Digital Integrated Circuits A Design Perspective

Size: px
Start display at page:

Download "Digital Integrated Circuits A Design Perspective"

Transcription

1 rithmetic ircuitsss dapted from hapter 11 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 Generic Digital Processor MEMORY INPUT-OUTPUT ONTROL DTPTH 2

2 uilding locks for Digital rchitectures rithmetic unit - it-sliced datapath (adder, multiplier, shifter, comparator, etc.) Memory - RM, ROM, uffers, hift registers ontrol - Finite state machine (PL, random logic.) - ounters Interconnect - witches -rbiters -us 3 n Intel Microprocessor 9-1 Mux 5-1 Mux a g64 RRYGEN node1 ck1 UMEL REG sum sumb to ache 9-1 Mux 2-1 Mux b UMGEN + LU s0 s1 LU : Logical Unit 1000um Itanium has 6 integer execution units like this 4

3 it-liced Design ontrol it 3 Data-In Register dder hifter Multiplexer it 2 it 1 it 0 Data-Out Tile identical processing elements 5 it-liced Datapath From register files / ache / ypass Multiplexers hifter dder stage 1 Loopback us Loopback us Wiring dder stage 2 Wiring Loopback us it slice 63 dder stage 3 um elect it slice 2 it slice 1 it slice 0 To register files / ache 6

4 Itanium Integer Datapath Fetzer, Orton, I 02 7 dders 8

5 Full-dder in Full adder um out 9 The inary dder in Full adder um out = = o =

6 Express um and arry as a function of P, G, D Define 3 new variable which ONLY depend on, Generate (G) = Propagate (P) = Delete = an also derive expressions for and o based on D and P Note that we will be sometimes using an alternate definition for Propagate (P) = + 11 The Ripple-arry dder ,0 o,0 o,1 o,2 o,3 F F F F (=,1 ) Worst case delay linear with the number of bits t d = O(N) t adder = (N-1)t carry + t sum Goal: Make the fastest possible carry path circuit 12

7 omplimentary tatic MO Full dder X o 28 Transistors 13 Inversion Property F o F o 14

8 Minimize ritical Path by Reducing Inverting tages Even cell Odd cell ,0 o,0 o,1 o,2 o,3 F F F F Exploit Inversion Property 15 etter tructure: The Mirror dder "0"-Propagate Kill o "1"-Propagate Generate 24 transistors 16

9 Mirror dder tick Diagram o o GND 17 The Mirror dder The NMO and PMO chains are completely symmetrical. maximum of two series transistors can be observed in the carrygeneration circuitry. When laying out the cell, the most critical issue is the minimization of the capacitance at node o. The reduction of the diffusion capacitances is particularly important. The capacitance at node o is composed of four diffusion capacitances, two internal gate capacitances, and six gate capacitances in the connecting adder cell. The transistors connected to are placed closest to the output. Only the transistors in the carry stage have to be optimized for optimal speed. ll transistors in the sum stage can be minimal size. 18

10 Transmission Gate Full dder P P P um Generation P P P o arry Generation etup P 19 Manchester arry hain P i φ P i o G i i o G i P i D i φ 20

11 Manchester arry hain φ P 0 P 1 P 2 P 3 3,0 G 0 G 1 G 2 G 3 φ Manchester arry hain tick Diagram Propagate/Generate Row P i G i φ P i + 1 G i + 1 φ GND Inverter/um Row 22

12 arry-ypass dder,0 P 0 G 1 P 0 G 1 P 2 G 2 P 3 G 3 o,0 o,1 o,2 F F F F o,3 lso called arry-kip P 0 G 1 P 0 G 1 P 2 G 2 P 3 G 3 P=P o P 1 P 2 P 3,0 o,0 o,1 o,2 F F F F Multiplexer o,3 Idea: If (P0 and P1 and P2 and P3 = 1) then o3 = 0, else kill or generate. 23 arry-ypass dder (cont.) it 0 3 etup t setup it 4 7 etup t bypass it 8 11 etup it etup arry propagation arry propagation arry propagation arry propagation um um um t sum um M bits t adder = t setup + M tcarry + (N/M-1)t bypass + (M-1)t carry + t sum 24

13 arry Ripple versus arry ypass t p ripple adder bypass adder 4..8 N 25 arry-elect dder etup P,G "0" "0" arry Propagation "1" "1" arry Propagation o,k-1 Multiplexer o,k+3 um Generation arry Vector 26

14 arry elect dder: ritical Path it 0 3 it 4 7 it 8 11 it etup etup etup etup 0 0-arry 0 0-arry 0 0-arry 0 0-arry 1 1-arry 1 1-arry 1 1-arry 1 1-arry Multiplexer Multiplexer Multiplexer Multiplexer,0 o,3 o,7 o,11 o,15 um Generation um Generation um Generation um Generation t adder = t setup + M tcarry + (N/M)t mux + t sum 27 Linear arry elect it 0-3 it 4-7 it 8-11 it etup etup etup etup (1) "0" (1) "0" arry "0" "0" arry "0" "0" arry "0" "0" arry "1" arry "1" (5) (5) Multiplexer,0 "1" arry "1" arry "1" arry "1" "1" "1" (5) (5) (5) (6) (7) (8) Multiplexer Multiplexer Multiplexer (9) um Generation um Generation um Generation um Generation (10) 28

15 quare Root arry elect it 0-1 it 2-4 it 5-8 it 9-13 it etup etup etup etup (1) "0" "0" arry "0" "0" arry "0" "0" arry "0" "0" arry (1) "1" "1" arry "1" "1" arry "1" "1" arry "1" "1" arry (3) (3) (4) (5) (6) (4) (5) (6) (7) Multiplexer Multiplexer Multiplexer Multiplexer,0 um Generation um Generation um Generation um Generation (7) Mux (8) um (9) t adder = t setup + M tcarry + ( 2N)t mux + t sum 29 dder Delays - omparison 50 t p (in unit delays) Ripple adder Linear select quare root select N 60 30

16 Lookhead - asic Idea o k, = f ( k, k, o k ) = G k + P k ok 1, 1 Expanding Lookahead equations:, ok, = G k + P k ( G k 1 + P k 1 ok, 2 ) ll the way: o k, = G k + P k ( G k 1 + P k 1 ( + P 1 ( G 0 + P 0 0, ))) 0, 0 1, 1 N-1, N-1,0 P 0,1 P 1, N-1 P N N-1 31 Look-head: Topology o k, = G k + P k ( G k 1 + P k 1 ( + P 1 ( G 0 + P 0 0, ))) G 3 G 2 G 1 G 0,0 o,3 P 0 P 1 P 2 P 3 Large fan-in makes it prohibitively slow for lager values of N 32

17 Logarithmic Look-head dder 0 F t p N F t p log 2 (N) 33 arry Lookahead Trees o, 0 = G 0 + P 0, 0 o1, = G 1 + P 1 G 0 + P 1 P 0 0, o2 = G, 2 + P 2 G 1 + P 2 P 1 G 0 + P 2 P 1 P 0, 0 = ( G 2 + P 2 G 1 ) + ( P 2 P 1 )( G 0 + P 0 0 ) = G 2:1 + P 2:1 o 0 an continue building the tree hierarchically. (G,P ) (G,P ) where (G,P) G = G + P G P = P P,, 34

18 Tree dders ( 0, 0 ) ( 1, 1 ) ( 2, 2 ) ( 3, 3 ) ( 4, 4 ) ( 5, 5 ) ( 6, 6 ) ( 7, 7 ) ( 8, 8 ) ( 9, 9 ) ( 10, 10 ) ( 11, 11 ) ( 12, 12 ) ( 13, 13 ) ( 14, 14 ) ( 15, 15 ) bit radix-2 Kogge-tone tree 35 Example: Domino dder lk G i = a i b i lk P i = a i + b i a i a i b i b i lk lk Propagate Generate 36

19 Example: Domino dder lk k P i:i-2k+1 lk k G i:i-2k+1 P i:i-k+1 P i:i-k+1 G i:i-k+1 P i-k:i-2k+1 G i-k:i-2k+1 Propagate Generate 37 Multipliers 38

20 The inary Multiplication Z M+ N 1 X = Y = Z k 2 k k = 0 M 1 X i 2 i N 1 Y j 2 j = i = 0 j = 0 = M 1 i = 0 N 1 j = 0 X i Y j 2 i+ j with X Y = = M 1 X i 2 i i = 0 N 1 Y j 2 j j = 0 39 The inary Multiplication + x Multiplicand Multiplier Partial products Result 40

21 The rray Multiplier X 3 X 2 X 1 X 0 Y 0 X 3 X 2 X 1 X 0 Y 1 Z 0 H F F H X3 X 2 X 1 X 0 Y 2 Z 1 F F F H X3 X 2 X 1 X 0 Y 3 Z 2 F F F H Z 7 Z 6 Z 5 Z 4 Z 3 41 The MxN rray Multiplier ritical Path H F F H F F F H ritical Path 1 ritical Path 2 ritical Path 1 & 2 F F F H t mult = [(M-1) + (N-2)] t carry + (N-1) t sum + t and 42

22 arry-ave Multiplier H H H H H F F F H F F F H F F H Vector Merging dder t mult = t and + (N-1) t carry + t merge 43 Multiplier Floorplan X 3 X 2 X 1 X 0 Y 0 Y 1 Z 0 H Multiplier ell F Multiplier ell Y 2 Z 1 Vector Merging ell Y 3 Z 2 X and Y signals are broadcasted through the complete array. ( ) Z 7 Z 6 Z 5 Z 4 Z 3 44

23 Wallace-Tree Multiplier Partial products First stage it position (a) (b) econd stage Final adder F (c) H (d) 45 Wallace-Tree Multiplier Partial products x 3 y 3 x 3 y 2 x 2 y 2 x 3 y 1 x 1 y 2 x 3 y 0 x 1 y 1 x 2 y 0 x 0 y 1 x 2 y 3 x1 y 3 x 0 y 3 x 2 y 1 x 0 y 2 x 1 y 0 x 0 y 0 First stage H H econd stage F F F F Final adder z 7 z 6 z 5 z 4 z 3 z 2 z 1 z 0 46

24 Multipliers ummary Optimization Goals Different Vs inary dder Once gain: Identify ritical Path Other possible techniques - Logarithmic versus Linear (Wallace Tree Mult) - Data encoding (ooth) - Pipelining FIRT GLIMPE T YTEM LEVEL OPTIMIZTION 47 hifters 48

25 The inary hifter Right nop Left i i i-1 i-1 it-lice i The arrel hifter 3 3 h h2 1 : Data Wire : ontrol Wire 0 h3 0 h0 h1 h2 h3 rea Dominated by Wiring 50

26 4x4 barrel shifter h0 h1 h2 h3 uffer 51 Logarithmic hifter h1 h1 h2 h2 h4 h

27 0-77 bit Logarithmic hifter 3 Out3 2 Out2 1 Out1 0 Out0 53

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits Digital Integrated Circuits Design Perspective rithmetic Circuits Reference: Digital Integrated Circuits, 2nd edition, Jan M. Rabaey, nantha Chandrakasan and orivoje Nikolic Disclaimer: slides adapted

More information

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder

Bit-Sliced Design. EECS 141 F01 Arithmetic Circuits. A Generic Digital Processor. Full-Adder. The Binary Adder it-liced Design Control EEC 141 F01 rithmetic Circuits Data-In Register dder hifter it 3 it 2 it 1 it 0 Data-Out Tile identical processing elements Generic Digital Processor Full-dder MEMORY Cin Full adder

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEM ORY INPUT-OUTPUT CONTROL DATAPATH

More information

EE141-Fall 2010 Digital Integrated Circuits. Announcements. An Intel Microprocessor. Bit-Sliced Design. Class Material. Last lecture.

EE141-Fall 2010 Digital Integrated Circuits. Announcements. An Intel Microprocessor. Bit-Sliced Design. Class Material. Last lecture. EE4-Fall 2 Digital Integrated ircuits dders Lecture 2 dders 4 4 nnouncements Midterm 2: Thurs. Nov. 4 th, 6:3-8:pm Exam starts at 6:3pm sharp Review session: Wed., Nov. 3 rd, 6pm n Intel Microprocessor

More information

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Digital Integrated Circuits A Design Perspective. Arithmetic Circuits. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Arithmetic Circuits January, 2003 1 A Generic Digital Processor MEMORY INPUT-OUTPUT CONTROL DATAPATH

More information

Arithmetic Building Blocks

Arithmetic Building Blocks rithmetic uilding locks Datapath elements dder design Static adder Dynamic adder Multiplier design rray multipliers Shifters, Parity circuits ECE 261 Krish Chakrabarty 1 Generic Digital Processor Input-Output

More information

Hw 6 due Thursday, Nov 3, 5pm No lab this week

Hw 6 due Thursday, Nov 3, 5pm No lab this week EE141 Fall 2005 Lecture 18 dders nnouncements Hw 6 due Thursday, Nov 3, 5pm No lab this week Midterm 2 Review: Tue Nov 8, North Gate Hall, Room 105, 6:30-8:30pm Exam: Thu Nov 10, Morgan, Room 101, 6:30-8:00pm

More information

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7

EECS 427 Lecture 8: Adders Readings: EECS 427 F09 Lecture 8 1. Reminders. HW3 project initial proposal: due Wednesday 10/7 EECS 427 Lecture 8: dders Readings: 11.1-11.3.3 3 EECS 427 F09 Lecture 8 1 Reminders HW3 project initial proposal: due Wednesday 10/7 You can schedule a half-hour hour appointment with me to discuss your

More information

EE141- Spring 2004 Digital Integrated Circuits

EE141- Spring 2004 Digital Integrated Circuits EE141- pring 2004 Digital Integrated ircuits Lecture 19 Dynamic Logic - Adders (that is wrap-up) 1 Administrative tuff Hw 6 due on Th No lab this week Midterm 2 next week Project 2 to be launched week

More information

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1 The -bit inary dder CPE/EE 427, CPE 527 VLI Design I L2: dder Design Department of Electrical and Computer Engineering University of labama in Huntsville leksandar Milenkovic ( www. ece.uah.edu/~milenka

More information

Arithmetic Circuits-2

Arithmetic Circuits-2 Arithmetic ircuits-2 Multipliers Array multipliers hifters Barrel shifter Logarithmic shifter EE 261 Krish hakrabarty 1 Binary Multiplication X = Σ X i 2 i i=0 Multiplicand M-1 N-1 Y = Σ Y i 2 i i=0 Multiplier

More information

EE141. Lecture 28 Multipliers. Lecture #20. Project Phase 2 Posted. Sign up for one of three project goals today

EE141. Lecture 28 Multipliers. Lecture #20. Project Phase 2 Posted. Sign up for one of three project goals today EE141-pring 2008 igital Integrated ircuits Lecture 28 Multipliers 1 Announcements Project Phase 2 Posted ign up for one of three project goals today Graded Phase 1 and Midterm 2 will be returned next Fr

More information

Where are we? Data Path Design

Where are we? Data Path Design Where are we? Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath Data Path Design

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 19: Adder Design [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411 L19

More information

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan

Where are we? Data Path Design. Bit Slice Design. Bit Slice Design. Bit Slice Plan Where are we? Data Path Design Subsystem Design Registers and Register Files dders and LUs Simple ripple carry addition Transistor schematics Faster addition Logic generation How it fits into the datapath

More information

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1

VLSI Design. [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 VLSI Design Adder Design [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] ECE 4121 VLSI DEsign.1 Major Components of a Computer Processor Devices Control Memory Input Datapath

More information

CSE477 VLSI Digital Circuits Fall Lecture 20: Adder Design

CSE477 VLSI Digital Circuits Fall Lecture 20: Adder Design CSE477 VLSI Digital Circuits Fall 22 Lecture 2: Adder Design Mary Jane Irwin ( www.cse.psu.edu/~mji ) www.cse.psu.edu/~cg477 [Adapted from Rabaey s Digital Integrated Circuits, 22, J. Rabaey et al.] CSE477

More information

Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm

Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due on May 4. Project presentations May 5, 1-4pm EE241 - Spring 2010 Advanced Digital Integrated Circuits Lecture 25: Digital Arithmetic Adders Announcements Homework 4 due today Quiz #4 today In class (80min) final exam on April 29 Project reports due

More information

Arithmetic Circuits-2

Arithmetic Circuits-2 Arithmetic Circuits-2 Multipliers Array multipliers Shifters Barrel shifter Logarithmic shifter ECE 261 Krish Chakrabarty 1 Binary Multiplication M-1 X = X i 2 i i=0 Multiplicand N-1 Y = Y i 2 i i=0 Multiplier

More information

Full Adder Ripple Carry Adder Carry-Look-Ahead Adder Manchester Adders Carry Select Adder

Full Adder Ripple Carry Adder Carry-Look-Ahead Adder Manchester Adders Carry Select Adder Outline E 66 U Resources: dders & Multipliers Full dder Ripple arry dder arry-look-head dder Manchester dders arry Select dder arry Skip dder onditional Sum dder Hybrid Designs leksandar Milenkovic E-mail:

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 2300 Digital Logic & Computer Organization pring 201 More inary rithmetic LU 1 nnouncements Lab 4 prelab () due tomorrow Lab 5 to be released tonight 2 Example: Fixed ize 2 C ddition White stone =

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 18 Arithmetic II (Multiplication) Computer Number Systems

Review. EECS Components and Design Techniques for Digital Systems. Lec 18 Arithmetic II (Multiplication) Computer Number Systems Review EE 5 - omponents and Design Techniques for Digital ystems Lec 8 rithmetic II (Multiplication) David uller Electrical Engineering and omputer ciences University of alifornia, Berkeley http://www.eecs.berkeley.edu/~culler

More information

Chapter 7: Digital Components. Oregon State University School of Electrical Engineering and Computer Science. Review basic digital design concepts:

Chapter 7: Digital Components. Oregon State University School of Electrical Engineering and Computer Science. Review basic digital design concepts: hapter 7: igital omponents Prof. en Lee Oregon tate University chool of Electrical Engineering and omputer cience hapter Goals Review basic digital design concepts: esigning basic digital components using

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes

CMPEN 411 VLSI Digital Circuits Spring Lecture 21: Shifters, Decoders, Muxes CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 21: Shifters, Decoders, Muxes [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN

More information

L15: Custom and ASIC VLSI Integration

L15: Custom and ASIC VLSI Integration L15: Custom and ASIC VLSI Integration Average Cost of one transistor 10 1 0.1 0.01 0.001 0.0001 0.00001 $ 0.000001 Gordon Moore, Keynote Presentation at ISSCC 2003 0.0000001 '68 '70 '72 '74 '76 '78 '80

More information

Arithmetic Circuits Didn t I learn how to do addition in the second grade? UNC courses aren t what they used to be...

Arithmetic Circuits Didn t I learn how to do addition in the second grade? UNC courses aren t what they used to be... rithmetic Circuits Didn t I learn how to do addition in the second grade? UNC courses aren t what they used to be... + Finally; time to build some serious functional blocks We ll need a lot of boxes The

More information

Arithmetic Circuits-2

Arithmetic Circuits-2 Arithmetic Circuits-2 Multipliers Array multipliers Shifters Barrel shifter Logarithmic shifter ECE 261 Krish Chakrabarty 1 Binary Multiplication M-1 X = X i 2 i i=0 Multiplicand N-1 Y = Y i 2 i i=0 Multiplier

More information

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples

Overview. Arithmetic circuits. Binary half adder. Binary full adder. Last lecture PLDs ROMs Tristates Design examples Overview rithmetic circuits Last lecture PLDs ROMs Tristates Design examples Today dders Ripple-carry Carry-lookahead Carry-select The conclusion of combinational logic!!! General-purpose building blocks

More information

Lecture 18: Datapath Functional Units

Lecture 18: Datapath Functional Units Lecture 8: Datapath Functional Unit Outline Comparator Shifter Multi-input Adder Multiplier 8: Datapath Functional Unit CMOS VLSI Deign 4th Ed. 2 Comparator 0 detector: A = 00 000 detector: A = Equality

More information

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR TOPIS: Logic Logic Expressions Logic Gates Simplifying Logic Expressions Sequential Logic (Logic with a Memory) George oole (85-864), English mathematician, oolean logic used in digital computers since

More information

Lecture 12: Datapath Functional Units

Lecture 12: Datapath Functional Units Lecture 2: Datapath Functional Unit Slide courtey of Deming Chen Slide baed on the initial et from David Harri CMOS VLSI Deign Outline Comparator Shifter Multi-input Adder Multiplier Reading:.3-4;.8-9

More information

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego

CSE140: Components and Design Techniques for Digital Systems. Logic minimization algorithm summary. Instructor: Mohsen Imani UC San Diego CSE4: Components and Design Techniques for Digital Systems Logic minimization algorithm summary Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing & Dr.Pietro Mercati Definition

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Designing ombinational Logic ircuits dapted from hapter 6 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 ombinational vs. Sequential Logic In

More information

Lecture 11: Adders. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed.

Lecture 11: Adders. Slides courtesy of Deming Chen. Slides based on the initial set from David Harris. 4th Ed. Lecture : dders Slides courtesy of Deming hen Slides based on the initial set from David Harris MOS VLSI Design Outline Single-bit ddition arry-ripple dder arry-skip dder arry-lookahead dder arry-select

More information

EECS150. Arithmetic Circuits

EECS150. Arithmetic Circuits EE5 ection 8 Arithmetic ircuits Fall 2 Arithmetic ircuits Excellent Examples of ombinational Logic Design Time vs. pace Trade-offs Doing things fast may require more logic and thus more space Example:

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of omputer Systems ombinational Logic Stephen. Edwards olumbia University Fall 2012 Encoders and Decoders Decoders Input: n-bit binary number Output: 1-of-2 n one-hot code 2-to-4 in out 00

More information

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits Lec 10 Combinational CMOS Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic circuit Out In Combinational Logic circuit Out State Combinational The output is determined only by

More information

Hardware Design I Chap. 4 Representative combinational logic

Hardware Design I Chap. 4 Representative combinational logic Hardware Design I Chap. 4 Representative combinational logic E-mail: shimada@is.naist.jp Already optimized circuits There are many optimized circuits which are well used You can reduce your design workload

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

L8/9: Arithmetic Structures

L8/9: Arithmetic Structures L8/9: Arithmetic Structures Acknowledgements: Materials in this lecture are courtesy of the following sources and are used with permission. Rex Min Kevin Atkinson Prof. Randy Katz (Unified Microelectronics

More information

Pass-Transistor Logic

Pass-Transistor Logic -all 26 Digital tegrated ircuits nnouncements No new homework this week roject phase one due on Monday Midterm 2 next Thursday Review session on Tuesday Lecture 8 Logic Dynamic Logic EE4 EE4 2 lass Material

More information

Lecture 12: Datapath Functional Units

Lecture 12: Datapath Functional Units Introduction to CMOS VLSI Deign Lecture 2: Datapath Functional Unit David Harri Harvey Mudd College Spring 2004 Outline Comparator Shifter Multi-input Adder Multiplier 2: Datapath Functional Unit CMOS

More information

Chapter 5 Arithmetic Circuits

Chapter 5 Arithmetic Circuits Chapter 5 Arithmetic Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 11, 2016 Table of Contents 1 Iterative Designs 2 Adders 3 High-Speed

More information

Design of System Elements. Basics of VLSI

Design of System Elements. Basics of VLSI Design of System Elements Basics of VLSI A Generic Digital Machine MEMORY INPUT-OUT PUT CONTROL DATAPATH Jamadagni H S ITC/V1/2004 2of 50 Building Blocks for Digital Architectures Arithmetic unit Data

More information

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Inverter Revised from Digital Integrated Circuits, Jan M. Rabaey el, 2003 Propagation Delay CMOS

More information

CS 140 Lecture 14 Standard Combinational Modules

CS 140 Lecture 14 Standard Combinational Modules CS 14 Lecture 14 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego Some slides from Harris and Harris 1 Part III. Standard Modules A. Interconnect B. Operators. Adders Multiplier

More information

SRC Language Conventions. Class 6: Intro to SRC Simulator Register Transfers and Logic Circuits. SRC Simulator Demo. cond_br.asm.

SRC Language Conventions. Class 6: Intro to SRC Simulator Register Transfers and Logic Circuits. SRC Simulator Demo. cond_br.asm. Fall 2006 S333: omputer rchitecture University of Virginia omputer Science Michele o SR Language onventions lass 6: Intro to SR Simulator Register Transfers and Logic ircuits hapter 2, ppendix.5 2 SR Simulator

More information

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY UNIT III Design of ombinational Logic ircuits Department of omputer Science SRM UNIVERSITY Introduction to ombinational ircuits Logic circuits for digital systems may be ombinational Sequential combinational

More information

Chapter # 4: Programmable and Steering Logic

Chapter # 4: Programmable and Steering Logic hapter Overview PLs and PLs hapter # : Programmable and teering Logic Non-Gate Logic witch Logic Multiplexers/electers and ecoders Tri-tate Gates/Open ollector Gates ROM ombinational Logic esign Problems

More information

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays MS 33 Lecture 8 Midterm Exam returned Assign Homework 3 ircuits for Addition Digital Logic omponents Programmable Logic Arrays UMB, MS33, Richard hang MS 33, omputer Organization & Assembly

More information

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation

Digital- or Logic Circuits. Outline Logic Circuits. Logic Voltage Levels. Binary Representation Outline Logic ircuits Introduction Logic Systems TTL MOS Logic Gates NOT, OR, N NOR, NN, XOR Implementation oolean lgebra ombinatorial ircuits Multipleer emultipleer rithmetic ircuits Simplifying Logic

More information

Integer Multipliers 1

Integer Multipliers 1 Integer Multipliers Multipliers must have circuit in most DS applications variety of multipliers exists that can be chosen based on their performance Serial, Serial/arallel,Shift and dd, rray, ooth, Wallace

More information

UNIT 8A Computer Circuitry: Layers of Abstraction. Boolean Logic & Truth Tables

UNIT 8A Computer Circuitry: Layers of Abstraction. Boolean Logic & Truth Tables UNIT 8 Computer Circuitry: Layers of bstraction 1 oolean Logic & Truth Tables Computer circuitry works based on oolean logic: operations on true (1) and false (0) values. ( ND ) (Ruby: && ) 0 0 0 0 0 1

More information

Lecture 4. Adders. Computer Systems Laboratory Stanford University

Lecture 4. Adders. Computer Systems Laboratory Stanford University Lecture 4 Adders Computer Systems Laboratory Stanford University horowitz@stanford.edu Copyright 2006 Mark Horowitz Some figures from High-Performance Microprocessor Design IEEE 1 Overview Readings Today

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

Area-Time Optimal Adder with Relative Placement Generator

Area-Time Optimal Adder with Relative Placement Generator Area-Time Optimal Adder with Relative Placement Generator Abstract: This paper presents the design of a generator, for the production of area-time-optimal adders. A unique feature of this generator is

More information

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing CSE4: Components and Design Techniques for Digital Systems Decoders, adders, comparators, multipliers and other ALU elements Tajana Simunic Rosing Mux, Demux Encoder, Decoder 2 Transmission Gate: Mux/Tristate

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic [dapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey,. Chandrakasan,. Nikolic] Sp11 CMPEN 411

More information

EE141. Administrative Stuff

EE141. Administrative Stuff -Spring 2004 Digital Integrated ircuits Lecture 15 Logical Effort Pass Transistor Logic 1 dministrative Stuff First (short) project to be launched next Th. Overall span: 1 week Hardware lab this week Hw

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences Analysis and Design of Digital Integrated Circuits (6.374) - Fall 2003 Quiz #2 Prof. Anantha Chandrakasan

More information

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters

EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters EECS150 - Digital Design Lecture 24 - Arithmetic Blocks, Part 2 + Shifters April 15, 2010 John Wawrzynek 1 Multiplication a 3 a 2 a 1 a 0 Multiplicand b 3 b 2 b 1 b 0 Multiplier X a 3 b 0 a 2 b 0 a 1 b

More information

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays CMSC 33 Lecture 8 Midterm Exam returned ssign Homework 3 Circuits for ddition Digital Logic Components Programmable Logic rrays UMC, CMSC33, Richard Chang Half dder Inputs: and Outputs:

More information

Unit 9. Multiplexers, Decoders, and Programmable Logic Devices. Unit 9 1

Unit 9. Multiplexers, Decoders, and Programmable Logic Devices. Unit 9 1 Unit 9 Multiplexers, ecoders, and Programmable Logic evices Unit 9 Outline Multiplexers Three state buffers ecoders Encoders Read Only Memories (ROMs) Programmable logic devices ield Programmable Gate

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Simple Processor CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Digital

More information

Chapter 2. Review of Digital Systems Design

Chapter 2. Review of Digital Systems Design x 2-4 = 42.625. Chapter 2 Review of Digital Systems Design Numbering Systems Decimal number may be expressed as powers of 10. For example, consider a six digit decimal number 987654, which can be represented

More information

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits.

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits. CS211 Computer Architecture Digital Logic l Topics l Transistors (Design & Types) l Logic Gates l Combinational Circuits l K-Maps Figures & Tables borrowed from:! http://www.allaboutcircuits.com/vol_4/index.html!

More information

Decoding A Counter. svbitec.wordpress.com 1

Decoding A Counter. svbitec.wordpress.com 1 ecoding A ounter ecoding a counter involves determining which state in the sequence the counter is in. ifferentiate between active-high and active-low decoding. Active-HIGH decoding: output HIGH if the

More information

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017

9. Datapath Design. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 9. Datapath Design Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2017 October 2, 2017 ECE Department, University of Texas at Austin

More information

Combinatorial RTL Components

Combinatorial RTL Components Principles Of Digital Design Combinatorial RTL Components Computation and Reorganization Arithmetic and Comparison Components Logic Components election Components ncoding/decoding Components Bit manipulation

More information

CMSC 313 Lecture 19 Combinational Logic Components Programmable Logic Arrays Karnaugh Maps

CMSC 313 Lecture 19 Combinational Logic Components Programmable Logic Arrays Karnaugh Maps CMSC 33 Lecture 9 Combinational Logic Components Programmable Logic rrays Karnaugh Maps UMC, CMSC33, Richard Chang Last Time & efore Returned midterm exam Half adders & full adders Ripple

More information

ALUs and Data Paths. Subtitle: How to design the data path of a processor. 1/8/ L3 Data Path Design Copyright Joanne DeGroat, ECE, OSU 1

ALUs and Data Paths. Subtitle: How to design the data path of a processor. 1/8/ L3 Data Path Design Copyright Joanne DeGroat, ECE, OSU 1 ALUs and Data Paths Subtitle: How to design the data path of a processor. Copyright 2006 - Joanne DeGroat, ECE, OSU 1 Lecture overview General Data Path of a multifunction ALU Copyright 2006 - Joanne DeGroat,

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS ARITHMETIC COMBINATIONAL MODULES AND NETWORKS 1 SPECIFICATION OF ADDER MODULES FOR POSITIVE INTEGERS HALF-ADDER AND FULL-ADDER MODULES CARRY-RIPPLE AND CARRY-LOOKAHEAD ADDER MODULES NETWORKS OF ADDER MODULES

More information

Announcements. EE141-Spring 2007 Digital Integrated Circuits. CMOS SRAM Analysis (Read/Write) Class Material. Layout. Read Static Noise Margin

Announcements. EE141-Spring 2007 Digital Integrated Circuits. CMOS SRAM Analysis (Read/Write) Class Material. Layout. Read Static Noise Margin Vo l ta ge ri s e [ V] EE-Spring 7 Digital Integrated ircuits Lecture SRM Project Launch nnouncements No new labs next week and week after Use labs to work on project Homework #6 due Fr. pm Project updated

More information

CMSC 313 Lecture 16 Announcement: no office hours today. Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo

CMSC 313 Lecture 16 Announcement: no office hours today. Good-bye Assembly Language Programming Overview of second half on Digital Logic DigSim Demo CMSC 33 Lecture 6 nnouncement: no office hours today. Good-bye ssembly Language Programming Overview of second half on Digital Logic DigSim Demo UMC, CMSC33, Richard Chang Good-bye ssembly

More information

Chapter 8. Low-Power VLSI Design Methodology

Chapter 8. Low-Power VLSI Design Methodology VLSI Design hapter 8 Low-Power VLSI Design Methodology Jin-Fu Li hapter 8 Low-Power VLSI Design Methodology Introduction Low-Power Gate-Level Design Low-Power Architecture-Level Design Algorithmic-Level

More information

CPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles

CPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles PE/EE 427, PE 527 VLI esign I L07: MO Logic Gates, Pass Transistor Logic epartment of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka

More information

CSE 140 Lecture 11 Standard Combinational Modules. CK Cheng and Diba Mirza CSE Dept. UC San Diego

CSE 140 Lecture 11 Standard Combinational Modules. CK Cheng and Diba Mirza CSE Dept. UC San Diego CSE 4 Lecture Standard Combinational Modules CK Cheng and Diba Mirza CSE Dept. UC San Diego Part III - Standard Combinational Modules (Harris: 2.8, 5) Signal Transport Decoder: Decode address Encoder:

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DESIGN: ARITHMETICS (THROUGH EXAMPLES) 2016/2017 COMBINATIONAL LOGIC DESIGN:

More information

Topics. CMOS Design Multi-input delay analysis. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Topics. CMOS Design Multi-input delay analysis. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut Topics CMO Design Multi-input delay analysis pring 25 Transmission Gate OUT Z OUT Z pring 25 Transmission Gate OUT When is low, the output is at high impedance When is high, the output follows However,

More information

Chapter # 4: Programmable and Steering Logic

Chapter # 4: Programmable and Steering Logic hapter # : Programmable and teering Logic ontemporary Logic esign Randy H. Katz University of alifornia, erkeley June 993 No. - PLs and PLs Pre-fabricated building block of many N/OR gates (or NOR, NN)

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 OMP2611: omputer Organization ombinational Logic OMP2611 Fall 2015 asics of Logic ircuits 2 its are the basis for binary number representation in digital computers ombining bits into patterns following

More information

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015 University of Pennsylvania Department of Electrical and System Engineering Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings

More information

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10,

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-10, A NOVEL DOMINO LOGIC DESIGN FOR EMBEDDED APPLICATION Dr.K.Sujatha Associate Professor, Department of Computer science and Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamilnadu,

More information

EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture. Rajeevan Amirtharajah University of California, Davis

EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture. Rajeevan Amirtharajah University of California, Davis EEC 216 Lecture #3: Power Estimation, Interconnect, & Architecture Rajeevan Amirtharajah University of California, Davis Outline Announcements Review: PDP, EDP, Intersignal Correlations, Glitching, Top

More information

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring - Principles of Computer rchitecture Miles Murdocca and Vincent Heuring 999 M. Murdocca and V. Heuring -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties

More information

VLSI Design, Fall Logical Effort. Jacob Abraham

VLSI Design, Fall Logical Effort. Jacob Abraham 6. Logical Effort 6. Logical Effort Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 207 September 20, 207 ECE Department, University of

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing

More information

Show that the dual of the exclusive-or is equal to its compliment. 7

Show that the dual of the exclusive-or is equal to its compliment. 7 Darshan Institute of ngineering and Technology, Rajkot, Subject: Digital lectronics (2300) GTU Question ank Unit Group Questions Do as directed : I. Given that (6)0 = (00)x, find the value of x. II. dd

More information

Number representation

Number representation Number representation A number can be represented in binary in many ways. The most common number types to be represented are: Integers, positive integers one-complement, two-complement, sign-magnitude

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Designing Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

CPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles

CPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles PE/EE 427, PE 527 VLI Design I Pass Transistor Logic Department of Electrical and omputer Engineering University of labama in Huntsville leksandar Milenkovic ( www.ece.uah.edu/~milenka ) Review: MO ircuit

More information

Tree and Array Multipliers Ivor Page 1

Tree and Array Multipliers Ivor Page 1 Tree and Array Multipliers 1 Tree and Array Multipliers Ivor Page 1 11.1 Tree Multipliers In Figure 1 seven input operands are combined by a tree of CSAs. The final level of the tree is a carry-completion

More information

CMSC 313 Lecture 19 Homework 4 Questions Combinational Logic Components Programmable Logic Arrays Introduction to Circuit Simplification

CMSC 313 Lecture 19 Homework 4 Questions Combinational Logic Components Programmable Logic Arrays Introduction to Circuit Simplification CMSC 33 Lecture 9 Homework 4 Questions Combinational Logic Components Programmable Logic rrays Introduction to Circuit Simplification UMC, CMSC33, Richard Chang CMSC 33, Computer Organization

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 18 CMOS Sequential Circuits - 1 guntzel@inf.ufsc.br

More information

Module 2. Basic Digital Building Blocks. Binary Arithmetic & Arithmetic Circuits Comparators, Decoders, Encoders, Multiplexors Flip-Flops

Module 2. Basic Digital Building Blocks. Binary Arithmetic & Arithmetic Circuits Comparators, Decoders, Encoders, Multiplexors Flip-Flops Module 2 asic Digital uilding locks Lecturer: Dr. Yongsheng Gao Office: Tech 3.25 Email: Web: Structure: Textbook: yongsheng.gao@griffith.edu.au maxwell.me.gu.edu.au 6 lecturers 1 tutorial 1 laboratory

More information

Homework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout

Homework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout 0/6/06 Homework # Lecture 8, 9: Sizing and Layout of omplex MOS Gates Reading: hapter 4, sections 4.3-4.5 October 3 & 5, 06 hapter, section.5.5 Prof. R. Iris ahar Weste & Harris vailable on course webpage

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Adders 2 Circuit Delay Transistors have instrinsic resistance and capacitance

More information