Evaluating Overheads of Multi-bit Soft Error Protection Techniques at Hardware Level Sponsored by SRC and Freescale under SRC task number 2042

Size: px
Start display at page:

Download "Evaluating Overheads of Multi-bit Soft Error Protection Techniques at Hardware Level Sponsored by SRC and Freescale under SRC task number 2042"

Transcription

1 Evaluating Overheads of Multi-bit Soft Error Protection Techniques at Hardware Level Sponsored by SR and Freescale under SR task number 2042 Lukasz G. Szafaryn, Kevin Skadron Department of omputer Science University of Virginia Brett H. Meyer Department of Electrical & omputer Engineering McGill University SR Task: 2042

2 Problem: Multi-bit Soft Errors Area covered by a 2um particle strike radius with respect to the area of two 3-bit registers at various technology nodes [1] As devices become smaller, particle strike radius affects more circuit components In addition to storage (SRAM) circuits, it is now becoming a concern for logic (combinational/sequential) components Single particle strike can cause a multi-bit soft error that affects bits in the same or adjacent component(s) 2

3 Motivation Traditional techniques for single-bit soft errors in logic do not offer adequate protection against multi-bit errors We need to evaluate more aggressive techniques as they significantly change the overhead of protection We evaluate: ED/E (SEDED) Residue odes Spatial Redundancy Temporal Redundancy Feature Upsizing ED/E and Residue odes (ALU/FPU) Spatial and Temporal Redundancy (Interleaved) Parity Single-bit Upset 1 0 Multi-bit Upset

4 Implementation Use example processor design OpenRIS 1200 core Area-proportional ALU/FPU (20%) and ache (40%) Synthesized with IBM 90nm technology Develop considered protection techniques and apply them In combinations for different types of components At granularities: pipeline-stage, FE/BE or core Evaluate protection scenarios in terms of Area Delay Average Power 90nm technology 4

5 Protection Techniques Types of ircuits Temporal Redundancy Spatial Redundancy Residue odes (ALU/FPU) (Interleaved) Parity, ED/E Feature upsizing ombinational Sequential 5

6 Protection Techniques Fine-grained ED/E and Residue odes SRAM ED/E (1 encoder/decoder per array) ALU/FPU (ombinational Logic) Residue Generator/omparator Sequential Logic ED/E (1 encoder/decoder per word) Inst MMU/ ache E Reg File E ALU/FPU R E Data MMU/ ache E Instructions E E E Fetch Decode Execute Memory E Writeback E Spatial Redundancy Inst MMU/ ache Reg File ALU/FPU Data MMU/ ache ombinational/sequential Logic Redundancy omparator Instructions Fetch Decode Execute Memory Fetch Decode Execute Memory Writeback Writeback Inst MMU/ ache Reg File ALU/FPU Data MMU/ ache 6

7 Protection Techniques oarse-grained ycle-level Spatial Redundancy Inst MMU/ ache Data MMU/ ache Front End Back End ore Instructions Front End Back End ore Inst MMU/ ache Data MMU/ ache Multi-cycle-level Spatial and Temporal Redundancy heckpoi nt Buffer ore ore R R R Buffer Load/ Store Buffer heckpoi nt Buffer ore R R Buffer Load/ Store Buffer 7

8

9

10 Area [normalized to Original] Protection Granularity Area Original All Parity All SEDED omponent Front-end/Back-end ore ALU/FPU Residue All Spatial Redundancy Spatial Redundancy can be applied at various granularities with similar detection/correction capability However, the difference in area overhead (corresponding to different amounts of intermediate outputs compared) is small This concept does not apply to SEDE as it would result in a loss of coverage due to the smaller number of storage elements protected 10

11 Delay [normalized to Original] Average Power [normalized to Original] Protection Granularity Delay and Average Power omponent FE/BE ore Original All Parity All SEDED ALU/FPU Residue All Spatial Redundancy omponent FE/BE ore Original All Parity All SEDED ALU/FPU Residue All Spatial Redundancy Granularity does not affect the overall delay, as there is still the same amount of logic in the critical path Power overhead of Spatial Redundancy slightly decreases at higher granularity due to smaller amount of state compared 11

12 Area [normalized to Original] Protection Designs Area R/Buffers Redundancy omparator Residue ode SEDED Parity Redundant omponents Original Red Spatial Redundancy Res Residue odes Tem Red Temporal Redundancy 1000 (cycles) checking frequency Area-optimal designs would use SEDED for storage (SRAM) circuits and Spatial Redundancy for logic (combinational/sequential) circuits Area can be traded for performance by checking correctness at multi-cycle time scale (1000 cycles, for example) Performance can traded for area by performing redundant computation in time under Temporal Redundancy 12

13 Delay [normalized to Original] Average Power [normalized to Original] Protection Designs Delay and Average Power ~2x total delay ~2x energy R/Buffers Redundancy omparator Residue ode SEDED Parity Redundant omponents Original At cycle-level, designs that use residue codes for ALU (the slowest component) incur the shortest overall delay hecking correctness at a multi-cycle time scale can be done off the critical path, thus shortening the overall delay Designs that minimize the use of SEDED for logic circuits achieve the lowest power consumption 13

14 onclusions Multi-bit soft errors are becoming a concern in logic (combinational/sequential) circuits Protection against multi-bit errors in logic components requires techniques that are more aggressive than traditionally used parity Error detecting/correcting codes are preferred for storage (SRAM) circuits while Spatial Redundancy is preferred for logic (combinational/sequential) circuits Increased granularity of Spatial Redundancy only slightly reduces overhead of protection Area can be traded for performance by checking correctness at multi-cycle scale Performance can be traded for area by performing redundant computation in time under Temporal Redundancy 14

15 Future Work Use error injection in the simulator to evaluate vulnerability of components and effectiveness of protection techniques Evaluate performance and power for common benchmarks Investigate recovery overhead of protection mechanisms onsider wider range of protection techniques Evaluate benefit of multi-cycle-level Temporal Redundancy in a superscalar processor at application level 15

16 Technology Transfer Industry Interactions Freescale Internships Intel, summer Publications/presentations TEHON 2012 paper 16

17 Questions

18 References [1] Nishant J. George, arl R. Elks, Barry W. Johnson, John Lach. Bit-slice logic interleaving for spatial multi-bit soft-error tolerance.

19 OpenRIS Area D ache I ache D MMU I MMU ontrol Fetch Decode Execute Int ALU FPU Memory Writeback Arch Reg Reg File OpenRIS features: Single in-order pipeline I/D MMU I/D ache

20 OpenRIS Delay and Average Power Arch Reg ontrol Writeback Fetch Memory 0.07 Decode FPU Int ALU Execute Decode Fetch ontrol Execute Int ALU FPU Memory Writeback Arch Reg Delay Average Power FPU has the highest delay and average power

21 OpenRIS ell ount and Area 0.06 Latches Latches Other 0.44 Other 0.62 SRAM 0.32 SRAM

Chapter 7: Digital Components. Oregon State University School of Electrical Engineering and Computer Science. Review basic digital design concepts:

Chapter 7: Digital Components. Oregon State University School of Electrical Engineering and Computer Science. Review basic digital design concepts: hapter 7: igital omponents Prof. en Lee Oregon tate University chool of Electrical Engineering and omputer cience hapter Goals Review basic digital design concepts: esigning basic digital components using

More information

INF2270 Spring Philipp Häfliger. Lecture 8: Superscalar CPUs, Course Summary/Repetition (1/2)

INF2270 Spring Philipp Häfliger. Lecture 8: Superscalar CPUs, Course Summary/Repetition (1/2) INF2270 Spring 2010 Philipp Häfliger Summary/Repetition (1/2) content From Scalar to Superscalar Lecture Summary and Brief Repetition Binary numbers Boolean Algebra Combinational Logic Circuits Encoder/Decoder

More information

Origami: Folding Warps for Energy Efficient GPUs

Origami: Folding Warps for Energy Efficient GPUs Origami: Folding Warps for Energy Efficient GPUs Mohammad Abdel-Majeed*, Daniel Wong, Justin Huang and Murali Annavaram* * University of Southern alifornia University of alifornia, Riverside Stanford University

More information

NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1

NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1 NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1 Multi-processor vs. Multi-computer architecture µp vs. DSP RISC vs. DSP RISC Reduced-instruction-set Register-to-register operation Higher throughput by using

More information

Chapter 7. Sequential Circuits Registers, Counters, RAM

Chapter 7. Sequential Circuits Registers, Counters, RAM Chapter 7. Sequential Circuits Registers, Counters, RAM Register - a group of binary storage elements suitable for holding binary info A group of FFs constitutes a register Commonly used as temporary storage

More information

ALU A functional unit

ALU A functional unit ALU A functional unit that performs arithmetic operations such as ADD, SUB, MPY logical operations such as AND, OR, XOR, NOT on given data types: 8-,16-,32-, or 64-bit values A n-1 A n-2... A 1 A 0 B n-1

More information

SRC Language Conventions. Class 6: Intro to SRC Simulator Register Transfers and Logic Circuits. SRC Simulator Demo. cond_br.asm.

SRC Language Conventions. Class 6: Intro to SRC Simulator Register Transfers and Logic Circuits. SRC Simulator Demo. cond_br.asm. Fall 2006 S333: omputer rchitecture University of Virginia omputer Science Michele o SR Language onventions lass 6: Intro to SR Simulator Register Transfers and Logic ircuits hapter 2, ppendix.5 2 SR Simulator

More information

Gate-Level Mitigation Techniques for Neutron-Induced Soft Error Rate

Gate-Level Mitigation Techniques for Neutron-Induced Soft Error Rate Gate-Level Mitigation Techniques for Neutron-Induced Soft Error Rate Harmander Singh Deogun, Dennis Sylvester, David Blaauw Department of EECS, University of Michigan, Ann Arbor, MI, US 48109 {hdeogun,dmcs,blaauw@umich.edu}

More information

Verilog HDL:Digital Design and Modeling. Chapter 11. Additional Design Examples. Additional Figures

Verilog HDL:Digital Design and Modeling. Chapter 11. Additional Design Examples. Additional Figures Chapter Additional Design Examples Verilog HDL:Digital Design and Modeling Chapter Additional Design Examples Additional Figures Chapter Additional Design Examples 2 Page 62 a b y y 2 y 3 c d e f Figure

More information

Project Two RISC Processor Implementation ECE 485

Project Two RISC Processor Implementation ECE 485 Project Two RISC Processor Implementation ECE 485 Chenqi Bao Peter Chinetti November 6, 2013 Instructor: Professor Borkar 1 Statement of Problem This project requires the design and test of a RISC processor

More information

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3 Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 Basic Logic Gates XOR CMPE12 Summer 2009 02-2 Truth Table The most basic representation of a logic function Lists the output for all possible

More information

Chapter 8. Low-Power VLSI Design Methodology

Chapter 8. Low-Power VLSI Design Methodology VLSI Design hapter 8 Low-Power VLSI Design Methodology Jin-Fu Li hapter 8 Low-Power VLSI Design Methodology Introduction Low-Power Gate-Level Design Low-Power Architecture-Level Design Algorithmic-Level

More information

CSCI-564 Advanced Computer Architecture

CSCI-564 Advanced Computer Architecture CSCI-564 Advanced Computer Architecture Lecture 8: Handling Exceptions and Interrupts / Superscalar Bo Wu Colorado School of Mines Branch Delay Slots (expose control hazard to software) Change the ISA

More information

COMP2611: Computer Organization. Introduction to Digital Logic

COMP2611: Computer Organization. Introduction to Digital Logic 1 OMP2611: omputer Organization ombinational Logic OMP2611 Fall 2015 asics of Logic ircuits 2 its are the basis for binary number representation in digital computers ombining bits into patterns following

More information

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR

Logic. Basic Logic Functions. Switches in series (AND) Truth Tables. Switches in Parallel (OR) Alternative view for OR TOPIS: Logic Logic Expressions Logic Gates Simplifying Logic Expressions Sequential Logic (Logic with a Memory) George oole (85-864), English mathematician, oolean logic used in digital computers since

More information

Lecture 13: Sequential Circuits, FSM

Lecture 13: Sequential Circuits, FSM Lecture 13: Sequential Circuits, FSM Today s topics: Sequential circuits Finite state machines 1 Clocks A microprocessor is composed of many different circuits that are operating simultaneously if each

More information

SISD SIMD. Flynn s Classification 8/8/2016. CS528 Parallel Architecture Classification & Single Core Architecture C P M

SISD SIMD. Flynn s Classification 8/8/2016. CS528 Parallel Architecture Classification & Single Core Architecture C P M 8/8/26 S528 arallel Architecture lassification & Single ore Architecture arallel Architecture lassification A Sahu Dept of SE, IIT Guwahati A Sahu Flynn s lassification SISD Architecture ategories M SISD

More information

CPSC 3300 Spring 2017 Exam 2

CPSC 3300 Spring 2017 Exam 2 CPSC 3300 Spring 2017 Exam 2 Name: 1. Matching. Write the correct term from the list into each blank. (2 pts. each) structural hazard EPIC forwarding precise exception hardwired load-use data hazard VLIW

More information

EECS150. Arithmetic Circuits

EECS150. Arithmetic Circuits EE5 ection 8 Arithmetic ircuits Fall 2 Arithmetic ircuits Excellent Examples of ombinational Logic Design Time vs. pace Trade-offs Doing things fast may require more logic and thus more space Example:

More information

CMP 338: Third Class

CMP 338: Third Class CMP 338: Third Class HW 2 solution Conversion between bases The TINY processor Abstraction and separation of concerns Circuit design big picture Moore s law and chip fabrication cost Performance What does

More information

Latches. October 13, 2003 Latches 1

Latches. October 13, 2003 Latches 1 Latches The second part of CS231 focuses on sequential circuits, where we add memory to the hardware that we ve already seen. Our schedule will be very similar to before: We first show how primitive memory

More information

Decoding A Counter. svbitec.wordpress.com 1

Decoding A Counter. svbitec.wordpress.com 1 ecoding A ounter ecoding a counter involves determining which state in the sequence the counter is in. ifferentiate between active-high and active-low decoding. Active-HIGH decoding: output HIGH if the

More information

Combinational Logic Design

Combinational Logic Design PEN 35 - igital System esign ombinational Logic esign hapter 3 Logic and omputer esign Fundamentals, 4 rd Ed., Mano 2008 Pearson Prentice Hall esign oncepts and utomation top-down design proceeds from

More information

Combinational vs. Sequential. Summary of Combinational Logic. Combinational device/circuit: any circuit built using the basic gates Expressed as

Combinational vs. Sequential. Summary of Combinational Logic. Combinational device/circuit: any circuit built using the basic gates Expressed as Summary of Combinational Logic : Computer Architecture I Instructor: Prof. Bhagi Narahari Dept. of Computer Science Course URL: www.seas.gwu.edu/~bhagiweb/cs3/ Combinational device/circuit: any circuit

More information

Logic BIST. Sungho Kang Yonsei University

Logic BIST. Sungho Kang Yonsei University Logic BIST Sungho Kang Yonsei University Outline Introduction Basics Issues Weighted Random Pattern Generation BIST Architectures Deterministic BIST Conclusion 2 Built In Self Test Test/ Normal Input Pattern

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memory Components Integrated Circuits Digital Computers 2 LOGIC GATES

More information

Calculating Architectural Vulnerability Factors for Spatial Multi-Bit Transient Faults

Calculating Architectural Vulnerability Factors for Spatial Multi-Bit Transient Faults Calculating Architectural Vulnerability Factors for Spatial Multi-Bit Transient Faults Mark Wilkening, Vilas Sridharan, Si Li, Fritz Previlon, Sudhanva Gurumurthi and David R. Kaeli ECE Department, Northeastern

More information

A Second Datapath Example YH16

A Second Datapath Example YH16 A Second Datapath Example YH16 Lecture 09 Prof. Yih Huang S365 1 A 16-Bit Architecture: YH16 A word is 16 bit wide 32 general purpose registers, 16 bits each Like MIPS, 0 is hardwired zero. 16 bit P 16

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design

CMPEN 411 VLSI Digital Circuits Spring Lecture 19: Adder Design CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 19: Adder Design [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411 L19

More information

14:332:231 DIGITAL LOGIC DESIGN

14:332:231 DIGITAL LOGIC DESIGN 14:332:231 IGITL LOGI ESIGN Ivan Marsic, Rutgers University Electrical & omputer Engineering all 2013 Lecture #17: locked Synchronous -Machine nalysis locked Synchronous Sequential ircuits lso known as

More information

DNPU: An Energy-Efficient Deep Neural Network Processor with On-Chip Stereo Matching

DNPU: An Energy-Efficient Deep Neural Network Processor with On-Chip Stereo Matching DNPU: An Energy-Efficient Deep Neural Network Processor with On-hip Stereo atching Dongjoo Shin, Jinmook Lee, Jinsu Lee, Juhyoung Lee, and Hoi-Jun Yoo Semiconductor System Laboratory School of EE, KAIST

More information

CPU DESIGN The Single-Cycle Implementation

CPU DESIGN The Single-Cycle Implementation CSE 202 Computer Organization CPU DESIGN The Single-Cycle Implementation Shakil M. Khan (adapted from Prof. H. Roumani) Dept of CS & Eng, York University Sequential vs. Combinational Circuits Digital circuits

More information

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu CPE100: Digital Logic Design I Final Review http://www.ee.unlv.edu/~b1morris/cpe100/ 2 Logistics Tuesday Dec 12 th 13:00-15:00 (1-3pm) 2 hour

More information

Arithmetic Circuits-2

Arithmetic Circuits-2 Arithmetic ircuits-2 Multipliers Array multipliers hifters Barrel shifter Logarithmic shifter EE 261 Krish hakrabarty 1 Binary Multiplication X = Σ X i 2 i i=0 Multiplicand M-1 N-1 Y = Σ Y i 2 i i=0 Multiplier

More information

Lecture 3 Review on Digital Logic (Part 2)

Lecture 3 Review on Digital Logic (Part 2) Lecture 3 Review on Digital Logic (Part 2) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ ircuit Optimization Simplest implementation ost criterion literal

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 11, NOVEMBER

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 11, NOVEMBER IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2015 2447 Multiple-Bit Upset Protection in Microprocessor Memory Arrays Using Vulnerability-Based Parity Optimization

More information

Issue = Select + Wakeup. Out-of-order Pipeline. Issue. Issue = Select + Wakeup. OOO execution (2-wide) OOO execution (2-wide)

Issue = Select + Wakeup. Out-of-order Pipeline. Issue. Issue = Select + Wakeup. OOO execution (2-wide) OOO execution (2-wide) Out-of-order Pipeline Buffer of instructions Issue = Select + Wakeup Select N oldest, read instructions N=, xor N=, xor and sub Note: ma have execution resource constraints: i.e., load/store/fp Fetch Decode

More information

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY UNIT III Design of ombinational Logic ircuits Department of omputer Science SRM UNIVERSITY Introduction to ombinational ircuits Logic circuits for digital systems may be ombinational Sequential combinational

More information

Lecture 13: Sequential Circuits, FSM

Lecture 13: Sequential Circuits, FSM Lecture 13: Sequential Circuits, FSM Today s topics: Sequential circuits Finite state machines Reminder: midterm on Tue 2/28 will cover Chapters 1-3, App A, B if you understand all slides, assignments,

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective rithmetic ircuitsss dapted from hapter 11 of Digital Integrated ircuits Design Perspective Jan M. Rabaey et al. opyright 2003 Prentice Hall/Pearson 1 Generic Digital Processor MEMORY INPUT-OUTPUT ONTROL

More information

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3)

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3) CMPE12 - Notes chapter 1 Digital Logic (Textbook Chapter 3) Transistor: Building Block of Computers Microprocessors contain TONS of transistors Intel Montecito (2005): 1.72 billion Intel Pentium 4 (2000):

More information

Static CMOS Circuits

Static CMOS Circuits Static MOS ircuits l onventional (ratio-less) static MOS» overed so far l Ratio-ed logic (depletion load, pseudo nmos) l ass transistor logic ombinational vs. Sequential Logic In Logic ircuit In Logic

More information

CMU Introduction to Computer Architecture, Spring 2015 HW 2: ISA Tradeoffs, Microprogramming and Pipelining

CMU Introduction to Computer Architecture, Spring 2015 HW 2: ISA Tradeoffs, Microprogramming and Pipelining CMU 18-447 Introduction to Computer Architecture, Spring 2015 HW 2: ISA Tradeoffs, Microprogramming and Pipelining Instructor: Prof Onur Mutlu TAs: Rachata Ausavarungnirun, Kevin Chang, Albert Cho, Jeremie

More information

Sequential Logic Circuits

Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of a sequential circuit,

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

Digital System Clocking: High-Performance and Low-Power Aspects. Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M.

Digital System Clocking: High-Performance and Low-Power Aspects. Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Digital System Clocking: High-Performance and Low-Power Aspects Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, Nikola M. Nedovic Wiley-Interscience and IEEE Press, January 2003 Nov. 14,

More information

Semiconductor Memories

Semiconductor Memories Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian

More information

Accurate Microarchitecture-Level Fault Modeling for Studying Hardware Faults

Accurate Microarchitecture-Level Fault Modeling for Studying Hardware Faults Appears in Proceedings of the 15 th International Symposium on High-Performance Computer Architecture, February, 2009. Accurate Microarchitecture-Level Fault Modeling for Studying Hardware Faults Man-Lap

More information

DM74LS670 3-STATE 4-by-4 Register File

DM74LS670 3-STATE 4-by-4 Register File DM74LS670 3-STATE 4-by-4 Register File General Description August 1986 Revised March 2000 These register files are organized as 4 words of 4 bits each, and separate on-chip decoding is provided for addressing

More information

Administrivia. Course Objectives. Overview. Lecture Notes Week markem/cs333/ 2. Staff. 3. Prerequisites. 4. Grading. 1. Theory and application

Administrivia. Course Objectives. Overview. Lecture Notes Week markem/cs333/ 2. Staff. 3. Prerequisites. 4. Grading. 1. Theory and application Administrivia 1. markem/cs333/ 2. Staff 3. Prerequisites 4. Grading Course Objectives 1. Theory and application 2. Benefits 3. Labs TAs Overview 1. What is a computer system? CPU PC ALU System bus Memory

More information

Hardware Design I Chap. 4 Representative combinational logic

Hardware Design I Chap. 4 Representative combinational logic Hardware Design I Chap. 4 Representative combinational logic E-mail: shimada@is.naist.jp Already optimized circuits There are many optimized circuits which are well used You can reduce your design workload

More information

Skew-Tolerant Circuit Design

Skew-Tolerant Circuit Design Skew-Tolerant Circuit Design David Harris David_Harris@hmc.edu December, 2000 Harvey Mudd College Claremont, CA Outline Introduction Skew-Tolerant Circuits Traditional Domino Circuits Skew-Tolerant Domino

More information

Characterization and Design of Sequential Circuit Elements to Combat Soft Error 1

Characterization and Design of Sequential Circuit Elements to Combat Soft Error 1 haracterization and Design of Sequential ircuit Elements to ombat Soft Error 1 Hamed Abrishami, Safar Hatami, and Massoud Pedram University of Southern alifornia Department of Electrical Engineering Los

More information

Design for Testability

Design for Testability Design for Testability Outline Ad Hoc Design for Testability Techniques Method of test points Multiplexing and demultiplexing of test points Time sharing of I/O for normal working and testing modes Partitioning

More information

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues

CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 17: Dynamic Sequential Circuits And Timing Issues [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan,

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

L07-L09 recap: Fundamental lesson(s)!

L07-L09 recap: Fundamental lesson(s)! L7-L9 recap: Fundamental lesson(s)! Over the next 3 lectures (using the IPS ISA as context) I ll explain:! How functions are treated and processed in assembly! How system calls are enabled in assembly!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

COMPUTERS ORGANIZATION 2ND YEAR COMPUTE SCIENCE MANAGEMENT ENGINEERING UNIT 3 - ARITMETHIC-LOGIC UNIT JOSÉ GARCÍA RODRÍGUEZ JOSÉ ANTONIO SERRA PÉREZ

COMPUTERS ORGANIZATION 2ND YEAR COMPUTE SCIENCE MANAGEMENT ENGINEERING UNIT 3 - ARITMETHIC-LOGIC UNIT JOSÉ GARCÍA RODRÍGUEZ JOSÉ ANTONIO SERRA PÉREZ OMUTERS ORGANIZATION 2ND YEAR OMUTE SIENE MANAGEMENT ENGINEERING UNIT 3 - ARITMETHI-LOGI UNIT JOSÉ GARÍA RODRÍGUEZ JOSÉ ANTONIO SERRA ÉREZ Tema 3. La Unidad entral de roceso. A.L.U. Arithmetic Logic Unit

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

DRAM Reliability: Parity, ECC, Chipkill, Scrubbing. Alpha Particle or Cosmic Ray. electron-hole pairs. silicon. DRAM Memory System: Lecture 13

DRAM Reliability: Parity, ECC, Chipkill, Scrubbing. Alpha Particle or Cosmic Ray. electron-hole pairs. silicon. DRAM Memory System: Lecture 13 slide 1 DRAM Reliability: Parity, ECC, Chipkill, Scrubbing Alpha Particle or Cosmic Ray electron-hole pairs silicon Alpha Particles: Radioactive impurity in package material slide 2 - Soft errors were

More information

Vector Lane Threading

Vector Lane Threading Vector Lane Threading S. Rivoire, R. Schultz, T. Okuda, C. Kozyrakis Computer Systems Laboratory Stanford University Motivation Vector processors excel at data-level parallelism (DLP) What happens to program

More information

Computer Architecture

Computer Architecture Lecture 2: Iakovos Mavroidis Computer Science Department University of Crete 1 Previous Lecture CPU Evolution What is? 2 Outline Measurements and metrics : Performance, Cost, Dependability, Power Guidelines

More information

Department of Electrical and Computer Engineering The University of Texas at Austin

Department of Electrical and Computer Engineering The University of Texas at Austin Department of Electrical and Computer Engineering The University of Texas at Austin EE 360N, Fall 2004 Yale Patt, Instructor Aater Suleman, Huzefa Sanjeliwala, Dam Sunwoo, TAs Exam 1, October 6, 2004 Name:

More information

Efficient Circuit Analysis under Multiple Input Switching (MIS) Anupama R. Subramaniam

Efficient Circuit Analysis under Multiple Input Switching (MIS) Anupama R. Subramaniam Efficient Circuit Analysis under Multiple Input Switching (MIS) by Anupama R. Subramaniam A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

CMP N 301 Computer Architecture. Appendix C

CMP N 301 Computer Architecture. Appendix C CMP N 301 Computer Architecture Appendix C Outline Introduction Pipelining Hazards Pipelining Implementation Exception Handling Advanced Issues (Dynamic Scheduling, Out of order Issue, Superscalar, etc)

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Simple Processor CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Digital

More information

Chapter 4. Sequential Logic Circuits

Chapter 4. Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 1 2 Chapter 4 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of

More information

! Memory. " RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell. " Used in most commercial chips

! Memory.  RAM Memory. ! Cell size accounts for most of memory array size. ! 6T SRAM Cell.  Used in most commercial chips ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec : April 3, 8 Memory: Core Cells Today! Memory " RAM Memory " Architecture " Memory core " SRAM " DRAM " Periphery Penn ESE 57 Spring 8 - Khanna

More information

EE141-Fall 2011 Digital Integrated Circuits

EE141-Fall 2011 Digital Integrated Circuits EE4-Fall 20 Digital Integrated Circuits Lecture 5 Memory decoders Administrative Stuff Homework #6 due today Project posted Phase due next Friday Project done in pairs 2 Last Lecture Last lecture Logical

More information

Semiconductor memories

Semiconductor memories Semiconductor memories Semiconductor Memories Data in Write Memory cell Read Data out Some design issues : How many cells? Function? Power consuption? Access type? How fast are read/write operations? Semiconductor

More information

Instruction Set Extensions for Reed-Solomon Encoding and Decoding

Instruction Set Extensions for Reed-Solomon Encoding and Decoding Instruction Set Extensions for Reed-Solomon Encoding and Decoding Suman Mamidi and Michael J Schulte Dept of ECE University of Wisconsin-Madison {mamidi, schulte}@caewiscedu http://mesaecewiscedu Daniel

More information

Nyquist-Rate A/D Converters

Nyquist-Rate A/D Converters IsLab Analog Integrated ircuit Design AD-51 Nyquist-ate A/D onverters כ Kyungpook National University IsLab Analog Integrated ircuit Design AD-1 Nyquist-ate MOS A/D onverters Nyquist-rate : oversampling

More information

UNIVERSITY OF WISCONSIN MADISON

UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Prof. Gurindar Sohi TAs: Minsub Shin, Lisa Ossian, Sujith Surendran Midterm Examination 2 In Class (50 minutes) Friday,

More information

EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs. Cross-coupled NOR gates

EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs. Cross-coupled NOR gates EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs April 16, 2009 John Wawrzynek Spring 2009 EECS150 - Lec24-blocks Page 1 Cross-coupled NOR gates remember, If both R=0 & S=0, then

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic Designing Sequential Logic Circuits November 2002 Sequential Logic Inputs Current State COMBINATIONAL

More information

Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG

Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG Cung Nguyen and Robert G. Redinbo Department of Electrical and Computer Engineering University of California, Davis, CA email: cunguyen,

More information

3. (2) What is the difference between fixed and hybrid instructions?

3. (2) What is the difference between fixed and hybrid instructions? 1. (2 pts) What is a "balanced" pipeline? 2. (2 pts) What are the two main ways to define performance? 3. (2) What is the difference between fixed and hybrid instructions? 4. (2 pts) Clock rates have grown

More information

CS470: Computer Architecture. AMD Quad Core

CS470: Computer Architecture. AMD Quad Core CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flip-flops Functional bocks: Combinational, Sequential Instruction

More information

PGT104 Digital Electronics. PGT104 Digital Electronics

PGT104 Digital Electronics. PGT104 Digital Electronics 1 Part 6 Sequential Logic ircuits Disclaimer: Most of the contents (if not all) are extracted from resources available for Digital Fundamentals 10 th Edition 2 Basic Shift Register Operations A shift register

More information

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements.

Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. 1 2 Introduction Clock signal in digital circuit is responsible for synchronizing the transfer to the data between processing elements. Defines the precise instants when the circuit is allowed to change

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

Tradeoff between Reliability and Power Management

Tradeoff between Reliability and Power Management Tradeoff between Reliability and Power Management 9/1/2005 FORGE Lee, Kyoungwoo Contents 1. Overview of relationship between reliability and power management 2. Dakai Zhu, Rami Melhem and Daniel Moss e,

More information

Design for Testability

Design for Testability Design for Testability Outline Ad Hoc Design for Testability Techniques Method of test points Multiplexing and demultiplexing of test points Time sharing of I/O for normal working and testing modes Partitioning

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 21: April 4, 2017 Memory Overview, Memory Core Cells Penn ESE 570 Spring 2017 Khanna Today! Memory " Classification " ROM Memories " RAM Memory

More information

Processor Design & ALU Design

Processor Design & ALU Design 3/8/2 Processor Design A. Sahu CSE, IIT Guwahati Please be updated with http://jatinga.iitg.ernet.in/~asahu/c22/ Outline Components of CPU Register, Multiplexor, Decoder, / Adder, substractor, Varity of

More information

ECE 3401 Lecture 23. Pipeline Design. State Table for 2-Cycle Instructions. Control Unit. ISA: Instruction Specifications (for reference)

ECE 3401 Lecture 23. Pipeline Design. State Table for 2-Cycle Instructions. Control Unit. ISA: Instruction Specifications (for reference) ECE 3401 Lecture 23 Pipeline Design Control State Register Combinational Control Logic New/ Modified Control Word ISA: Instruction Specifications (for reference) P C P C + 1 I N F I R M [ P C ] E X 0 PC

More information

Architecture-Level Soft Error Analysis: Examining the Limits of Common Assumptions

Architecture-Level Soft Error Analysis: Examining the Limits of Common Assumptions In the Proceedings of the International Conference on Dependable Systems and Networks(DSN 07), June 2007. Architecture-Level Soft Error Analysis: Examining the Limits of Common Assumptions Xiaodong Li,

More information

Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability. Memory

Chapter Overview. Memory Classification. Memory Architectures. The Memory Core. Periphery. Reliability. Memory SRAM Design Chapter Overview Classification Architectures The Core Periphery Reliability Semiconductor Classification RWM NVRWM ROM Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable

More information

EECS 427 Lecture 14: Timing Readings: EECS 427 F09 Lecture Reminders

EECS 427 Lecture 14: Timing Readings: EECS 427 F09 Lecture Reminders EECS 427 Lecture 14: Timing Readings: 10.1-10.3 EECS 427 F09 Lecture 14 1 Reminders CA assignments Please submit CA6 by tomorrow noon CA7 is due in a week Seminar by Prof. Bora Nikolic SRAM variability

More information

Information redundancy

Information redundancy Information redundancy Information redundancy add information to date to tolerate faults error detecting codes error correcting codes data applications communication memory p. 2 - Design of Fault Tolerant

More information

Lecture: Pipelining Basics

Lecture: Pipelining Basics Lecture: Pipelining Basics Topics: Performance equations wrap-up, Basic pipelining implementation Video 1: What is pipelining? Video 2: Clocks and latches Video 3: An example 5-stage pipeline Video 4:

More information

Combinational Logic Design Combinational Functions and Circuits

Combinational Logic Design Combinational Functions and Circuits Combinational Logic Design Combinational Functions and Circuits Overview Combinational Circuits Design Procedure Generic Example Example with don t cares: BCD-to-SevenSegment converter Binary Decoders

More information

Logic and Computer Design Fundamentals. Chapter 8 Sequencing and Control

Logic and Computer Design Fundamentals. Chapter 8 Sequencing and Control Logic and Computer Design Fundamentals Chapter 8 Sequencing and Control Datapath and Control Datapath - performs data transfer and processing operations Control Unit - Determines enabling and sequencing

More information

ECE290 Fall 2012 Lecture 22. Dr. Zbigniew Kalbarczyk

ECE290 Fall 2012 Lecture 22. Dr. Zbigniew Kalbarczyk ECE290 Fall 2012 Lecture 22 Dr. Zbigniew Kalbarczyk Today LC-3 Micro-sequencer (the control store) LC-3 Micro-programmed control memory LC-3 Micro-instruction format LC -3 Micro-sequencer (the circuitry)

More information

Unit 7 Sequential Circuits (Flip Flop, Registers)

Unit 7 Sequential Circuits (Flip Flop, Registers) College of Computer and Information Sciences Department of Computer Science CSC 220: Computer Organization Unit 7 Sequential Circuits (Flip Flop, Registers) 2 SR Flip-Flop The SR flip-flop, also known

More information

A Combined Analytical and Simulation-Based Model for Performance Evaluation of a Reconfigurable Instruction Set Processor

A Combined Analytical and Simulation-Based Model for Performance Evaluation of a Reconfigurable Instruction Set Processor A Combined Analytical and Simulation-Based Model for Performance Evaluation of a Reconfigurable Instruction Set Processor Farhad Mehdipour, H. Noori, B. Javadi, H. Honda, K. Inoue, K. Murakami Faculty

More information