Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm

Size: px
Start display at page:

Download "Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm"

Transcription

1 EE241 - Spring 2010 Advanced Digital Integrated Circuits Lecture 25: Digital Arithmetic Adders Announcements Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4 6 pages, double column Project presentations May 5, 1-4pm 15 minute talk + 5 minute Q &A 2 1

2 Outline Last lecture Domino timing Other dynamic styles This lecture Adders 3 Adders 2

3 Arithmetic Circuits Chapter 11, Rabaey, 2 nd ed. Selected journal publications Books: Ercegovac and Lang, Digital Arithmetic Elsevier 2004 High-Speed VLSI Arithmetic Units: Adders and Multipliers, by V. Oklobdzija in Chandrakasan et al. 5 Adders EE141 Ripple carry & implementation Carry bypass (skip) Carry select Carry lookahead (basic) EE241 Conditional sum More carry lookahead 6 3

4 Conditional Sum Adders 0 i i y i s x y 1 i i i s x y 0 oi i i c x y 1 oi i i c x y Sklansky, Trans on Comp 6/60 7 Conditional Sum Adders 8 4

5 TG Conditional Sum Conditional Sum Adder Conditional Cell 2-way MUXes Rothermel, JSSC 89 9 TG Conditional Sum Serial connection of transmission gates Chain length = 1+log 2 n Signal propagation 10 5

6 DPL Conditional Sum CLA Conditional carry select 11 DPL Conditional Sum Block Conditional Sums 12 6

7 Carry-Lookahead Adders Adder trees Radix of a tree Minimum depth trees Sparse trees Logic manipulations Conventional vs. Ling Stack height limiting 13 Lookahead Adder: Basic Idea A 0, B 0 A 1, B 1 A N-1, B N-1 C i,0 P 0 C i,1 P 1 C i, N-1 P N-1 S 0 k 1 Co, k f Ak, Bk Ci, k Gk Pk Ci k S 1 S N-1 C i,,, 14 7

8 Propagate and Generate Signals Define 2 (or 3) new variables which ONLY depend on inputs a k, b k Generate (g k ) = a k b k Propagate (p k ) = a k b k (could be XOR as well) (Delete = a k B ) k c g, p g p c out k k k k in sg (, p ) a b c k k k k in Can also derive expressions for s and c out based on d k and p k 15 Lookahead Adder Looakahead Equations Position k: Position k + 1: ck gk pkck 1 ck 1 gk 1 pk 1ck g p g p c g p g p p c k 1 k 1 k k k 1 k 1 k 1 k k 1 k k 1 Carry exists if: - generated in stage k generated in stage k and propagated through k propagated through both k and k

9 Lookahead Adder Unrolling of carry recurrence can be continued If unrolled to level k, resulting in two-level AND-OR structure AND Fan-In = k + 1, OR Fan-In = k + 1 k + 1 transistors in the MOS stack Limits k to 2 4 Later referred to as a radix of an adder 17 Carry Lookahead Trees C o 0 = G 0 + P 0 C i 0 C o1 = G 1 + P 1 G 0 + P 1 P 0 C i0 C o2 = G 2 + P 2 G 1 + P 2 P 1 G 0 + P 2 P 1 P 0 C i 0 = G 2 + P 2 G 1 + P 2 P 1 G 0 + P 0 C i0 = G 2:1 + P 2:1 C o 0 Can continue building the tree hierarchically 18 9

10 Tree Adders P G p p m more significant G m p l G g m p m g l l less significant Start from the input P, G, and continue up the tree 2-bit groups, then 4-bit groups, p (G G, P ) g, p g, p g p g, p G G m m l l m m l m l Kogge, Stone, Trans on Comp, 73 Radix 2 19 Adder Structure Carry tree and sum precompute operate in parallel Sum select selects the correct precomputed sum based on final carry 20 10

11 Adder Optimization If given Input capacitance, Overall fanout (loading capacitance) Wiring structure Adder topology Optimization can be performed to: Minimize the delay subject to power Minimize the power for given delay constraint 21 Design Considerations for CLA Adders Wire capacitance is determined by the microarchitecture From register files / Cache / Bypass Carry signals cross certain number of bitslices Multiplexers The adder topology determines the wire capacitance weak function of gate sizing Loopback Bus Loopback Bus Shifter Adder stage 1 Wiring Adder stage 2 Wiring Loopback Bus The capacitance of wires depends on the tree topology and wiring/shielding methodology Bit slice 63 Adder stage 3 Sum Select Bit slice 2 Bit slice 1 Bit slice 0 To register files / Cache 22 11

12 Specifying the Output Capacitance Fanout is dictated by the architecture In Itanium, each IEU drives 6 other IEUs, register files and the cache, through a long bus Thus the fanout is larger than 15-20, but depends on the ratio of the IEU input capacitance compared to the bus capacitance Bus is driven through a buffer, thus reducing the adder fanout to close to Specifying the Input Capacitance Larger C in : Less impact of internal wires Less fanout (less impact of the buss) Faster adder Power grows linearly with C in Smaller C in : Larger impact of internal wires Larger fanout Slower, lower power adder Optimum tradeoff: For desired de/dd (for both adder and 6 IEUs) find optimal Cg/Cw For example de/dd=2, Cg/Cw =

13 Carry Tree Considerations Number of signals merging at each stage (radix) Uniform vs. non-uniform Number of logic levels Full vs. sparse trees 25 Tree Adders: Kogge-Stone (A 0, B 0 ) (A 1, B 1 ) (A 2, B 2 ) (A 3, B 3 ) (A 4, B 4 ) (A 5, B 5 ) (A 6, B 6 ) (A 7, B 7 ) (A 8, B 8 ) (A 9, B 9 ) (A 10, B 10 ) (A 11, B 11 ) (A 12, B 12 ) (A 13, B 13 ) (A 14, B 14 ) (A 15, B 15 ) S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14 S bit radix-2 Kogge-Stone Tree 26 13

14 Tree Adders: Other Trees Ladner-Fischer (A 0, B 0 ) (A 1, B 1 ) (A 2, B 2 ) (A 3, B 3 ) (A 4, B 4 ) (A 5, B 5 ) (A 6, B 6 ) (A 7, B 7 ) (A 8, B 8 ) (A 9, B 9 ) (A 10, B 10 ) (A 11, B 11 ) (A 12, B 12 ) (A 13, B 13 ) (A 14, B 14 ) (A 15, B 15 ) S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14 S Kogge-Stone vs. Ladner-Fischer Uniform vs. progressively increasing fanouts Ladner-Fischer much slower Needs internal buffering 28 14

15 Tree Adders: Radix 4 (a 0, b 0 ) (a 1, b 1 ) (a 2, b 2 ) (a 3, b 3 ) (a 4, b 4 ) (a 5, b 5 ) (a 6, b 6 ) (a 7, b 7 ) (a 8, b 8 ) (a 9, b 9 ) (a 10, b 10 ) (a 11, b 11 ) (a 12, b 12 ) (a 13, b 13 ) (a 14, b 14 ) (a 15, b 15 ) S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S 11 S 12 S 13 S 14 S bit radix-4 Kogge-Stone Tree 29 Radix-2 vs. Radix-4 More logic stages drive fanout easier Fanout is low, radix-4 can be padded with inverters Radix-4 has less stages and could have speed advantage when driving low fanouts Radix-2 has lower stack heights Radix-4 has longer wires (64 bits: crosses 48 bitslices vs. 32 in radix-2). Less logic stages precedes large wireload

16 Ling Adder CLA g a b i i i p a b i i i G g p G i:0 i i i 1:0 S a b G i i i i 1:0 Ling s equations g a b i i i t a b i i i H g t H i:0 i i 1 i 1:0 S t H g t H i i i:0 i i 1 i 1:0 Ling, IBM J. Res. Dev, 5/81 31 Ling Adder Conventional radix-4 G g pg ppg pppg 3: Ling s radix-4 H g t g t t g t t t g g g t g t t g 3: Reduces the stack height (or width) Reduces input loading 32 16

17 Ling vs. CLA Conventional G3 Ling s H3 CK CK G3 H3 a3 a3 b3 a3 a2 a2 b2 b3 a2 a2 b2 b3 b2 a1 b1 a1 b 2 a1 a1 b1 b1 a0 b1 a0 b0 b

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEM ORY INPUT-OUTPUT CONTROL DATAPATH

More information

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7 EECS 427 Lecture 8: dders Readings: 11.1-11.3.3 3 EECS 427 F09 Lecture 8 1 Reminders HW3 project initial proposal: due Wednesday 10/7 You can schedule a half-hour hour appointment with me to discuss your

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEMORY INPUT-OUTPUT CONTROL DATAPATH

More information

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10,

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10, A NOVEL DOMINO LOGIC DESIGN FOR EMBEDDED APPLICATION Dr.K.Sujatha Associate Professor, Department of Computer science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu,

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 19: Adder Design [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411 L19

More information

Hw 6 due Thursday, Nov 3, 5pm No lab this week

Hw 6 due Thursday, Nov 3, 5pm No lab this week EE141 Fall 2005 Lecture 18 dders nnouncements Hw 6 due Thursday, Nov 3, 5pm No lab this week Midterm 2 Review: Tue Nov 8, North Gate Hall, Room 105, 6:30-8:30pm Exam: Thu Nov 10, Morgan, Room 101, 6:30-8:00pm

More information

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 VLSI Design Adder Design [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 Major Components of a Computer Processor Devices Control Memory Input Datapath

More information

Where are we? Data Path Design

Where are we? Data Path Design Where are we? Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath Data Path Design

More information

CSE477 VLSI Digital Circuits Fall Lecture 20: Adder Design

CSE477 VLSI Digital Circuits Fall Lecture 20: Adder Design CSE477 VLSI Digital Circuits Fall 22 Lecture 2: Adder Design Mary Jane Irwin ( www.cse.psu.edu/~mji ) www.cse.psu.edu/~cg477 [Adapted from Rabaey s Digital Integrated Circuits, 22, J. Rabaey et al.] CSE477

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective rithmetic ircuitsss dapted from hapter 11 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 Generic Digital Processor MEMORY INPUT-OUTPUT ONTROL

More information

EE141-Fall 2010 Digital Integrated Circuits. Announcements. An Intel Microprocessor. Bit-Sliced Design. Class Material. Last lecture.

EE141-Fall 2010 Digital Integrated Circuits. Announcements. An Intel Microprocessor. Bit-Sliced Design. Class Material. Last lecture. EE4-Fall 2 Digital Integrated ircuits dders Lecture 2 dders 4 4 nnouncements Midterm 2: Thurs. Nov. 4 th, 6:3-8:pm Exam starts at 6:3pm sharp Review session: Wed., Nov. 3 rd, 6pm n Intel Microprocessor

More information

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan Where are we? Data Path Design Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath

More information

Lecture 4. Adders. Computer Systems Laboratory Stanford University

Lecture 4. Adders. Computer Systems Laboratory Stanford University Lecture 4 Adders Computer Systems Laboratory Stanford University horowitz@stanford.edu Copyright 2006 Mark Horowitz Some figures from High-Performance Microprocessor Design IEEE 1 Overview Readings Today

More information

Lecture 11: Adders. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed.

Lecture 11: Adders. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed. Lecture : dders Slides courtesy of Deming hen Slides based on the initial set from David Harris MOS VLSI Design Outline Single-bit ddition arry-ripple dder arry-skip dder arry-lookahead dder arry-select

More information

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder it-liced Design Control EEC 141 F01 rithmetic Circuits Data-In Register dder hifter it 3 it 2 it 1 it 0 Data-Out Tile identical processing elements Generic Digital Processor Full-dder MEMORY Cin Full adder

More information

Area-Time Optimal Adder with Relative Placement Generator

Area-Time Optimal Adder with Relative Placement Generator Area-Time Optimal Adder with Relative Placement Generator Abstract: This paper presents the design of a generator, for the production of area-time-optimal adders. A unique feature of this generator is

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits Digital Integrated Circuits Design Perspective rithmetic Circuits Reference: Digital Integrated Circuits, 2nd edition, Jan M. Rabaey, nantha Chandrakasan and orivoje Nikolic Disclaimer: slides adapted

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 The -bit inary dder CPE/EE 427, CPE 527 VLI Design I L2: dder Design Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka

More information

Part II Addition / Subtraction

Part II Addition / Subtraction Part II Addition / Subtraction Parts Chapters I. Number Representation 1. 2. 3. 4. Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems Elementary Operations

More information

EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS

EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 EFFICIENT MULTIOUTPUT CARRY LOOK-AHEAD ADDERS B. Venkata Sreecharan 1, C. Venkata Sudhakar 2 1 M.TECH (VLSI DESIGN)

More information

Part II Addition / Subtraction

Part II Addition / Subtraction Part II Addition / Subtraction Parts Chapters I. Number Representation 1. 2. 3. 4. Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems Elementary Operations

More information

EE141- Spring 2004 Digital Integrated Circuits

EE141- Spring 2004 Digital Integrated Circuits EE141- pring 2004 Digital Integrated ircuits Lecture 19 Dynamic Logic - Adders (that is wrap-up) 1 Administrative tuff Hw 6 due on Th No lab this week Midterm 2 next week Project 2 to be launched week

More information

Arithmetic Building Blocks

Arithmetic Building Blocks rithmetic uilding locks Datapath elements dder design Static adder Dynamic adder Multiplier design rray multipliers Shifters, Parity circuits ECE 261 Krish Chakrabarty 1 Generic Digital Processor Input-Output

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

L8/9: Arithmetic Structures

L8/9: Arithmetic Structures L8/9: Arithmetic Structures Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Rex Min Kevin Atkinson Prof. Randy Katz (Unified Microelectronics

More information

ECE 645: Lecture 3. Conditional-Sum Adders and Parallel Prefix Network Adders. FPGA Optimized Adders

ECE 645: Lecture 3. Conditional-Sum Adders and Parallel Prefix Network Adders. FPGA Optimized Adders ECE 645: Lecture 3 Conditional-Sum Adders and Parallel Prefix Network Adders FPGA Optimized Adders Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design Chapter 7.4, Conditional-Sum

More information

L15: Custom and ASIC VLSI Integration

L15: Custom and ASIC VLSI Integration L15: Custom and ASIC VLSI Integration Average Cost of one transistor 10 1 0.1 0.01 0.001 0.0001 0.00001 $ 0.000001 Gordon Moore, Keynote Presentation at ISSCC 2003 0.0000001 '68 '70 '72 '74 '76 '78 '80

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Fast Adders CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev HW5

More information

ECE 645: Lecture 2. Carry-Lookahead, Carry-Select, & Hybrid Adders

ECE 645: Lecture 2. Carry-Lookahead, Carry-Select, & Hybrid Adders ECE 645: Lecture 2 Carry-Lookahead, Carry-Select, & Hybrid Adders Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design Chapter 6, Carry-Lookahead Adders Sections 6.1-6.2.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences Analysis and Design of Digital Integrated Circuits (6.374) - Fall 2003 Quiz #2 Prof. Anantha Chandrakasan

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 21: Shifters, Decoders, Muxes [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 281: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Multiplication CprE 281: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev HW

More information

Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two.

Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two. Announcements Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two. Chapter 5 1 Chapter 3: Part 3 Arithmetic Functions Iterative combinational circuits

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego CSE4: Components and Design Techniques for Digital Systems Logic minimization algorithm summary Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing & Dr.Pietro Mercati Definition

More information

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 9. Datapath Design Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 October 2, 2017 ECE Department, University of Texas at Austin

More information

Implementation of Carry Look-Ahead in Domino Logic

Implementation of Carry Look-Ahead in Domino Logic Implementation of Carry Look-Ahead in Domino Logic G. Vijayakumar 1 M. Poorani Swasthika 2 S. Valarmathi 3 And A. Vidhyasekar 4 1, 2, 3 Master of Engineering (VLSI design) & 4 Asst.Prof/ Dept.of ECE Akshaya

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

Hardware Design I Chap. 4 Representative combinational logic

Hardware Design I Chap. 4 Representative combinational logic Hardware Design I Chap. 4 Representative combinational logic E-mail: shimada@is.naist.jp Already optimized circuits There are many optimized circuits which are well used You can reduce your design workload

More information

Chapter 5 Arithmetic Circuits

Chapter 5 Arithmetic Circuits Chapter 5 Arithmetic Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 11, 2016 Table of Contents 1 Iterative Designs 2 Adders 3 High-Speed

More information

DESIGN OF LOW POWER-DELAY PRODUCT CARRY LOOK AHEAD ADDER USING MANCHESTER CARRY CHAIN

DESIGN OF LOW POWER-DELAY PRODUCT CARRY LOOK AHEAD ADDER USING MANCHESTER CARRY CHAIN International Conference on Systems, Science, Control, Communication, Engineering and Technology 64 International Conference on Systems, Science, Control, Communication, Engineering and Technology 2015

More information

Arithmetic Circuits-2

Arithmetic Circuits-2 Arithmetic Circuits-2 Multipliers Array multipliers Shifters Barrel shifter Logarithmic shifter ECE 261 Krish Chakrabarty 1 Binary Multiplication M-1 X = X i 2 i i=0 Multiplicand N-1 Y = Y i 2 i i=0 Multiplier

More information

VLSI Arithmetic. Lecture 9: Carry-Save and Multi-Operand Addition. Prof. Vojin G. Oklobdzija University of California

VLSI Arithmetic. Lecture 9: Carry-Save and Multi-Operand Addition. Prof. Vojin G. Oklobdzija University of California VLSI Arithmetic Lecture 9: Carry-Save and Multi-Operand Addition Prof. Vojin G. Oklobdzija University of California http://www.ece.ucdavis.edu/acsel Carry-Save Addition* *from Parhami 2 June 18, 2003 Carry-Save

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Adders 2 Circuit Delay Transistors have instrinsic resistance and capacitance

More information

Binary addition by hand. Adding two bits

Binary addition by hand. Adding two bits Chapter 3 Arithmetic is the most basic thing you can do with a computer We focus on addition, subtraction, multiplication and arithmetic-logic units, or ALUs, which are the heart of CPUs. ALU design Bit

More information

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS ARITHMETIC COMBINATIONAL MODULES AND NETWORKS 1 SPECIFICATION OF ADDER MODULES FOR POSITIVE INTEGERS HALF-ADDER AND FULL-ADDER MODULES CARRY-RIPPLE AND CARRY-LOOKAHEAD ADDER MODULES NETWORKS OF ADDER MODULES

More information

Switching Activity Calculation of VLSI Adders

Switching Activity Calculation of VLSI Adders Switching Activity Calculation of VLSI Adders Dursun Baran, Mustafa Aktan, Hossein Karimiyan and Vojin G. Oklobdzija School of Electrical and Computer Engineering The University of Texas at Dallas, Richardson,

More information

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing CSE4: Components and Design Techniques for Digital Systems Decoders, adders, comparators, multipliers and other ALU elements Tajana Simunic Rosing Mux, Demux Encoder, Decoder 2 Transmission Gate: Mux/Tristate

More information

Robust Energy-Efficient Adder Topologies

Robust Energy-Efficient Adder Topologies Robust Energy-Efficient Adder Topologies Dinesh Patil, Omid Azizi, Mark Horowitz Stanford University (ddpatil,oazizi,horowitz)@stanford.edu Ron Ho Sun Microsystems ron.ho@sun.com Rajesh Ananthraman nvidia

More information

Fast Ripple-Carry Adders in Standard-Cell CMOS VLSI

Fast Ripple-Carry Adders in Standard-Cell CMOS VLSI 2011 20th IEEE Symposium on Computer Arithmetic Fast Ripple-Carry Adders in Standard-Cell CMOS VLSI Neil Burgess ARM Inc. Austin, TX, USA Abstract This paper presents a number of new high-radix ripple-carry

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Carry-Skip Adder

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Carry-Skip Adder EE4 - Srng 000 Advanced Dgtal Integrated Crcuts Lecture 6 Adders B. Nkolc Carry-Sk Adder 0 G 0 G G G C,0 C o,0 C o, C o, FA FA FA FA C o, 0 G 0 G G G B= o C,0 C o,0 C o, C o, FA FA FA FA Multlexer Co,

More information

CS 140 Lecture 14 Standard Combinational Modules

CS 140 Lecture 14 Standard Combinational Modules CS 14 Lecture 14 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego Some slides from Harris and Harris 1 Part III. Standard Modules A. Interconnect B. Operators. Adders Multiplier

More information

EECS150 - Digital Design Lecture 22 - Arithmetic Blocks, Part 1

EECS150 - Digital Design Lecture 22 - Arithmetic Blocks, Part 1 EECS150 - igital esign Lecture 22 - Arithmetic Blocks, Part 1 April 10, 2011 John Wawrzynek Spring 2011 EECS150 - Lec23-arith1 Page 1 Each cell: r i = a i XOR b i XOR c in Carry-ripple Adder Revisited

More information

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings

More information

Computer Architecture 10. Fast Adders

Computer Architecture 10. Fast Adders Computer Architecture 10 Fast s Ma d e wi t h Op e n Of f i c e. o r g 1 Carry Problem Addition is primary mechanism in implementing arithmetic operations Slow addition directly affects the total performance

More information

For smaller NRE cost For faster time to market For smaller high-volume manufacturing cost For higher performance

For smaller NRE cost For faster time to market For smaller high-volume manufacturing cost For higher performance University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS5 J. Wawrzynek Spring 22 2/22/2. [2 pts] Short Answers. Midterm Exam I a) [2 pts]

More information

Full Adder Ripple Carry Adder Carry-Look-Ahead Adder Manchester Adders Carry Select Adder

Full Adder Ripple Carry Adder Carry-Look-Ahead Adder Manchester Adders Carry Select Adder Outline E 66 U Resources: dders & Multipliers Full dder Ripple arry dder arry-look-head dder Manchester dders arry Select dder arry Skip dder onditional Sum dder Hybrid Designs leksandar Milenkovic E-mail:

More information

Department of Electrical and Computer Engineering University of Wisconsin - Madison. ECE/CS 352 Digital System Fundamentals.

Department of Electrical and Computer Engineering University of Wisconsin - Madison. ECE/CS 352 Digital System Fundamentals. Last (family) name: First (given) name: Student I.D. #: Circle section: Lipasti Kim Department of Electrical and Computer Engineering University of Wisconsin - Madison ECE/CS 352 Digital System Fundamentals

More information

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples Overview rithmetic circuits Last lecture PLDs ROMs Tristates Design examples Today dders Ripple-carry Carry-lookahead Carry-select The conclusion of combinational logic!!! General-purpose building blocks

More information

1 Short adders. t total_ripple8 = t first + 6*t middle + t last = 4t p + 6*2t p + 2t p = 18t p

1 Short adders. t total_ripple8 = t first + 6*t middle + t last = 4t p + 6*2t p + 2t p = 18t p UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Study Homework: Arithmetic NTU IC54CA (Fall 2004) SOLUTIONS Short adders A The delay of the ripple

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Simple Processor CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Digital

More information

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters April 15, 2010 John Wawrzynek 1 Multiplication a 3 a 2 a 1 a 0 Multiplicand b 3 b 2 b 1 b 0 Multiplier X a 3 b 0 a 2 b 0 a 1 b

More information

EE241 - Spring 2001 Advanced Digital Integrated Circuits

EE241 - Spring 2001 Advanced Digital Integrated Circuits EE241 - Spring 21 Advanced Digital Integrated Circuits Lecture 12 Low Power Design Self-Resetting Logic Signals are pulses, not levels 1 Self-Resetting Logic Sense-Amplifying Logic Matsui, JSSC 12/94 2

More information

EE141-Fall 2011 Digital Integrated Circuits

EE141-Fall 2011 Digital Integrated Circuits EE4-Fall 20 Digital Integrated Circuits Lecture 5 Memory decoders Administrative Stuff Homework #6 due today Project posted Phase due next Friday Project done in pairs 2 Last Lecture Last lecture Logical

More information

Homework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout

Homework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout 0/6/06 Homework # Lecture 8, 9: Sizing and Layout of omplex MOS Gates Reading: hapter 4, sections 4.3-4.5 October 3 & 5, 06 hapter, section.5.5 Prof. R. Iris ahar Weste & Harris vailable on course webpage

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing

More information

EE115C Digital Electronic Circuits Homework #5

EE115C Digital Electronic Circuits Homework #5 EE115C Digital Electronic Circuits Homework #5 Due Thursday, May 13, 6pm @ 56-147E EIV Problem 1 Elmore Delay Analysis Calculate the Elmore delay from node A to node B using the values for the resistors

More information

Slide Set 6. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 6. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 6 for ENEL 353 Fall 2017 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2017 SN s ENEL 353 Fall 2017 Slide Set 6 slide

More information

Logic and Computer Design Fundamentals. Chapter 5 Arithmetic Functions and Circuits

Logic and Computer Design Fundamentals. Chapter 5 Arithmetic Functions and Circuits Logic and Computer Design Fundamentals Chapter 5 Arithmetic Functions and Circuits Arithmetic functions Operate on binary vectors Use the same subfunction in each bit position Can design functional block

More information

Digital Electronics II Mike Brookes Please pick up: Notes from the front desk

Digital Electronics II Mike Brookes Please pick up: Notes from the front desk NOTATION.PPT(10/8/2010) 1.1 Digital Electronics II Mike Brookes Please pick up: Notes from the front desk 1. What does Digital mean? 2. Where is it used? 3. Why is it used? 4. What are the important features

More information

EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture. Rajeevan Amirtharajah University of California, Davis EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture Rajeevan Amirtharajah University of California, Davis Outline Announcements Review: PDP, EDP, Intersignal Correlations, Glitching, Top

More information

GALOP : A Generalized VLSI Architecture for Ultrafast Carry Originate-Propagate adders

GALOP : A Generalized VLSI Architecture for Ultrafast Carry Originate-Propagate adders GALOP : A Generalized VLSI Architecture for Ultrafast Carry Originate-Propagate adders Dhananjay S. Phatak Electrical Engineering Department State University of New York, Binghamton, NY 13902-6000 Israel

More information

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays MS 33 Lecture 8 Midterm Exam returned Assign Homework 3 ircuits for Addition Digital Logic omponents Programmable Logic Arrays UMB, MS33, Richard hang MS 33, omputer Organization & Assembly

More information

EE371 - Advanced VLSI Circuit Design

EE371 - Advanced VLSI Circuit Design EE371 - Advanced VLSI Circuit Design Midterm Examination May 1999 Name: No. Points Score 1. 20 2. 24 3. 26 4. 20 TOTAL / 90 In recognition of and in the spirit of the Stanford University Honor Code, I

More information

EE 447 VLSI Design. Lecture 5: Logical Effort

EE 447 VLSI Design. Lecture 5: Logical Effort EE 447 VLSI Design Lecture 5: Logical Effort Outline Introduction Delay in a Logic Gate Multistage Logic Networks Choosing the Best Number of Stages Example Summary EE 4475: VLSI Logical Design Effort

More information

Design and Implementation of Carry Tree Adders using Low Power FPGAs

Design and Implementation of Carry Tree Adders using Low Power FPGAs 1 Design and Implementation of Carry Tree Adders using Low Power FPGAs Sivannarayana G 1, Raveendra babu Maddasani 2 and Padmasri Ch 3. Department of Electronics & Communication Engineering 1,2&3, Al-Ameer

More information

COE 202: Digital Logic Design Combinational Circuits Part 2. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Combinational Circuits Part 2. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 202: Digital Logic Design Combinational Circuits Part 2 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Objectives Arithmetic Circuits Adder Subtractor Carry Look Ahead Adder

More information

Lecture 5. Logical Effort Using LE on a Decoder

Lecture 5. Logical Effort Using LE on a Decoder Lecture 5 Logical Effort Using LE on a Decoder Mark Horowitz Computer Systems Laboratory Stanford University horowitz@stanford.edu Copyright 00 by Mark Horowitz Overview Reading Harris, Logical Effort

More information

HIGH SPEED AND INDEPENDENT CARRY CHAIN CARRY LOOK AHEAD ADDER (CLA) IMPLEMENTATION USING CADENCE-EDA K.Krishna Kumar 1, A.

HIGH SPEED AND INDEPENDENT CARRY CHAIN CARRY LOOK AHEAD ADDER (CLA) IMPLEMENTATION USING CADENCE-EDA K.Krishna Kumar 1, A. HIGH SPEED AND INDEPENDENT CARRY CHAIN CARRY LOOK AHEAD ADDER (CLA) IMPLEMENTATION USING CADENCE-EDA K.Krishna Kumar 1, A.Nandha Kumar 2 1 Department of Electrical and Electronics Engineering, Dr.Mahalingam

More information

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C.

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Combinational Logic ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Combinational Circuits

More information

Digital Microelectronic Circuits ( ) Logical Effort. Lecture 7: Presented by: Adam Teman

Digital Microelectronic Circuits ( ) Logical Effort. Lecture 7: Presented by: Adam Teman Digital Microelectronic ircuits (361-1-3021 ) Presented by: Adam Teman Lecture 7: Logical Effort Digital Microelectronic ircuits The VLSI Systems enter - BGU Lecture 7: Logical Effort 1 Last Lectures The

More information

Computer Science. 19. Combinational Circuits. Computer Science COMPUTER SCIENCE. Section 6.1.

Computer Science. 19. Combinational Circuits. Computer Science COMPUTER SCIENCE. Section 6.1. COMPUTER SCIENCE S E D G E W I C K / W A Y N E PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y Computer Science Computer Science An Interdisciplinary Approach Section 6.1 ROBERT SEDGEWICK

More information

Logical Effort Based Design Exploration of 64-bit Adders Using a Mixed Dynamic-CMOS/Threshold-Logic Approach

Logical Effort Based Design Exploration of 64-bit Adders Using a Mixed Dynamic-CMOS/Threshold-Logic Approach Logical ffort Based Design xploration of 64-bit Adders Using a Mixed Dynamic-CMOS/Threshold-Logic Approach Peter Celinski, Said Al-Sarawi, Derek Abbott Centre for High Performance Integrated Technologies

More information

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements EE241 - Spring 2 Advanced Digital Integrated Circuits Lecture 11 Low Power-Low Energy Circuit Design Announcements Homework #2 due Friday, 3/3 by 5pm Midterm project reports due in two weeks - 3/7 by 5pm

More information

ALUs and Data Paths. Subtitle: How to design the data path of a processor. 1/8/ L3 Data Path Design Copyright Joanne DeGroat, ECE, OSU 1

ALUs and Data Paths. Subtitle: How to design the data path of a processor. 1/8/ L3 Data Path Design Copyright Joanne DeGroat, ECE, OSU 1 ALUs and Data Paths Subtitle: How to design the data path of a processor. Copyright 2006 - Joanne DeGroat, ECE, OSU 1 Lecture overview General Data Path of a multifunction ALU Copyright 2006 - Joanne DeGroat,

More information

Design of Sequential Circuits

Design of Sequential Circuits Design of Sequential Circuits Seven Steps: Construct a state diagram (showing contents of flip flop and inputs with next state) Assign letter variables to each flip flop and each input and output variable

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 16 CMOS Combinational Circuits - 2 guntzel@inf.ufsc.br

More information

3. Combinational Circuit Design

3. Combinational Circuit Design CSEE 3827: Fundamentals of Computer Systems, Spring 2 3. Combinational Circuit Design Prof. Martha Kim (martha@cs.columbia.edu) Web: http://www.cs.columbia.edu/~martha/courses/3827/sp/ Outline (H&H 2.8,

More information

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits.

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits. CS211 Computer Architecture Digital Logic l Topics l Transistors (Design & Types) l Logic Gates l Combinational Circuits l K-Maps Figures & Tables borrowed from:! http://www.allaboutcircuits.com/vol_4/index.html!

More information

Datapath Component Tradeoffs

Datapath Component Tradeoffs Datapath Component Tradeoffs Faster Adders Previously we studied the ripple-carry adder. This design isn t feasible for larger adders due to the ripple delay. ʽ There are several methods that we could

More information

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 18 Arithmetic II (Multiplication) Computer Number Systems

Review. EECS Components and Design Techniques for Digital Systems. Lec 18 Arithmetic II (Multiplication) Computer Number Systems Review EE 5 - omponents and Design Techniques for Digital ystems Lec 8 rithmetic II (Multiplication) David uller Electrical Engineering and omputer ciences University of alifornia, Berkeley http://www.eecs.berkeley.edu/~culler

More information

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1

EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1 EECS5 - Digital Design Lecture - Combinational Logic Circuits Part Feburary 26, 22 John Wawrzynek Spring 22 EECS5 - Lec-cl Page Combinational Logic (CL) Defined y i = f i (x,...., xn-), where x, y are

More information

14:332:231 DIGITAL LOGIC DESIGN

14:332:231 DIGITAL LOGIC DESIGN 4:332:23 DIGITAL LOGIC DEIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall 23 Lecture #4: Adders, ubtracters, and ALUs Vector Binary Adder [Wakerly 4 th Ed., ec. 6., p. 474] ingle

More information

Announcements. EE141-Spring 2007 Digital Integrated Circuits. CMOS SRAM Analysis (Read/Write) Class Material. Layout. Read Static Noise Margin

Announcements. EE141-Spring 2007 Digital Integrated Circuits. CMOS SRAM Analysis (Read/Write) Class Material. Layout. Read Static Noise Margin Vo l ta ge ri s e [ V] EE-Spring 7 Digital Integrated ircuits Lecture SRM Project Launch nnouncements No new labs next week and week after Use labs to work on project Homework #6 due Fr. pm Project updated

More information

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors CSC258 Week 3 1 Logistics If you cannot login to MarkUs, email me your UTORID and name. Check lab marks on MarkUs, if it s recorded wrong, contact Larry within a week after the lab. Quiz 1 average: 86%

More information

Chapter 6: Solutions to Exercises

Chapter 6: Solutions to Exercises 1 DIGITAL ARITHMETIC Miloš D. Ercegovac and Tomás Lang Morgan Kaufmann Publishers, an imprint of Elsevier Science, c 00 Updated: September 3, 003 With contributions by Elisardo Antelo and Fabrizio Lamberti

More information

Carry Look Ahead Adders

Carry Look Ahead Adders Carry Look Ahead Adders Lesson Objectives: The objectives of this lesson are to learn about: 1. Carry Look Ahead Adder circuit. 2. Binary Parallel Adder/Subtractor circuit. 3. BCD adder circuit. 4. Binary

More information

Number representation

Number representation Number representation A number can be represented in binary in many ways. The most common number types to be represented are: Integers, positive integers one-complement, two-complement, sign-magnitude

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational

More information