Logic BIST. Sungho Kang Yonsei University

Size: px
Start display at page:

Download "Logic BIST. Sungho Kang Yonsei University"

Transcription

1 Logic BIST Sungho Kang Yonsei University

2 Outline Introduction Basics Issues Weighted Random Pattern Generation BIST Architectures Deterministic BIST Conclusion 2

3 Built In Self Test Test/ Normal Input Pattern Generation (random pattern) BIST Controller Output Response Monitor Output MUX Circuit under Test Test patterns are generated on-chip Responses to the test patterns are also evaluated on chip External operations are required only to initialize the built-in tests and to check the test results (go/no-go) 3

4 Constraints of BIST Initial design investment Area overhead Pin overhead Performance overhead Fault coverage Aliasing problem 4

5 Test Pattern Generation Stored Pattern Exhaustive Pattern Pseudo Exhaustive Pattern Pseudo Random Pattern Weighted Random Pattern 5

6 Combinational Circuit Classification Partial Dependence Circuit (PDC) No output depends on all inputs Exhaustive test if possible Else output verification test Else segment verification Full Dependence Circuit (FDC) Some output depends on all inputs Exhaustive test if possible Else segment verification 6

7 PDC Example Example circuit a b c d e f g C* f 1 (a,b,e) f 2 (b,c,g) f 3 (a,d,e) f 4 (c,d,e) f 5 (e,f) Dependency matrix Dij = 1 if output I depends on input j ; otherwise Dij=0 D = a b c d e f g f f f f f 5 7

8 PDC Example Reordering and grouping the inputs produce the following modified matrix Group D g = a c b d e f g f 1 f 2 f 3 f 4 f 5 8

9 PDC Example In each group there must be less than two 1s in each row and the number of groups should be minimal This insures that no output is driven by more than one input from each group Finding such a partition is NP-complete ORing each row within a group to form a single column D c = f f 2 f f f 5 9

10 PDC Example p=4 and w=3 odd parity A B C D Pseudo exhaustive test set consists of 8 patterns instead of 128 Among 4 groups, 8 patterns using any 3 inputs are necessary 10

11 Segment Verification Segmentation testing via path sensitization Sensitized path is established from C to F Use 2 n1 +2 n2 patterns instead of 2 n1+n2 patterns A n1 C 1 C F B n2 C 2 D 11

12 Linear Feedback Shift Register The state of shift register depends only on the prior state D Q Next State Current State c 1 c 1 c 2 c n-1 D Q D Q D Q Q 1 Q 2 Q 3 Q n a -1 a -2 a -n+1 a -n a m a m-1 a m-2 a m-n+1 a m-n c n = 1 c n = 1 c 1 c c 2 n-1 D Q D Q Q 1 Q 2 Q 3 Q n D Q D Q Current State a m-1 a m-2 a m-n 12

13 Linear Feedback Shift Register Pseudo Random Pattern Generation Characteristic Polynomial : 1+x 2 +x 3 Initial condition (1,0,0) : x Q1 : x / (1+x 2 +x 3 ) Q2 : x 2 / (1+x 2 +x 3 ) Q3 : x 3 / (1+x 2 +x 3 ) 13

14 LFSR : 1+x 2 +x 3 When initial state is 100 Q1 Q2 Q

15 Linear Feedback Shift Register When initial state is 000 Q1 Q2 Q

16 Weighed Random Patterns All patterns not equally likely Pseudo random test patterns are inefficient when random-pattern-resistant faults exist. Make Prob[1] Prob[0] at pattern sources Random resistant faults Consider a 32 input AND and output s-a-1 fault The output s-a-0 is detected when all inputs are 1 When pseudo random testing is used, the detection probability is 1/2 32 L F S n Weight Computation Circuit m Circuit under Test R 16

17 Weight Generation Methods Structural analysis Small number of patterns and weight sets Easy implementation Poor fault coverage Deterministic test sets All non-redundant faults can be detected A high number of random patterns and weights Large hardware overhead Combined both methods 17

18 Multiple Weight Sets Consider AND output s-a-1 and OR output s-a-0 If the same weights are applied, one of two faults are hard to detect. Necessary to have 2 different weight sets (1/2 32, 1-1/ 2 32 ) (1-1/ 2 32, 1/ 2 32 ) The efficiency of multiple weight set is determined by both the number of weight sets (r), and the total number of random test patterns to be applied (N). The goal of weight generation is to reduce both r and N I1 I2 I3 I4 AND OR 18

19 Multiple Weight Sets Single weight set Advantage Small hardware overhead Disadvantages Low fault coverage Long test pattern length Multiple weight sets Advantages High fault coverage Short test pattern length Disadvantages Large hardware overhead 19

20 Response Analysis Signature : output of the compactor Aliasing A faulty circuit produces a signature that is identical to the signature of a fault free circuit Input Test Sequence T Circuit Under Test (CUT) Output Response Sequence R' Data Compression Unit Signature S(R') Correct Signature S(R 0 ) Comparator Error Indicator 20

21 Signature Analysis Initial Value : 000 Good Good Faulty Faulty Patterns Responses Patterns Responses Z1 Z2 Z3 Q1 Q2 Q3 Z1 Z2 Z3 Q1 Q2 Q

22 Aliasing Initial Value : 000 Good Good Faulty Faulty Patterns Responses Patterns Responses Z1 Z2 Z3 Q1 Q2 Q3 Z1 Z2 Z3 Q1 Q2 Q

23 MISR Normally, a single input signature analyzer is not used due to testing overhead Aliasing Probability : 1/2 n All error patterns are equally likely D 1 D 2 D 3 D n D Q D Q D Q D Q D 1 c n c n-1 c n-2 c 1 23

24 Test-per-Clock Test patterns are applied to CUT every clock cycle Additional logic and delay are required between the input FF and CUT BILBO like type: Cannot perform compression and pattern generation concurrently Entire test is scheduled and divided into sessions Complex test control unit is required 24

25 Test-per-Scan LFSR is used to serially shift in a sequence of bits into the scan chain No additional logic is inserted between the scan FF and CUT Testing time is increased considerably for long scan chain STUMP like type : Control unit does not need to distinguish between different test sessions It must count the patterns and bits 25

26 STUMPS S i P R P G S o External logic PIs Scan path Scan path CUT (S) Scan path POs External logic S i ' M I S R S o ' Self Testing Using MISR and Parallel SRSG Centralized and separate BIST Multiple scan paths Reduction in test time Lower overhead than BILBO but takes longer to apply 26

27 BILBO(Built-In Logic Block Observer) B1 B2 Mode 1 1 Normal Mode 0 1 Reset 0 0 Shift Register 1 0 Signature Analyzer Z 1 Z 2 Z n B 1 B 2 S i 0 1 M U X D Q Q D Q Q D Q Q D Q Q S 0 Q 1 Q 2 Q n-1 Q n 27

28 BILBO To test A R1 : RPG R2 : Signature Analyzer To test B R2 : RPG R1 : Signature Analyzer Register 1 Combinational Circuit A Register 2 Combinational Circuit B 28

29 Test Schedule Test session An assignment of test modes to BILBO registers to test one or more blocks Test scheduling problem Determine the minimal number of test sessions required to test all blocks of combinational logic Determine the minimal colors that can be assigned to the nodes of a graph such that no edge connects two nodes of the same color More complex when the test time for each block is considered 29

30 Phase Shift BIST L F S R Primary Inputs P S to C.P.'s Nearly Acyclic Circuit from O.P.'s S C s Primary Outputs M I S R Test Pattern Generator Circuit Under Test Output Data Compactor C.P.'s : Control Points O.P.'s : Observation Points 30

31 Multiple Seed LFSR Method of Encoding deterministic pattern to each seed Each seed is an encoded deterministic pattern Long LFSRs may be required for circuits with a large number of specified bits in each pattern Methods of Calculating BIST Seeds Using hard fault identification and ordering Deterministic test cube compression : Iterative merging compatible cubes Fast simulation based procedure Seed ROM Seed0 Seed1 Seed2 LFSR v v v v Test clock BIST Controller CUT MISR 31

32 Non-LFSR PRPG Johnson counter(twisted-ring Counter) TRC is designed by adding a MUX and an inverter to the serial input of the scan register If TRC s length n is a power of 2, then for any initial state, the TRC will always cycle through 2n distinct states To generate various patterns, reseeding method is adopted Can apply both test-per-clock and scan-bist architectures ROM counter ROM MUX 00 SCAN enable Input scan register Enable CUT Log 2 n bit binary counter k 2bit binary counter Response analyzer 32

33 Bit Fixing/Bit Flipping Most of these methods are applied to test-per-scan architecture Bit fixing experiment results High fault coverage with practical test application time Since the number of bits required to be fixed is often high, the combinational logic overhead required may be substantial Bit flipping experiment results Mapping logic generally requires lower overhead Overall pattern generation overhead can still be high because of the large external LFSR t 0 t 1... t L-1 s 0 s 1... s n-1... Bit Flipping Circuit Scan chain Sequential CUT Signature Analyzer 33

34 Embedding Deterministic Patterns Only scan-bist Modify the random sequence at a few bit positions Complete fault coverage Generated patterns depends on the state of the test control unit LFSR can be very small Area overhead is smaller than that of the 32-bit LFSR for ISCAS85 and ISCAS89 benchmark circuits Automatic synthesis procedure is possible Pattern counter p 0 p 1... BIST Control b 0 b 1... Bit counter Scan chain Short LFSR s 0 s 1... s n-1... Sequence Modifying Circuit Sequential CUT Signature Analyzer 34

35 BIST Using Core Functions Hardware overhead low and no performance degrading Processor emulates an LFSR base pseudo random test first, and after that it emulates the reseeding scheme Most of accumulator based pattern generation by simple adders, subtractors, or MAC circuits All of them generate pseudo random, or pseudo exhaustive patterns with a similar quality as LFSRs do Only one accumulator based deterministic BIST In adder based accumulator based structure, deterministic pattern generated by reseeding scheme Test response compaction Aliasing probabilities same as that of LFSR based signature analysis Method of core functions randomizing 35

36 LT-RTPG Low transition Possible decrease in fault coverage due to low toggle probability Use non-adjacent inputs for neighboring positions on the scan chain No decrease in fault coverage Good for a circuit with a large number of primary and state inputs k T FF S in Scan Chain m S out LFSR CUT r LT-RTPG 36

37 BIST Issues Test point insertion is necessary for many circuits Suppressing X generators Non-scan FF, Memory, Combinational loop, Undriven PIs, Bus contention, Violation on a wire gate Bounding X generators and making detour through space compactors On-line BIST for intermittent faults and transient faults Two-pattern generator and compactor for delay faults Hardware sharing between MBIST and LBIST Multiphase-clock, multi-clock generation Design specific BIST Pattern generator compatible with both test-per-clock and test-per-scan architecture BIST supporting partial scanned circuits 37

38 Conclusion In BIST, the test pattern generation and the output response evaluation are done on chip Requirements of a BIST scheme Easy implementation Small area overhead High fault coverage 38

IHS 3: Test of Digital Systems R.Ubar, A. Jutman, H-D. Wuttke

IHS 3: Test of Digital Systems R.Ubar, A. Jutman, H-D. Wuttke IHS 3: Test of Digital Systems R.Ubar, A. Jutman, H-D. Wuttke Integrierte Hard- und Softwaresysteme RT-Level Design data path and control path on RT-level RT level simulation Functional units (F1,..,F4)

More information

Design for Testability

Design for Testability Design for Testability Outline Ad Hoc Design for Testability Techniques Method of test points Multiplexing and demultiplexing of test points Time sharing of I/O for normal working and testing modes Partitioning

More information

Design for Testability

Design for Testability Design for Testability Outline Ad Hoc Design for Testability Techniques Method of test points Multiplexing and demultiplexing of test points Time sharing of I/O for normal working and testing modes Partitioning

More information

UMBC. At the system level, DFT includes boundary scan and analog test bus. The DFT techniques discussed focus on improving testability of SAFs.

UMBC. At the system level, DFT includes boundary scan and analog test bus. The DFT techniques discussed focus on improving testability of SAFs. Overview Design for testability(dft) makes it possible to: Assure the detection of all faults in a circuit. Reduce the cost and time associated with test development. Reduce the execution time of performing

More information

A New Multiple Weight Set Calculation Algorithm

A New Multiple Weight Set Calculation Algorithm A New Multiple Weight Set Calculation Algorithm Hong-Sik Kim Jin-kyue Lee Sungho Kang hskim@dopey.yonsei.ac.kr jklee@cowboys.yonsei.ac.kr shkang@yonsei.ac.kr Dept. of Electrical Eng. Yonsei Univ. Shinchon-dong

More information

Introduction to VLSI Testing

Introduction to VLSI Testing Introduction to 李昆忠 Kuen-Jong Lee Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan Class Problems to Think How are you going to test A 32 bit adder A 32 bit counter A 32Mb

More information

Outline - BIST. Why BIST? Memory BIST Logic BIST pattern generator & response analyzer Scan-based BIST architecture. K.T. Tim Cheng 08_bist, v1.

Outline - BIST. Why BIST? Memory BIST Logic BIST pattern generator & response analyzer Scan-based BIST architecture. K.T. Tim Cheng 08_bist, v1. 1 Outline - BIST Why BIST? Memory BIST Logic BIST pattern generator & response analyzer Scan-based BIST architecture 2 Why Built-In Self Test? TYPES On-Line Self-Test (Concurrent Checking) Functional Self-Test

More information

Built-In Self-Test. Outline

Built-In Self-Test. Outline Built-In Self-Test Outline Motivation for BIST Testing SoC with BIST Test per Scan and Test per Clock HW and SW based BIST Exhaustive and pseudoexhaustive test generation Pseudorandom test generation with

More information

Overview. 4. Built in Self-Test. 1. Introduction 2. Testability measuring 3. Design for testability. Technical University Tallinn, ESTONIA

Overview. 4. Built in Self-Test. 1. Introduction 2. Testability measuring 3. Design for testability. Technical University Tallinn, ESTONIA Overview. Introduction 2. Testability measuring 3. Design for testability 4. Built in Self-Test Built-In Self-Test Outline Motivation for BIST Testing SoC with BIST Test per Scan and Test per Clock HW

More information

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Final Examination

Department of Electrical and Computer Engineering University of Wisconsin Madison. Fall Final Examination Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 553: Testing and Testable Design of Digital Systems Fall 2013-2014 Final Examination CLOSED BOOK Kewal K. Saluja Date:

More information

Test Pattern Generator for Built-in Self-Test using Spectral Methods

Test Pattern Generator for Built-in Self-Test using Spectral Methods Test Pattern Generator for Built-in Self-Test using Spectral Methods Alok S. Doshi and Anand S. Mudlapur Auburn University 2 Dept. of Electrical and Computer Engineering, Auburn, AL, USA doshias,anand@auburn.edu

More information

On Random Pattern Testability of Cryptographic VLSI Cores

On Random Pattern Testability of Cryptographic VLSI Cores On Random Pattern Testability of Cryptographic VLSI Cores A. Schubert, W. Anheier Institut für Theoretische Elektrotechnik und Mikroelektronik (ITEM) University of Bremen P.O. Box 33 04 40, D-28334 Bremen

More information

ECE 512 Digital System Testing and Design for Testability. Model Solutions for Assignment #3

ECE 512 Digital System Testing and Design for Testability. Model Solutions for Assignment #3 ECE 512 Digital System Testing and Design for Testability Model Solutions for Assignment #3 14.1) In a fault-free instance of the circuit in Fig. 14.15, holding the input low for two clock cycles should

More information

EECS150 - Digital Design Lecture 11 - Shifters & Counters. Register Summary

EECS150 - Digital Design Lecture 11 - Shifters & Counters. Register Summary EECS50 - Digital Design Lecture - Shifters & Counters February 24, 2003 John Wawrzynek Spring 2005 EECS50 - Lec-counters Page Register Summary All registers (this semester) based on Flip-flops: q 3 q 2

More information

EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs. Cross-coupled NOR gates

EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs. Cross-coupled NOR gates EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs April 16, 2009 John Wawrzynek Spring 2009 EECS150 - Lec24-blocks Page 1 Cross-coupled NOR gates remember, If both R=0 & S=0, then

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

ECE 3060 VLSI and Advanced Digital Design. Testing

ECE 3060 VLSI and Advanced Digital Design. Testing ECE 3060 VLSI and Advanced Digital Design Testing Outline Definitions Faults and Errors Fault models and definitions Fault Detection Undetectable Faults can be used in synthesis Fault Simulation Observability

More information

Outline. EECS Components and Design Techniques for Digital Systems. Lec 18 Error Coding. In the real world. Our beautiful digital world.

Outline. EECS Components and Design Techniques for Digital Systems. Lec 18 Error Coding. In the real world. Our beautiful digital world. Outline EECS 150 - Components and esign Techniques for igital Systems Lec 18 Error Coding Errors and error models Parity and Hamming Codes (SECE) Errors in Communications LFSRs Cyclic Redundancy Check

More information

EECS 579: Logic and Fault Simulation. Simulation

EECS 579: Logic and Fault Simulation. Simulation EECS 579: Logic and Fault Simulation Simulation: Use of computer software models to verify correctness Fault Simulation: Use of simulation for fault analysis and ATPG Circuit description Input data for

More information

Built-In Test Generation for Synchronous Sequential Circuits

Built-In Test Generation for Synchronous Sequential Circuits Built-In Test Generation for Synchronous Sequential Circuits Irith Pomeranz and Sudhakar M. Reddy + Electrical and Computer Engineering Department University of Iowa Iowa City, IA 52242 Abstract We consider

More information

Outline Fault Simulation

Outline Fault Simulation K.T. Tim Cheng, 4_fault_sim, v. Outline Fault Simulation Applications of fault simulation Fault coverage vs product quality Fault simulation scenarios Fault simulation algorithms Fault sampling K.T. Tim

More information

Design of Sequential Circuits

Design of Sequential Circuits Design of Sequential Circuits Seven Steps: Construct a state diagram (showing contents of flip flop and inputs with next state) Assign letter variables to each flip flop and each input and output variable

More information

Chapter 4. Sequential Logic Circuits

Chapter 4. Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 1 2 Chapter 4 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of

More information

Analysis of clocked sequential networks

Analysis of clocked sequential networks Analysis of clocked sequential networks keywords: Mealy, Moore Consider : a sequential parity checker an 8th bit is added to each group of 7 bits such that the total # of 1 bits is odd for odd parity if

More information

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing IT 204 Section 3.0 Boolean Algebra and Digital Logic Boolean Algebra 2 Logic Equations to Truth Tables X = A. B + A. B + AB A B X 0 0 0 0 3 Sum of Products The OR operation performed on the products of

More information

EECS150 - Digital Design Lecture 21 - Design Blocks

EECS150 - Digital Design Lecture 21 - Design Blocks EECS150 - Digital Design Lecture 21 - Design Blocks April 3, 2012 John Wawrzynek Spring 2012 EECS150 - Lec21-db3 Page 1 Fixed Shifters / Rotators fixed shifters hardwire the shift amount into the circuit.

More information

EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs)

EECS150 - Digital Design Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) EECS150 - igital esign Lecture 26 Error Correction Codes, Linear Feedback Shift Registers (LFSRs) Nov 21, 2002 John Wawrzynek Fall 2002 EECS150 Lec26-ECC Page 1 Outline Error detection using parity Hamming

More information

Sample Test Paper - I

Sample Test Paper - I Scheme G Sample Test Paper - I Course Name : Computer Engineering Group Marks : 25 Hours: 1 Hrs. Q.1) Attempt any THREE: 09 Marks a) Define i) Propagation delay ii) Fan-in iii) Fan-out b) Convert the following:

More information

EECS150 - Digital Design Lecture 23 - FSMs & Counters

EECS150 - Digital Design Lecture 23 - FSMs & Counters EECS150 - Digital Design Lecture 23 - FSMs & Counters April 8, 2010 John Wawrzynek Spring 2010 EECS150 - Lec22-counters Page 1 One-hot encoding of states. One FF per state. State Encoding Why one-hot encoding?

More information

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function Question Paper Digital Electronics (EE-204-F) MDU Examination May 2015 1. (a) represent (32)10 in (i) BCD 8421 code (ii) Excess-3 code (iii) ASCII code (b) Design half adder using only NAND gates. ( c)

More information

Sequential Logic Circuits

Sequential Logic Circuits Chapter 4 Sequential Logic Circuits 4 1 The defining characteristic of a combinational circuit is that its output depends only on the current inputs applied to the circuit. The output of a sequential circuit,

More information

EEE2135 Digital Logic Design

EEE2135 Digital Logic Design EEE2135 Digital Logic Design Chapter 7. Sequential Circuits Design 서강대학교 전자공학과 1. Model of Sequential Circuits 1) Sequential vs. Combinational Circuits a. Sequential circuits: Outputs depend on both the

More information

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits EE40 Lec 15 Logic Synthesis and Sequential Logic Circuits Prof. Nathan Cheung 10/20/2009 Reading: Hambley Chapters 7.4-7.6 Karnaugh Maps: Read following before reading textbook http://www.facstaff.bucknell.edu/mastascu/elessonshtml/logic/logic3.html

More information

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10)

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) ELEC 2200-002 Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering

More information

Relating Entropy Theory to Test Data Compression

Relating Entropy Theory to Test Data Compression Relating Entropy Theory to Test Data Compression Kedarnath J. Balakrishnan and Nur A. Touba Computer Engineering Research Center University of Texas, Austin, TX 7872 Email: {kjbala, touba}@ece.utexas.edu

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

EECS150 - Digital Design Lecture 16 Counters. Announcements

EECS150 - Digital Design Lecture 16 Counters. Announcements EECS150 - Digital Design Lecture 16 Counters October 20, 2011 Elad Alon Electrical Engineering and Computer Sciences University of California, Berkeley http://www-inst.eecs.berkeley.edu/~cs150 Fall 2011

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memory Components Integrated Circuits Digital Computers 2 LOGIC GATES

More information

SIGNATURE ROLLBACK WITH EXTREME COMPACTION A TECHNIQUE FOR TESTING ROBUST VLSI CIRCUITS WITH REDUCED HARDWARE OVERHEAD

SIGNATURE ROLLBACK WITH EXTREME COMPACTION A TECHNIQUE FOR TESTING ROBUST VLSI CIRCUITS WITH REDUCED HARDWARE OVERHEAD Annales Univ. Sci. Budapest., Sect. Comp. 39 (2013) 161 180 SIGNATURE ROLLBACK WITH EXTREME COMPACTION A TECHNIQUE FOR TESTING ROBUST VLSI CIRCUITS WITH REDUCED HARDWARE OVERHEAD Thomas Indlekofer (Paderborn,

More information

VLSI Design Verification and Test Simulation CMPE 646. Specification. Design(netlist) True-value Simulator

VLSI Design Verification and Test Simulation CMPE 646. Specification. Design(netlist) True-value Simulator Design Verification Simulation used for ) design verification: verify the correctness of the design and 2) test verification. Design verification: Response analysis Specification Design(netlist) Critical

More information

EECS150 - Digital Design Lecture 25 Shifters and Counters. Recap

EECS150 - Digital Design Lecture 25 Shifters and Counters. Recap EECS150 - Digital Design Lecture 25 Shifters and Counters Nov. 21, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John

More information

Testability. Shaahin Hessabi. Sharif University of Technology. Adapted from the presentation prepared by book authors.

Testability. Shaahin Hessabi. Sharif University of Technology. Adapted from the presentation prepared by book authors. Testability Lecture 6: Logic Simulation Shaahin Hessabi Department of Computer Engineering Sharif University of Technology Adapted from the presentation prepared by book authors Slide 1 of 27 Outline What

More information

EECS 579: Test Generation 4. Test Generation System

EECS 579: Test Generation 4. Test Generation System EECS 579: Test Generation 4 Other Combinational ATPG Algorithms SOCRATES Structure-Oriented Cost-Reducing Automatic TESt pattern generation [Schultz et al. 988] An ATPG system not just a test generation

More information

Programmable Logic Devices II

Programmable Logic Devices II Lecture 04: Efficient Design of Sequential Circuits Prof. Arliones Hoeller arliones.hoeller@ifsc.edu.br Prof. Marcos Moecke moecke@ifsc.edu.br 1 / 94 Reference These slides are based on the material made

More information

EECS150 - Digital Design Lecture 26 - Faults and Error Correction. Types of Faults in Digital Designs

EECS150 - Digital Design Lecture 26 - Faults and Error Correction. Types of Faults in Digital Designs EECS150 - Digital Design Lecture 26 - Faults and Error Correction April 25, 2013 John Wawrzynek 1 Types of Faults in Digital Designs Design Bugs (function, timing, power draw) detected and corrected at

More information

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007 EECS 150 - Components and Design Techniques for Digital Systems FSMs 9/11/2007 Sarah Bird Electrical Engineering and Computer Sciences University of California, Berkeley Slides borrowed from David Culler

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT I : BOOLEAN ALGEBRA AND LOGIC GATES PART - A (2 MARKS) Number

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

Review: Designing with FSM. EECS Components and Design Techniques for Digital Systems. Lec 09 Counters Outline.

Review: Designing with FSM. EECS Components and Design Techniques for Digital Systems. Lec 09 Counters Outline. Review: esigning with FSM EECS 150 - Components and esign Techniques for igital Systems Lec 09 Counters 9-28-0 avid Culler Electrical Engineering and Computer Sciences University of California, Berkeley

More information

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1>

Chapter 5. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 5 <1> Chapter 5 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 5 Chapter 5 :: Topics Introduction Arithmetic Circuits umber Systems Sequential Building

More information

Arithme(c logic units and memory

Arithme(c logic units and memory Arithme(c logic units and memory CSCI 255: Introduc/on to Embedded Systems Keith Vertanen Copyright 2011 Layers of abstrac-on abstrac(on building blocks examples computer components Macbook Pro components

More information

Digital Signal 2 N Most Significant Bit (MSB) Least. Bit (LSB)

Digital Signal 2 N Most Significant Bit (MSB) Least. Bit (LSB) 1 Digital Signal Binary or two stages: 0 (Low voltage 0-3 V) 1 (High voltage 4-5 V) Binary digit is called bit. Group of bits is called word. 8-bit group is called byte. For N-bit base-2 number = 2 N levels

More information

Hardware testing and design for testability. EE 3610 Digital Systems

Hardware testing and design for testability. EE 3610 Digital Systems EE 3610: Digital Systems 1 Hardware testing and design for testability Introduction A Digital System requires testing before and after it is manufactured 2 Level 1: behavioral modeling and test benches

More information

COE 202: Digital Logic Design Sequential Circuits Part 4. Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:

COE 202: Digital Logic Design Sequential Circuits Part 4. Dr. Ahmad Almulhem   ahmadsm AT kfupm Phone: Office: COE 202: Digital Logic Design Sequential Circuits Part 4 Dr. Ahmad Almulhem Email: ahmadsm AT kfupm Phone: 860-7554 Office: 22-324 Objectives Registers Counters Registers 0 1 n-1 A register is a group

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Simple Processor CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Digital

More information

One-Dimensional Linear Hybrid Cellular Automata: Their Synthesis, Properties and Applications to Digital Circuits Testing

One-Dimensional Linear Hybrid Cellular Automata: Their Synthesis, Properties and Applications to Digital Circuits Testing One-Dimensional Linear Hybrid Cellular Automata: Their Synthesis, Properties and Applications to Digital Circuits Testing M. Serra, K. Cattell, S. Zhang, J.C. Muzio, D.M. Miller Dept. of Computer Science

More information

Digital Electronics Circuits 2017

Digital Electronics Circuits 2017 JSS SCIENCE AND TECHNOLOGY UNIVERSITY Digital Electronics Circuits (EC37L) Lab in-charge: Dr. Shankraiah Course outcomes: After the completion of laboratory the student will be able to, 1. Simplify, design

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

Digital Electronic Meters

Digital Electronic Meters Digital Electronic Meters EIE 240 Electrical and Electronic Measurement May 1, 2015 1 Digital Signal Binary or two stages: 0 (Low voltage 0-3 V) 1 (High voltage 4-5 V) Binary digit is called bit. Group

More information

Combinational Logic Design Combinational Functions and Circuits

Combinational Logic Design Combinational Functions and Circuits Combinational Logic Design Combinational Functions and Circuits Overview Combinational Circuits Design Procedure Generic Example Example with don t cares: BCD-to-SevenSegment converter Binary Decoders

More information

EECS150 - Digital Design Lecture 18 - Counters

EECS150 - Digital Design Lecture 18 - Counters EECS150 - Digital Design Lecture 18 - Counters October 24, 2002 John Wawrzynek Fall 2002 EECS150 - Lec18-counters Page 1 Counters Special sequential circuits (FSMs) that sequence though a set outputs.

More information

EECS150 - Digital Design Lecture 18 - Counters

EECS150 - Digital Design Lecture 18 - Counters EECS50 - Digital Design Lecture 8 - Counters October 24, 2002 John Wawrzynek Fall 2002 EECS50 - Lec8-counters Page Counters Special sequential circuits (FSMs) that sequence though a set outputs. Examples:

More information

Shift Register Counters

Shift Register Counters Shift Register Counters Shift register counter: a shift register with the serial output connected back to the serial input. They are classified as counters because they give a specified sequence of states.

More information

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS 1) Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X -Y and (b) Y - X using 2's complements. a) X = 1010100

More information

Latches. October 13, 2003 Latches 1

Latches. October 13, 2003 Latches 1 Latches The second part of CS231 focuses on sequential circuits, where we add memory to the hardware that we ve already seen. Our schedule will be very similar to before: We first show how primitive memory

More information

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3 Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 Basic Logic Gates XOR CMPE12 Summer 2009 02-2 Truth Table The most basic representation of a logic function Lists the output for all possible

More information

Linear Feedback Shift Registers (LFSRs) 4-bit LFSR

Linear Feedback Shift Registers (LFSRs) 4-bit LFSR Linear Feedback Shift Registers (LFSRs) These are n-bit counters exhibiting pseudo-random behavior. Built from simple shift-registers with a small number of xor gates. Used for: random number generation

More information

Chapter 7. Sequential Circuits Registers, Counters, RAM

Chapter 7. Sequential Circuits Registers, Counters, RAM Chapter 7. Sequential Circuits Registers, Counters, RAM Register - a group of binary storage elements suitable for holding binary info A group of FFs constitutes a register Commonly used as temporary storage

More information

PGT104 Digital Electronics. PGT104 Digital Electronics

PGT104 Digital Electronics. PGT104 Digital Electronics 1 Part 6 Sequential Logic ircuits Disclaimer: Most of the contents (if not all) are extracted from resources available for Digital Fundamentals 10 th Edition 2 Basic Shift Register Operations A shift register

More information

DE58/DC58 LOGIC DESIGN DEC 2014

DE58/DC58 LOGIC DESIGN DEC 2014 Q.2 a. In a base-5 number system, 3 digit representations is used. Find out (i) Number of distinct quantities that can be represented.(ii) Representation of highest decimal number in base-5. Since, r=5

More information

Models for representing sequential circuits

Models for representing sequential circuits Sequential Circuits Models for representing sequential circuits Finite-state machines (Moore and Mealy) Representation of memory (states) Changes in state (transitions) Design procedure State diagrams

More information

Logic. Combinational. inputs. outputs. the result. system can

Logic. Combinational. inputs. outputs. the result. system can Digital Electronics Combinational Logic Functions Digital logic circuits can be classified as either combinational or sequential circuits. A combinational circuit is one where the output at any time depends

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Following the slides of Dr. Ahmed H. Madian Lecture 10 محرم 1439 ه Winter

More information

VLSI Design I. Defect Mechanisms and Fault Models

VLSI Design I. Defect Mechanisms and Fault Models VLSI Design I Defect Mechanisms and Fault Models He s dead Jim... Overview Defects Fault models Goal: You know the difference between design and fabrication defects. You know sources of defects and you

More information

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU 534 007 DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DIGITAL

More information

WITH increasing complexity in systems design from increased

WITH increasing complexity in systems design from increased 150 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 51, NO. 1, FEBRUARY 2001 Data Compression in Space Under Generalized Mergeability Based on Concepts of Cover Table and Frequency Ordering

More information

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution . (a) (i) ( B C 5) H (A 2 B D) H S.E. Sem. III [CMPN] Digital Logic Design and Analysis Prelim Question Paper Solution ( B C 5) H (A 2 B D) H = (FFFF 698) H (ii) (2.3) 4 + (22.3) 4 2 2. 3 2. 3 2 3. 2 (2.3)

More information

課程名稱 : 數位邏輯設計 P-1/ /6/11

課程名稱 : 數位邏輯設計 P-1/ /6/11 課程名稱 : 數位邏輯設計 P-1/55 2012/6/11 Textbook: Digital Design, 4 th. Edition M. Morris Mano and Michael D. Ciletti Prentice-Hall, Inc. 教師 : 蘇慶龍 INSTRUCTOR : CHING-LUNG SU E-mail: kevinsu@yuntech.edu.tw Chapter

More information

Review: Designing with FSM. EECS Components and Design Techniques for Digital Systems. Lec09 Counters Outline.

Review: Designing with FSM. EECS Components and Design Techniques for Digital Systems. Lec09 Counters Outline. Review: Designing with FSM EECS 150 - Components and Design Techniques for Digital Systems Lec09 Counters 9-28-04 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

More information

S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques

S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 100 Q.1(a) Attempt any SIX of the following : [12]

More information

Adders allow computers to add numbers 2-bit ripple-carry adder

Adders allow computers to add numbers 2-bit ripple-carry adder Lecture 12 Logistics HW was due yesterday HW5 was out yesterday (due next Wednesday) Feedback: thank you! Things to work on: ig picture, ook chapters, Exam comments Last lecture dders Today Clarification

More information

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science Sequential Logic Rab Nawaz Khan Jadoon DCS COMSATS Institute of Information Technology Lecturer COMSATS Lahore Pakistan Digital Logic and Computer Design Sequential Logic Combinational circuits with memory

More information

The Design Procedure. Output Equation Determination - Derive output equations from the state table

The Design Procedure. Output Equation Determination - Derive output equations from the state table The Design Procedure Specification Formulation - Obtain a state diagram or state table State Assignment - Assign binary codes to the states Flip-Flop Input Equation Determination - Select flipflop types

More information

Philadelphia University Student Name: Student Number:

Philadelphia University Student Name: Student Number: Philadelphia University Student Name: Student Number: Faculty of Engineering Serial Number: Final Exam, First Semester: 2017/2018 Dept. of Computer Engineering Course Title: Logic Circuits Date: 29/01/2018

More information

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of

WORKBOOK. Try Yourself Questions. Electrical Engineering Digital Electronics. Detailed Explanations of 27 WORKBOOK Detailed Eplanations of Try Yourself Questions Electrical Engineering Digital Electronics Number Systems and Codes T : Solution Converting into decimal number system 2 + 3 + 5 + 8 2 + 4 8 +

More information

Digital Logic Appendix A

Digital Logic Appendix A Digital Logic Appendix A Boolean Algebra Gates Combinatorial Circuits Sequential Circuits 1 Boolean Algebra George Boole ideas 1854 Claude Shannon, apply to circuit design, 1938 Describe digital circuitry

More information

EECS150 - Digital Design Lecture 26 Faults and Error Correction. Recap

EECS150 - Digital Design Lecture 26 Faults and Error Correction. Recap EECS150 - Digital Design Lecture 26 Faults and Error Correction Nov. 26, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof.

More information

MOSIS REPORT. Spring MOSIS Report 1. MOSIS Report 2. MOSIS Report 3

MOSIS REPORT. Spring MOSIS Report 1. MOSIS Report 2. MOSIS Report 3 MOSIS REPORT Spring 2010 MOSIS Report 1 MOSIS Report 2 MOSIS Report 3 MOSIS Report 1 Design of 4-bit counter using J-K flip flop I. Objective The purpose of this project is to design one 4-bit counter

More information

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Principles of Digital Techniques

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Principles of Digital Techniques MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Principles of Digital Techniques Subject Code: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word

More information

VLSI System Testing. Testability Measures

VLSI System Testing. Testability Measures ECE 538 VLSI System Testing Krish Chakrabarty Testability Measures ECE 538 Krish Chakrabarty 1 Testability Measures Origins Controllability and observability SCOAP measures Sources of correlation error

More information

Introduction EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 6: Sequential Logic 3 Registers & Counters 5/9/2010

Introduction EE 224: INTRODUCTION TO DIGITAL CIRCUITS & COMPUTER DESIGN. Lecture 6: Sequential Logic 3 Registers & Counters 5/9/2010 EE 224: INTROUCTION TO IGITAL CIRCUITS & COMPUTER ESIGN Lecture 6: Sequential Logic 3 Registers & Counters 05/10/2010 Avinash Kodi, kodi@ohio.edu Introduction 2 A Flip-Flop stores one bit of information

More information

Binary Decision Diagrams

Binary Decision Diagrams Binary Decision Diagrams Sungho Kang Yonsei University Outline Representing Logic Function Design Considerations for a BDD package Algorithms 2 Why BDDs BDDs are Canonical (each Boolean function has its

More information

Chapter 2. Review of Digital Systems Design

Chapter 2. Review of Digital Systems Design x 2-4 = 42.625. Chapter 2 Review of Digital Systems Design Numbering Systems Decimal number may be expressed as powers of 10. For example, consider a six digit decimal number 987654, which can be represented

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each) Subject Code: 17333 Model Answer Page 1/ 27 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

EECS150 - Digital Design Lecture 17 - Sequential Circuits 3 (Counters)

EECS150 - Digital Design Lecture 17 - Sequential Circuits 3 (Counters) EECS150 - Digital Design Lecture 17 - Sequential Circuits 3 (Counters) March 19&21, 2002 John Wawrzynek Spring 2002 EECS150 - Lec13-seq3 version 2 Page 1 Counters Special sequential circuits (FSMs) that

More information

CS61C : Machine Structures

CS61C : Machine Structures CS 61C L15 Blocks (1) inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #15: Combinational Logic Blocks Outline CL Blocks Latches & Flip Flops A Closer Look 2005-07-14 Andy Carle CS

More information

ALU A functional unit

ALU A functional unit ALU A functional unit that performs arithmetic operations such as ADD, SUB, MPY logical operations such as AND, OR, XOR, NOT on given data types: 8-,16-,32-, or 64-bit values A n-1 A n-2... A 1 A 0 B n-1

More information

EECS Components and Design Techniques for Digital Systems. Lec 26 CRCs, LFSRs (and a little power)

EECS Components and Design Techniques for Digital Systems. Lec 26 CRCs, LFSRs (and a little power) EECS 150 - Components and esign Techniques for igital Systems Lec 26 CRCs, LFSRs (and a little power) avid Culler Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~culler

More information

ECE 407 Computer Aided Design for Electronic Systems. Simulation. Instructor: Maria K. Michael. Overview

ECE 407 Computer Aided Design for Electronic Systems. Simulation. Instructor: Maria K. Michael. Overview 407 Computer Aided Design for Electronic Systems Simulation Instructor: Maria K. Michael Overview What is simulation? Design verification Modeling Levels Modeling circuits for simulation True-value simulation

More information

PARITY BASED FAULT DETECTION TECHNIQUES FOR S-BOX/ INV S-BOX ADVANCED ENCRYPTION SYSTEM

PARITY BASED FAULT DETECTION TECHNIQUES FOR S-BOX/ INV S-BOX ADVANCED ENCRYPTION SYSTEM PARITY BASED FAULT DETECTION TECHNIQUES FOR S-BOX/ INV S-BOX ADVANCED ENCRYPTION SYSTEM Nabihah Ahmad Department of Electronic Engineering, Faculty of Electrical and Electronic Engineering, Universiti

More information