3 = C i, otherwise the block itself kills or generates the carry internally CSE477 L2 Adder Design.2 Irwin&Vijay, PSU, 22

21 Carry-Skip Chain Implementation carry-out block carry-out BP block carry-in P 3 P 2 P 1 P!C out G 3 G 2 G 1 G BP CSE477 L2 Adder Design.21 Irwin&Vijay, PSU, 22

22 4-bit Block Carry-Skip Adder bits 12 to 15 bits 8 to 11 bits 4 to 7 bits to 3 Carry Propagation Carry Propagation Carry Propagation Carry Propagation C i, Sum Sum Sum Sum Worst-case delay carry from bit to bit 15 = carry generated in bit, ripples through bits 1, 2, and 3, skips the middle two groups (B is the group size in bits), ripples in the last group from bit 12 to bit 15 T add = t setup + B t carry + ((N/B) -1) t skip +B t carry + t sum CSE477 L2 Adder Design.22 Irwin&Vijay, PSU, 22

23 Optimal Block Size and Time Assuming one stage of ripple (t carry ) has the same delay as one skip logic stage (t skip ) and both are 1 T CSkA = 1 + B + (N/B-1) + B + 1 t setup ripple in skips ripple in t sum block last block = 2B + N/B + 1 So the optimal block size, B, is And the optimal time is dt CSkA /db = (N/2) = B opt Optimal T CSkA = 2( (2N)) + 1 CSE477 L2 Adder Design.23 Irwin&Vijay, PSU, 22

24 Carry-Skip Adder Extensions Variable block sizes A carry that is generated in, or absorbed by, one of the inner blocks travels a shorter distance through the skip blocks, so can have bigger blocks for the inner carries without increasing the overall delay C out Multiple levels of skip logic C out skip level 1 skip level 2 AND of the first level skip signals (BP s) CSE477 L2 Adder Design.24 Irwin&Vijay, PSU, 22

25 Carry-Skip Adder Comparisons RCA B=2 B=3 B=4 B=5 B=6 CSkA VSkA 8 bits 16 bits 32 bits 48 bits 64 bits CSE477 L2 Adder Design.25 Irwin&Vijay, PSU, 22

26 Carry Select Adder A s B s Precompute the carry out of each block for both carry_in = and carry_in = 1 (can be done for all blocks in parallel) and then select the correct one C out 4-b P s G s carry propagation 1 carry propagation 1 multiplexer C s Sum generation S s CSE477 L2 Adder Design.26 Irwin&Vijay, PSU, 22

27 Carry Select Adder: Critical Path bits 12 to 15 A s B s A s bits 8 to 1 B s A s bits 4 to 7 B s A s bits to 3 B s P s G s P s G s P s G s P s G s carry carry carry carry 1 carry 1 carry 1 carry 1 carry 1 C out mux C s mux C s mux C s mux C s Sum gen Sum gen Sum gen Sum gen S s S s S s S s CSE477 L2 Adder Design.27 Irwin&Vijay, PSU, 22

28 Carry Select Adder: Critical Path bits 12 to 15 A s B s A s bits 8 to 1 B s A s bits 4 to 7 B s A s bits to 3 B s P s G s P s G s P s G s 1 P s G s carry carry carry carry +4 1 carry 1 carry 1 carry 1 carry 1 C out +1 mux C s +1 mux C s +1 mux C s +1 mux C s +1 Sum gen Sum gen Sum gen Sum gen S s S s S s S s T add = t setup + B t carry + N/B t mux + t sum CSE477 L2 Adder Design.28 Irwin&Vijay, PSU, 22

29 Square Root Carry Select Adder bits 14 to 19 A s B s bits 9 to 13 A s B s A s bits 5 to 8 B s bits 2 to 4 A s B s bits to 1 A s B s P s G s P s G s P s G s P s G s P sg s carry carry carry carry carry 1 carry 1 carry 1 carry 1 carry 1 carry 1 C out mux C s mux C s mux C s mux C s mux Cin C s Sum gen Sum gen Sum gen Sum gen Sum gen S s S s S s S s S s CSE477 L2 Adder Design.29 Irwin&Vijay, PSU, 22

30 Square Root Carry Select Adder bits 14 to 19 A s B s bits 9 to 13 A s B s A s bits 5 to 8 B s bits 2 to 4 A s Bs bits to 1 As B s P s G s P s G s P s G s P s G s 1 P sg s carry +6 carry +5 carry +4 carry +3 carry +2 1 carry 1 carry 1 1 carry 1 1 carry 1 1 carry 1 C out +1 mux C s +1 mux C s +1 mux C s +1 mux C s +1 mux Cin C s +1 Sum gen Sum gen Sum gen Sum gen Sum gen S s S s S s S s S s T add = t setup + 2 t carry + vn t mux + t sum CSE477 L2 Adder Design.3 Irwin&Vijay, PSU, 22

31 Parallel Prefix Adders (PPAs) Define carry operator on (G,P) signal pairs (G,P ) (G,P ) G (G,P) where G = G P = P P P G G!G P is associative, i.e., [(g,p ) (g,p )] (g,p ) = (g,p ) [(g,p ) (g,p )] CSE477 L2 Adder Design.31 Irwin&Vijay, PSU, 22

32 PPA General Structure Given P and G terms for each bit position, computing all the carries is equal to finding all the prefixes in parallel (G,P ) (G 1,P 1 ) (G 2,P 2 ) (G N-2,P N-2 ) (G N-1,P N-1 ) Since is associative, we can group them in any order but note that it is not commutative P i, G i logic (1 unit delay) C i parallel prefix logic tree (1 unit delay per level) S i logic (1 unit delay) Measures to consider number of cells tree cell depth (time) tree cell area cell fan-in and fan-out max wiring length wiring congestion delay path variation (glitching) CSE477 L2 Adder Design.32 Irwin&Vijay, PSU, 22

33 T = log 2 N - 2 A = 2log 2 N T = log 2 N Brent-Kung PPA G 15 p 15 G 14 p 14 G 13 p 13 G 12 P 12 G 11 p 11 G 1 P 1 G 9 p 9 G 8 P 8 G 7 P 7 G 6 P 6 G 5 P 5 G 4 P 4 G 3 P 3 G 2 p 2 G 1 P 1 G P Parallel Prefix Computation C 16 C 15 C 14 C 13 C 12 C 11 C 1 C 9 C 8 A = N/2 C 7 C 6 C 5 C 4 C 3 C 2 C 1 CSE477 L2 Adder Design.33 Irwin&Vijay, PSU, 22

34 T = log 2 N - 2 A = 2log 2 N T = log 2 N Brent-Kung PPA G 15 p 15 G 14 p 14 G 13 p 13 G 12 P 12 G 11 p 11 G 1 P 1 G 9 p 9 G 8 P 8 G 7 P 7 G 6 P 6 G 5 P 5 G 4 P 4 G 3 P 3 G 2 p 2 G 1 P 1 G P Parallel Prefix Computation C 16 C 15 C 14 C 13 C 12 C 11 C 1 C 9 C 8 A = N/2 C 7 C 6 C 5 C 4 C 3 C 2 C 1 CSE477 L2 Adder Design.34 Irwin&Vijay, PSU, 22

35 T = log 2 N A = log 2 N Kogge-Stone PPF Adder G 15 P 15 G 14 P 14 G 13 P 13 G 12 P 12 G 11 P 11 G 1 P 1 G 9 P 9 G 8 P 8 G 7 P 7 G 6 P 6 G 5 P 5 G 4 P 4 G 3 P 3 G 2 P 2 G 1 P 1 G P Parallel Prefix Computation C 16 C 15 C 14 C 13 C 12 C 11 C 1 C 9 C 8 A = N C 7 C 6 C 5 C 4 C 3 C 2 C 1 T add = t setup + log 2 N t + t sum CSE477 L2 Adder Design.35 Irwin&Vijay, PSU, 22

36 More Adder Comparisons RCA CSkA VSkA KS PPA 1 8 bits 16 bits 32 bits 48 bits 64 bits CSE477 L2 Adder Design.36 Irwin&Vijay, PSU, 22

37 Adder Speed Comparisons RCA MCC CCSkA VCSkA CCSlA B&K bits 32 bits 64 bits CSE477 L2 Adder Design.37 Irwin&Vijay, PSU, 22

38 Adder Average Power Comparisons RCA MCC CCSkA VCSkA CCSlA B&K 5 16 bits 32 bits 64 bits CSE477 L2 Adder Design.38 Irwin&Vijay, PSU, 22

39 PDP of Adder Comparisons RCA MCCA CCSkA VCSkA CCSlA BKA 8 bits 16 bits 32 bits 48 bits 64 bits From Nagendra, 1996 CSE477 L2 Adder Design.39 Irwin&Vijay, PSU, 22

40 Next Lecture and Reminders Next lecture Multiplier Design Reminders - Reading assignment Rabaey, et al, 11.4 Project final reports due December 5 th HW5 (last one!) due November 19 th Final grading negotiations/correction (except for the final exam) must be concluded by December 1 th Final exam scheduled - Monday, December 16 th from 1:1 to noon in 118 and 121 Thomas CSE477 L2 Adder Design.4 Irwin&Vijay, PSU, 22

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 VLSI Design Adder Design [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 Major Components of a Computer Processor Devices Control Memory Input Datapath

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 19: Adder Design [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411 L19

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 The -bit inary dder CPE/EE 427, CPE 527 VLI Design I L2: dder Design Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEM ORY INPUT-OUTPUT CONTROL DATAPATH

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEMORY INPUT-OUTPUT CONTROL DATAPATH

More information

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7 EECS 427 Lecture 8: dders Readings: 11.1-11.3.3 3 EECS 427 F09 Lecture 8 1 Reminders HW3 project initial proposal: due Wednesday 10/7 You can schedule a half-hour hour appointment with me to discuss your

More information

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder it-liced Design Control EEC 141 F01 rithmetic Circuits Data-In Register dder hifter it 3 it 2 it 1 it 0 Data-Out Tile identical processing elements Generic Digital Processor Full-dder MEMORY Cin Full adder

More information

Arithmetic Building Blocks

Arithmetic Building Blocks rithmetic uilding locks Datapath elements dder design Static adder Dynamic adder Multiplier design rray multipliers Shifters, Parity circuits ECE 261 Krish Chakrabarty 1 Generic Digital Processor Input-Output

More information

Hw 6 due Thursday, Nov 3, 5pm No lab this week

Hw 6 due Thursday, Nov 3, 5pm No lab this week EE141 Fall 2005 Lecture 18 dders nnouncements Hw 6 due Thursday, Nov 3, 5pm No lab this week Midterm 2 Review: Tue Nov 8, North Gate Hall, Room 105, 6:30-8:30pm Exam: Thu Nov 10, Morgan, Room 101, 6:30-8:00pm

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 21: Shifters, Decoders, Muxes [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN

More information

Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm

Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm EE241 - Spring 2010 Advanced Digital Integrated Circuits Lecture 25: Digital Arithmetic Adders Announcements Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective rithmetic ircuitsss dapted from hapter 11 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 Generic Digital Processor MEMORY INPUT-OUTPUT ONTROL

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits Digital Integrated Circuits Design Perspective rithmetic Circuits Reference: Digital Integrated Circuits, 2nd edition, Jan M. Rabaey, nantha Chandrakasan and orivoje Nikolic Disclaimer: slides adapted

More information

Lecture 4. Adders. Computer Systems Laboratory Stanford University

Lecture 4. Adders. Computer Systems Laboratory Stanford University Lecture 4 Adders Computer Systems Laboratory Stanford University horowitz@stanford.edu Copyright 2006 Mark Horowitz Some figures from High-Performance Microprocessor Design IEEE 1 Overview Readings Today

More information

Computer Architecture 10. Fast Adders

Computer Architecture 10. Fast Adders Computer Architecture 10 Fast s Ma d e wi t h Op e n Of f i c e. o r g 1 Carry Problem Addition is primary mechanism in implementing arithmetic operations Slow addition directly affects the total performance

More information

EE141-Fall 2010 Digital Integrated Circuits. Announcements. An Intel Microprocessor. Bit-Sliced Design. Class Material. Last lecture.

EE141-Fall 2010 Digital Integrated Circuits. Announcements. An Intel Microprocessor. Bit-Sliced Design. Class Material. Last lecture. EE4-Fall 2 Digital Integrated ircuits dders Lecture 2 dders 4 4 nnouncements Midterm 2: Thurs. Nov. 4 th, 6:3-8:pm Exam starts at 6:3pm sharp Review session: Wed., Nov. 3 rd, 6pm n Intel Microprocessor

More information

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing CSE4: Components and Design Techniques for Digital Systems Decoders, adders, comparators, multipliers and other ALU elements Tajana Simunic Rosing Mux, Demux Encoder, Decoder 2 Transmission Gate: Mux/Tristate

More information

Where are we? Data Path Design

Where are we? Data Path Design Where are we? Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath Data Path Design

More information

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan Where are we? Data Path Design Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational

More information

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018 DIGITAL ELECTRONICS SYSTEM DESIGN LL 2018 PROFS. IRIS BAHAR & ROD BERESFORD NOVEMBER 9, 2018 LECTURE 19: BINARY ADDITION, UNSIGNED BINARY NUMBERS For the binary number b n-1 b n-2 b 1 b 0. b -1 b -2 b

More information

EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS

EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS B. Venkata Sreecharan 1, C. Venkata Sudhakar 2 1 M.TECH (VLSI DESIGN)

More information

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10,

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10, A NOVEL DOMINO LOGIC DESIGN FOR EMBEDDED APPLICATION Dr.K.Sujatha Associate Professor, Department of Computer science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu,

More information

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings

More information

Hardware Design I Chap. 4 Representative combinational logic

Hardware Design I Chap. 4 Representative combinational logic Hardware Design I Chap. 4 Representative combinational logic E-mail: shimada@is.naist.jp Already optimized circuits There are many optimized circuits which are well used You can reduce your design workload

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits Lec 10 Combinational CMOS Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic circuit Out In Combinational Logic circuit Out State Combinational The output is determined only by

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Adders 2 Circuit Delay Transistors have instrinsic resistance and capacitance

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing

More information

Part II Addition / Subtraction

Part II Addition / Subtraction Part II Addition / Subtraction Parts Chapters I. Number Representation 1. 2. 3. 4. Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems Elementary Operations

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power

CMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 14: Designing for Low Power [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp12 CMPEN

More information

Part II Addition / Subtraction

Part II Addition / Subtraction Part II Addition / Subtraction Parts Chapters I. Number Representation 1. 2. 3. 4. Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems Elementary Operations

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences Analysis and Design of Digital Integrated Circuits (6.374) - Fall 2003 Quiz #2 Prof. Anantha Chandrakasan

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

EE141- Spring 2004 Digital Integrated Circuits

EE141- Spring 2004 Digital Integrated Circuits EE141- pring 2004 Digital Integrated ircuits Lecture 19 Dynamic Logic - Adders (that is wrap-up) 1 Administrative tuff Hw 6 due on Th No lab this week Midterm 2 next week Project 2 to be launched week

More information

ALU A functional unit

ALU A functional unit ALU A functional unit that performs arithmetic operations such as ADD, SUB, MPY logical operations such as AND, OR, XOR, NOT on given data types: 8-,16-,32-, or 64-bit values A n-1 A n-2... A 1 A 0 B n-1

More information

Arithmetic Circuits-2

Arithmetic Circuits-2 Arithmetic Circuits-2 Multipliers Array multipliers Shifters Barrel shifter Logarithmic shifter ECE 261 Krish Chakrabarty 1 Binary Multiplication M-1 X = X i 2 i i=0 Multiplicand N-1 Y = Y i 2 i i=0 Multiplier

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

ALUs and Data Paths. Subtitle: How to design the data path of a processor. 1/8/ L3 Data Path Design Copyright Joanne DeGroat, ECE, OSU 1

ALUs and Data Paths. Subtitle: How to design the data path of a processor. 1/8/ L3 Data Path Design Copyright Joanne DeGroat, ECE, OSU 1 ALUs and Data Paths Subtitle: How to design the data path of a processor. Copyright 2006 - Joanne DeGroat, ECE, OSU 1 Lecture overview General Data Path of a multifunction ALU Copyright 2006 - Joanne DeGroat,

More information

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego CSE4: Components and Design Techniques for Digital Systems Logic minimization algorithm summary Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing & Dr.Pietro Mercati Definition

More information

Area-Time Optimal Adder with Relative Placement Generator

Area-Time Optimal Adder with Relative Placement Generator Area-Time Optimal Adder with Relative Placement Generator Abstract: This paper presents the design of a generator, for the production of area-time-optimal adders. A unique feature of this generator is

More information

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1 EECS5 - Digital Design Lecture - Combinational Logic Circuits Part Feburary 26, 22 John Wawrzynek Spring 22 EECS5 - Lec-cl Page Combinational Logic (CL) Defined y i = f i (x,...., xn-), where x, y are

More information

C.K. Ken Yang UCLA Courtesy of MAH EE 215B

C.K. Ken Yang UCLA Courtesy of MAH EE 215B Decoders: Logical Effort Applied C.K. Ken Yang UCLA yang@ee.ucla.edu Courtesy of MAH 1 Overview Reading Rabaey 6.2.2 (Ratio-ed logic) W&H 6.2.2 Overview We have now gone through the basics of decoders,

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Digital Logic

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Digital Logic Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: Digital Logic Our goal for the next few weeks is to paint a a reasonably complete picture of how we can go from transistor

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DESIGN: ARITHMETICS (THROUGH EXAMPLES) 2016/2017 COMBINATIONAL LOGIC DESIGN:

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

CS 140 Lecture 14 Standard Combinational Modules

CS 140 Lecture 14 Standard Combinational Modules CS 14 Lecture 14 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego Some slides from Harris and Harris 1 Part III. Standard Modules A. Interconnect B. Operators. Adders Multiplier

More information

Static CMOS Circuits. Example 1

Static CMOS Circuits. Example 1 Static CMOS Circuits Conventional (ratio-less) static CMOS Covered so far Ratio-ed logic (depletion load, pseudo nmos) Pass transistor logic ECE 261 Krish Chakrabarty 1 Example 1 module mux(input s, d0,

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Simple Processor CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Digital

More information

Chapter 5 Arithmetic Circuits

Chapter 5 Arithmetic Circuits Chapter 5 Arithmetic Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 11, 2016 Table of Contents 1 Iterative Designs 2 Adders 3 High-Speed

More information

ECE 645: Lecture 3. Conditional-Sum Adders and Parallel Prefix Network Adders. FPGA Optimized Adders

ECE 645: Lecture 3. Conditional-Sum Adders and Parallel Prefix Network Adders. FPGA Optimized Adders ECE 645: Lecture 3 Conditional-Sum Adders and Parallel Prefix Network Adders FPGA Optimized Adders Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design Chapter 7.4, Conditional-Sum

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Apr 18, 011 Duration:.5 hrs ECE334 Digital Electronics Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

L8/9: Arithmetic Structures

L8/9: Arithmetic Structures L8/9: Arithmetic Structures Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Rex Min Kevin Atkinson Prof. Randy Katz (Unified Microelectronics

More information

Combinational Logic. By : Ali Mustafa

Combinational Logic. By : Ali Mustafa Combinational Logic By : Ali Mustafa Contents Adder Subtractor Multiplier Comparator Decoder Encoder Multiplexer How to Analyze any combinational circuit like this? Analysis Procedure To obtain the output

More information

Interconnect (2) Buffering Techniques. Logical Effort

Interconnect (2) Buffering Techniques. Logical Effort Interconnect (2) Buffering Techniques. Logical Effort Lecture 14 18-322 Fall 2002 Textbook: [Sections 4.2.1, 8.2.3] A few announcements! M1 is almost over: The check-off is due today (by 9:30PM) Students

More information

Looking at a two binary digit sum shows what we need to extend addition to multiple binary digits.

Looking at a two binary digit sum shows what we need to extend addition to multiple binary digits. A Full Adder The half-adder is extremely useful until you want to add more that one binary digit quantities. The slow way to develop a two binary digit adders would be to make a truth table and reduce

More information

Design of System Elements. Basics of VLSI

Design of System Elements. Basics of VLSI Design of System Elements Basics of VLSI A Generic Digital Machine MEMORY INPUT-OUT PUT CONTROL DATAPATH Jamadagni H S ITC/V1/2004 2of 50 Building Blocks for Digital Architectures Arithmetic unit Data

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 017 Final Wednesday, May 3 4 Problems with point weightings shown.

More information

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan,

More information

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411

More information

EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009

EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009 Signature: EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009 Robert Dick Show your work. Derivations are required for credit; end results are insufficient. Closed book. You may use

More information

Review for Final Exam

Review for Final Exam CSE140: Components and Design Techniques for Digital Systems Review for Final Exam Mohsen Imani CAPE Please submit your evaluations!!!! RTL design Use the RTL design process to design a system that has

More information

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks ECE 545 Digital System Design with VHDL Lecture Digital Logic Refresher Part A Combinational Logic Building Blocks Lecture Roadmap Combinational Logic Basic Logic Review Basic Gates De Morgan s Law Combinational

More information

Lecture 11: Adders. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed.

Lecture 11: Adders. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed. Lecture : dders Slides courtesy of Deming hen Slides based on the initial set from David Harris MOS VLSI Design Outline Single-bit ddition arry-ripple dder arry-skip dder arry-lookahead dder arry-select

More information

CSE493/593. Designing for Low Power

CSE493/593. Designing for Low Power CSE493/593 Designing for Low Power Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.].1 Why Power Matters Packaging costs Power supply rail design Chip and system

More information

7. Combinational Circuits

7. Combinational Circuits 7. Combinational Circuits Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 September 25, 2017 ECE Department, University of Texas

More information

ECE/CS 250 Computer Architecture

ECE/CS 250 Computer Architecture ECE/CS 250 Computer Architecture Basics of Logic Design: Boolean Algebra, Logic Gates (Combinational Logic) Tyler Bletsch Duke University Slides are derived from work by Daniel J. Sorin (Duke), Alvy Lebeck

More information

EECS 141 F01 Lecture 17

EECS 141 F01 Lecture 17 EECS 4 F0 Lecture 7 With major inputs/improvements From Mary-Jane Irwin (Penn State) Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND

More information

3. Combinational Circuit Design

3. Combinational Circuit Design CSEE 3827: Fundamentals of Computer Systems, Spring 2 3. Combinational Circuit Design Prof. Martha Kim (martha@cs.columbia.edu) Web: http://www.cs.columbia.edu/~martha/courses/3827/sp/ Outline (H&H 2.8,

More information

ECE 250 / CPS 250 Computer Architecture. Basics of Logic Design Boolean Algebra, Logic Gates

ECE 250 / CPS 250 Computer Architecture. Basics of Logic Design Boolean Algebra, Logic Gates ECE 250 / CPS 250 Computer Architecture Basics of Logic Design Boolean Algebra, Logic Gates Benjamin Lee Slides based on those from Andrew Hilton (Duke), Alvy Lebeck (Duke) Benjamin Lee (Duke), and Amir

More information

Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995

Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995 Lecture 34: Portable Systems Technology Background Professor Randy H. Katz Computer Science 252 Fall 1995 RHK.F95 1 Technology Trends: Microprocessor Capacity 100000000 10000000 Pentium Transistors 1000000

More information

S No. Questions Bloom s Taxonomy Level UNIT-I

S No. Questions Bloom s Taxonomy Level UNIT-I GROUP-A (SHORT ANSWER QUESTIONS) S No. Questions Bloom s UNIT-I 1 Define oxidation & Classify different types of oxidation Remember 1 2 Explain about Ion implantation Understand 1 3 Describe lithography

More information

COMP 103. Lecture 16. Dynamic Logic

COMP 103. Lecture 16. Dynamic Logic COMP 03 Lecture 6 Dynamic Logic Reading: 6.3, 6.4 [ll lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] COMP03

More information

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays CMSC 33 Lecture 8 Midterm Exam returned ssign Homework 3 Circuits for ddition Digital Logic Components Programmable Logic rrays UMC, CMSC33, Richard Chang Half dder Inputs: and Outputs:

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

MODULE 5 Chapter 7. Clocked Storage Elements

MODULE 5 Chapter 7. Clocked Storage Elements MODULE 5 Chapter 7 Clocked Storage Elements 3/9/2015 1 Outline Background Clocked Storage Elements Timing, terminology, classification Static CSEs Latches Registers Dynamic CSEs Latches Registers 3/9/2015

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Final Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Tuesday Dec 12 th 13:00-15:00 (1-3pm) 2 hour

More information

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE COMP 103 Lecture 10 Inverter Dynamics: The Quest for Performance Section 5.4.2, 5.4.3 [All lecture notes are adapted from Mary Jane Irwin, Penn State, which were adapted from Rabaey s Digital Integrated

More information

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.

More information

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters April 15, 2010 John Wawrzynek 1 Multiplication a 3 a 2 a 1 a 0 Multiplicand b 3 b 2 b 1 b 0 Multiplier X a 3 b 0 a 2 b 0 a 1 b

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering Final Examination ECE 241F - Digital Systems Examiners: J. Rose and

More information

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic Section 3: Combinational Logic Design Major Topics Design Procedure Multilevel circuits Design with XOR gates Adders and Subtractors Binary parallel adder Decoders Encoders Multiplexers Programmed Logic

More information

Logarithmic Circuits

Logarithmic Circuits Logarithmic Circuits Binary Up Counter Logarithmic Circuits WHAt T Q T C Toggle Flip Flop @(posedge clk) If T=, toggle output Q If T=, hold old Q -bit binary counter TC=T Q T Q T Q T Q T T T T T C C C

More information

EE241 - Spring 2001 Advanced Digital Integrated Circuits

EE241 - Spring 2001 Advanced Digital Integrated Circuits EE241 - Spring 21 Advanced Digital Integrated Circuits Lecture 12 Low Power Design Self-Resetting Logic Signals are pulses, not levels 1 Self-Resetting Logic Sense-Amplifying Logic Matsui, JSSC 12/94 2

More information

VLSI Design, Fall Logical Effort. Jacob Abraham

VLSI Design, Fall Logical Effort. Jacob Abraham 6. Logical Effort 6. Logical Effort Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 207 September 20, 207 ECE Department, University of

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Designing Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan Combinational Logic Mantıksal Tasarım BBM23 section instructor: Ufuk Çelikcan Classification. Combinational no memory outputs depends on only the present inputs expressed by Boolean functions 2. Sequential

More information

Dynamic Combinational Circuits. Dynamic Logic

Dynamic Combinational Circuits. Dynamic Logic Dynamic Combinational Circuits Dynamic circuits Charge sharing, charge redistribution Domino logic np-cmos (zipper CMOS) Krish Chakrabarty 1 Dynamic Logic Dynamic gates use a clocked pmos pullup Two modes:

More information

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018 ΔΙΑΛΕΞΗ 11: Dynamic CMOS Circuits ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ (ttheocharides@ucy.ac.cy) (ack: Prof. Mary Jane Irwin and Vijay Narayanan) [Προσαρμογή από

More information

9/18/2008 GMU, ECE 680 Physical VLSI Design

9/18/2008 GMU, ECE 680 Physical VLSI Design ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

Carry Look Ahead Adders

Carry Look Ahead Adders Carry Look Ahead Adders Lesson Objectives: The objectives of this lesson are to learn about: 1. Carry Look Ahead Adder circuit. 2. Binary Parallel Adder/Subtractor circuit. 3. BCD adder circuit. 4. Binary

More information

Interconnect (2) Buffering Techniques.Transmission Lines. Lecture Fall 2003

Interconnect (2) Buffering Techniques.Transmission Lines. Lecture Fall 2003 Interconnect (2) Buffering Techniques.Transmission Lines Lecture 12 18-322 Fall 2003 A few announcements Partners Lab Due Times Midterm 1 is nearly here Date: 10/14/02, time: 3:00-4:20PM, place: in class

More information

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM

Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Lecture 9: Clocking, Clock Skew, Clock Jitter, Clock Distribution and some FM Mark McDermott Electrical and Computer Engineering The University of Texas at Austin 9/27/18 VLSI-1 Class Notes Why Clocking?

More information

Chapter 9. Estimating circuit speed. 9.1 Counting gate delays

Chapter 9. Estimating circuit speed. 9.1 Counting gate delays Chapter 9 Estimating circuit speed 9.1 Counting gate delays The simplest method for estimating the speed of a VLSI circuit is to count the number of VLSI logic gates that the input signals must propagate

More information

Chapter 03: Computer Arithmetic. Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design

Chapter 03: Computer Arithmetic. Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design Chapter 03: Computer Arithmetic Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design Objective To understand adder circuit Subtractor circuit Fast adder circuit 2 Adder Circuit 3 Full

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics Dynamic CMOS Sequential Design Memory and Control Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND or V DD via a low resistance

More information