Combinational vs. Sequential. Summary of Combinational Logic. Combinational device/circuit: any circuit built using the basic gates Expressed as

Size: px
Start display at page:

Download "Combinational vs. Sequential. Summary of Combinational Logic. Combinational device/circuit: any circuit built using the basic gates Expressed as"

Transcription

1 Summary of Combinational Logic : Computer Architecture I Instructor: Prof. Bhagi Narahari Dept. of Computer Science Course URL: Combinational device/circuit: any circuit built using the basic gates Expressed as Truth table Digital circuit Boolean function Any boolean function can be expressed as two level function Minimization procedure: Karnaugh Map Try to minimize the number of gates, and inputs to gates, in a two level circuit Combinational vs. Sequential Combinational Circuit always gives the same output for a given set of inputs ex: adder always generates sum and carry, regardless of previous inputs Sequential Circuit stores information output t depends d on stored information (state) t plus input so a given input might produce different outputs, depending on the stored information example: vending machine Current total increases when you insert coins output depends on previous state useful for building memory elements and state machines Sequential Logic Build a device, using combinational logic devices, to store a value RS Latch (also called SR Latch) concept of memory Methodology behind design of sequential logic circuits Finite State Machines Example of Vending machine Combine sequential and combinational logic devices to assemble a simple processor!

2 Sequential Circuits Storage Elements We need to design a device capable of storing information Store a bit value Build it using the devices we have thus far Use feedback circuit To be useful, sequential device needs mechanism for setting its state R-S Latch: Output = previous value Or Set output to new value (0 or ), and hold this new value till next write into the device Stable circuit Feedback Circuits Output point of circuit retains value indefinitely Unstable circuit State that remains constant only for a duration of a few gate delays Feedback Circuits To retain their state values, sequential circuits rely on feedback. Feedback in digital circuits occurs when an output is looped back to the input. A simple example of this concept is shown below. If Q is 0 it will always be 0, if it is, it will always be. Why? Feedback Circuits What if we had three gates in the circuit?

3 R-S Latch: Simple Storage Element R-S Latch Summary R is used to reset or clear the element set it to zero. S is used to set the element set it to one If both R and S are one, out could be either zero or one. quiescent state -- holds its previous value note: if a is, b is 0, and vice versa 0 0 R = S = hold current value in latch S = 0, R= set value to R = 0, S = set value to 0 R = S = 0 both outputs equal one final state determined by electrical properties of gates Don t do it! Clocked Flip-Flops/Circuits Subsystem in a computer consists of a large number of combinational and sequential devices Each sequential device is like an SR latch which is in one of two states As machine executes its cycle, the states of all sequential devices change with time To control large collection of devices in an orderly (synchronized) fashion, machine maintains a clock Requires all devices to change their states at the same time Clock generates sequence of pulses Clock As the name implies, sequential logic circuits require a means by which events can be sequenced. State changes are controlled by clocks. A clock is a special circuit that sends electrical pulses through a circuit. Clocks produce electrical waveforms such as: 3

4 Clocked Circuits State changes occur in sequential circuits only when the clock ticks. Circuits can change state on (a)) the rising edge or falling edge edge triggered circuits, or (b) when the clock pulse reaches its highest voltage level level triggered. Time between pulses is the period of the clock Frequency = /period Clocked RS Latch Flip Flop Every sequential device has a Clock (CK) input in addition to its other inputs Device designed to respond to inputs only during a clock pulse Where do we add clock to the RS Latch? Clocked RS Latch = RS Flip Flop Shield NAND gates (latch) from effect of S,R except when clock is high When clk is low the inputs to the NAND gates are both regardless of S,R No change in latch output value When clk is high, values of R and S pass to the NAND gates i.e., latch Clocked Latches Flip Flop SR Flip Flop: Reverse of RS?? More common latch is the SR latch Have input as undefined 00 holds state Set S= to set latch to Set R= to set latch to 0 Replace NAND gates by NOR gates! clock

5 SR Latch/Flip-flop SR Latch Behaviour the most basic sequential logic components, the SR flip-flop. The SR stands for set/reset. The behavior of an SR flip flop is described by a characteristic table. Q(t) means the value of the output at time t. Q(t+) is the value of Q after the next clock pulse. SR Flip Flop The SR flip-flop actually has three inputs: S, R, and its current output, Q. Thus, we can construct a truth table for this circuit, as shown at the right. Notice the two undefined values. When both S and R are, the SR flip-flop is unstable. Concept of Memory and Write to Memory We want ONE input to the latch We want to control when to update value in the latch (output) When write is enabled, we want Output = Value of Input Else output = old value of output

6 Gated D-Latch Two inputs: D (data) and WE (write enable) when WE =, latch is set to value of D S = NOT(D), R = D when WE = 0, latch holds previous value S = R = D Flip Flop Behaviour Typical modeling of D flip flop simplifies things Input D= then at clock pulse, output of flip flop becomes Input D=0 then at clock pulse, output becomes 0 D Flip Flop The D flip-flop is the fundamental circuit of computer memory. D flip-flops are usually illustrated using the block diagram shown below. Modify latch to make it a clocked flip flop The characteristic table for the D flip-flop flop is shown at the right. Next Storage Devices Temporary storage in a computer? Where are variables stored before being sent to the arithmetic unit for operations on them? Register Can we build an n-bit register using latches? What about main memory Disk Later 6

7 Register A register stores a multi-bit value. We use a collection of D-latches, all controlled by a common WE. When WE=, n-bit value D is written to register. Representing Multi-bit Values Number bits from right (0) to left (n-) just a convention -- could be left to right, but must be consistent Use brackets to denote range: D[l:r] denotes bit l to bit r, from left to right A = A[:9] = 000 A[:0] = 0 May also see A<:9>, especially in hardware block diagrams. Memory We know how to store m-bit number in a register How about many m-bit numbers? Bank of registers? How to fetch a specific m-bit number? addressing Memory Now that we know how to store bits, we can build a memory a logical k m array of stored bits. Address Space: number of locations (usually a power of ) k = n locations Addressability: number of bits per location (e.g., byte-addressable) m bits 7

8 Memory Memory Looking from the outside, what do we need? Looking from the outside, what do we need? ADDR IN WE OUT Memory - Memory - A large number of addressable fixed size locations Address Space n bits allow the addressing of n memory locations. Example: bits can address =,777, locations (i.e. M locations). If each location holds byte (= 8 bits) then the memory is MB. If each location holds one word (3 bits = bytes) then it is 6 MB. Addressability Computers are either byte or word addressable - i.e. each memory location holds either 8 bits ( byte), or a full standard word for that computer ( bits for the LC-3, more typically 3 bits, though h now many machines use 6 bit words). Normally, a whole word is written and read at a time: If the computer is word addressable, this is simply a single address location. If the computer is byte addressable, and uses a multi-byte word, then the word address is conventionally either that of its most significant byte (big endian machines) or of its least significant byte (little endian machines). 8

9 Memory Given address, fetch contents at that address Select or enable one of many locations ADDR WE IN OUT Each bit is a gated D-latch Each location consists of w bits (here w = ) w = 8 if the memory is byte addressable Addressing n locations means log n address bits (here bits => locations) decoder circuit translates address into of n locations Building a Memory WE A[:0] D Memory Example Reading a location in memory A by 3 bits memory: two address lines: A[:0] three data lines: D[:0] one control line: WE One gated D-latch 9

10 More Memory Details Course Adminis-trivia This is no longer the way actual memory is implemented. fewer transistors, much more dense, relies on electrical properties But the logical structure is very similar. address decoder word select line word write enable Two basic kinds of RAM (Random Access Memory) Static RAM (SRAM) fast, maintains data as long as power applied Dynamic RAM (DRAM) slower but denser, bit storage decays must be periodically refreshed Also, non-volatile memories: ROM, PROM, flash, Lab this week and next is Project completion Project code Dlc code checker tells you if rules violated and if there is a syntax error Review sequential logic HW3, Teamwork 3, Teamwork posted Solutions to HW, and Quiz, posted Work on Teamhomework in class next class Quiz 3 next Tuesday Exam : October 7 Reading: You should have completed reading Chapters,,3 Look up Univ. Maryland notes linked from lectures webpage Summary of Digital Logic Design of Sequential Logic Circuits Combinational logic Storage elements R-S Latches and D-latch Concept of memory: address space and addressability Sequential circuits next! Recall the vending machine example Progress from state (current total) to new state (new total) 0

11 Compare and Contrast A Vending Machine Combinational Logic Circuits Make decisions Same inputs always produce same output Depends on what is happening now Sequential Logic Circuits Make decisions and store information Output depends on inputs AND state Depends on what has happened in the past as well as what is happening now Input valid coins: Q (cents) D (0) or N () Keep track of current total Is it 7 cents or more? When it reaches 7 or more: Generate output States of the machine? Finite State Machines State Machine The behavior of sequential circuits can be expressed using characteristic tables or finite state machines (FSMs). FSMs consist of a set of nodes that hold the states of the machine and a set of arcs that connect the states. Directed graph to represent a FSM type of sequential circuit Combines combinational logic with storage Remembers state, and changes output (and state) based on inputs and current state State Machine Moore and Mealy machines are two types of FSMs that are equivalent. They differ only in how they express the outputs of the machine. Moore machines place outputs on each node/state Associate an output with each state Mealy machines present their outputs on the transitions. Inputs Combinational Logic Circuit Storage Elements Outputs

12 Sequential Logic Circuits - State The concept of state the state of a system is a snapshot of all relevant elements at a moment in time. a given system will often have only a finite number of possible states. For many systems, we can define the rule which determines under what conditions a system can move from one state to another. Example the game of tic-tac-toe has only a certain number of possible dispositions of Xs and Os on the 3x3 grid. A given game of tic-tac-toe will progress through a subset of these possible states (until someone wins) - i.e. it traverses a specific path through state space, one move at a time. Sequential Logic Circuits Finite State Machines State Machine Inputs Combinational Logic Circuit Storage Elements Outputs The output is a function of the current input and the previous state It is computed by the combinational logic circuit The state is stored in the storage element The new state is also a function of the previous state and the current input This can work only if we make transitions from one state to another at well-defined times - this is why they are called sequential circuits. Many systems meet the following five conditions: A finite number of states A finite number of external inputs A finite number of external outputs An explicit specification of all allowed state transitions An explicit specification of the rules for each external output value a microprocessor is a perfect candidate for description as a FSM.

13 The Clock Storage: Master-Slave Flipflop Frequently, a clock circuit triggers transition from one state to the next. A pair of gated D-latches, to isolate next state from current state. 0 One Cycle time At the beginning of each clock cycle, state machine makes a transition, based on the current state and the external inputs. Not always required. During st phase (clock=), previously-computed state becomes current state and is sent to the logic circuit. During nd phase (clock=0), next state, computed by logic circuit, is stored in Latch A. Storage Example: Blinking Traffic Sign Each master-slave flip-flop stores one state bit. The number of storage elements (flip-flops) needed is determined by the number of states (and the representation of each state). Each bit can be 0 or = states N bits can represent N states Example: If a FSM has states, then the circuit needs log = storage elements. Fewer the states, less hardware needed Concept of Minimization of States for a given FSM 3 DANGER MOVE RIGHT 3

14 3 3 DANGER DANGER MOVE RIGHT MOVE RIGHT 3 3 DANGER DANGER MOVE RIGHT MOVE RIGHT

15 3 3 DANGER DANGER MOVE RIGHT MOVE RIGHT 3 3 DANGER DANGER MOVE RIGHT MOVE RIGHT

16 Example: Traffic Sign Traffic Sign State Diagram A blinking traffic sign: How many states states No lights on & on,, 3, & on,, 3,, & on (repeat as long as switch is turned on) How many bits to represent the states S S 0 With S S 0 values: 00, 0, 0, State bit S State bit S0 Switch off Switch on Outputs Transition on each clock cycle. Note we really have 3 groups of lights to be controlled = 3 control lines X,Y,Z Group : Lights and ; controlled by Z If Z= then Group lights ( and ) are switched on Group : lights 3 & ; controlled by Y Group 3: Light ; controlled by X 0 00 all off 0 0 grp on 0 0 0, all on grp, on

17 When is group on? Finite State Machine Example - in states 0, 0 and - but only when the switch IN is on! Logic expressions for X,Y,Z Depends on S 0 and S and Input is on If Input is off then X,Y,Z are al 0 can you come up with a logic expression for next state values of fs 0 and S? Depends on current values of S 0 and S and Input is on Input off then both bits are set to 0 since next state is 00 Next state value of S0 denoted S 0 = if current state is 00 or current state 0 and In= When do we switch to the next state? the two bits of S[:0] are updated at every clock cycle we have to make sure that the new state does not propagate to the combinational circuit input until the next clock cycle. Outputs (depend only on state: S S 0 ) S S 0 Z Y X Traffic Sign Truth Tables Lights and Lights 3 and Light Next State: S S 0 (depend on state and input) Whenever In=0, next state is 00. Switch In S S 0 S S 0 0 X X Traffic Sign Logic Z= (S S 0 + S S 0 + S S 0 ).In Y = (S S 0 + S S 0 ).In X = (S S 0 ).In Master-slave flipflop 7

18 From Logic to Processor Data Path LC-3 Data Path The data path of a computer is all the logic used to process information. Eg. data path of the LC-3. Combinational Logic Combinational Logic Decoders -- convert instructions into control signals Multiplexers -- select inputs and outputs ALU (Arithmetic and Logic Unit) -- operations on data Sequential Logic State machine -- coordinate control signals and data movement Registers and latches -- storage elements Storage State Machine MARMUX [0:0] [8:0] [:0] ZEXT [7:0] SEXT SEXT SEXT MARMUX ADDRMUX LD.IR gatemarmux ADDRMUX IR 0 [:0] + SEXT PCMUX LD.PC ADDRMUX N Z P LOGIC PC PCMUX LD.CC R gatepc + ADDRMUX FINITE STATE MACHINE DR LD.REG 3 SR 3 REG FILE SR SR OUT OUT SRMUX gatealu B A ALU 3 SR What Next? Next topic: The von Neumann model of computer architecture Basic components How instructions are processed The LC3 computer and instruction set GateMDR LD.MDR MDR LD.MAR MEMORY MAR INPUT OUTPUT MEM.EN, R.W 8

19 Recall: what are Computers meant to do? We will be solving problems that are describable in English (or Greek or French or Hindi or Chinese or...) and using a box filled with electrons and magnetism to accomplish the task. This is accomplished using a system of well defined (sometimes) transformations that have been developed over the last 0+ years. Problem Transformation - levels of abstraction The desired behavior: the application Natural Language Algorithm Program Machine Architecture Micro-architecture The building blocks: electronic devices Logic Circuits Devices Putting it all together The goal: Turn a theoretical device - Turing s Universal Computational Machine - into an actual computer... interacting with data and instructions from the outside world, and producing output data. Smart building blocks: We have at our disposal a powerful collection of combinational and sequential logic devices. Now we need a master plan... 9

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Fall 2012 Prof. Guri Sohi Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison

Introduction to Computer Engineering. CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Introduction to Computer Engineering CS/ECE 252, Spring 2017 Rahul Nayar Computer Sciences Department University of Wisconsin Madison Chapter 3 Digital Logic Structures Slides based on set prepared by

More information

Chapter 3 Digital Logic Structures

Chapter 3 Digital Logic Structures Chapter 3 Digital Logic Structures Original slides from Gregory Byrd, North Carolina State University Modified by C. Wilcox, M. Strout, Y. Malaiya Colorado State University Computing Layers Problems Algorithms

More information

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3)

CMPE12 - Notes chapter 1. Digital Logic. (Textbook Chapter 3) CMPE12 - Notes chapter 1 Digital Logic (Textbook Chapter 3) Transistor: Building Block of Computers Microprocessors contain TONS of transistors Intel Montecito (2005): 1.72 billion Intel Pentium 4 (2000):

More information

ALU A functional unit

ALU A functional unit ALU A functional unit that performs arithmetic operations such as ADD, SUB, MPY logical operations such as AND, OR, XOR, NOT on given data types: 8-,16-,32-, or 64-bit values A n-1 A n-2... A 1 A 0 B n-1

More information

Topic 8: Sequential Circuits

Topic 8: Sequential Circuits Topic 8: Sequential Circuits Readings : Patterson & Hennesy, Appendix B.4 - B.6 Goals Basic Principles behind Memory Elements Clocks Applications of sequential circuits Introduction to the concept of the

More information

Chapter 7. Sequential Circuits Registers, Counters, RAM

Chapter 7. Sequential Circuits Registers, Counters, RAM Chapter 7. Sequential Circuits Registers, Counters, RAM Register - a group of binary storage elements suitable for holding binary info A group of FFs constitutes a register Commonly used as temporary storage

More information

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3 Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 Basic Logic Gates XOR CMPE12 Summer 2009 02-2 Truth Table The most basic representation of a logic function Lists the output for all possible

More information

Department of Electrical and Computer Engineering The University of Texas at Austin

Department of Electrical and Computer Engineering The University of Texas at Austin Department of Electrical and Computer Engineering The University of Texas at Austin EE 360N, Fall 2004 Yale Patt, Instructor Aater Suleman, Huzefa Sanjeliwala, Dam Sunwoo, TAs Exam 1, October 6, 2004 Name:

More information

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing IT 204 Section 3.0 Boolean Algebra and Digital Logic Boolean Algebra 2 Logic Equations to Truth Tables X = A. B + A. B + AB A B X 0 0 0 0 3 Sum of Products The OR operation performed on the products of

More information

Lecture 7: Logic design. Combinational logic circuits

Lecture 7: Logic design. Combinational logic circuits /24/28 Lecture 7: Logic design Binary digital circuits: Two voltage levels: and (ground and supply voltage) Built from transistors used as on/off switches Analog circuits not very suitable for generic

More information

Lecture 14: State Tables, Diagrams, Latches, and Flip Flop

Lecture 14: State Tables, Diagrams, Latches, and Flip Flop EE210: Switching Systems Lecture 14: State Tables, Diagrams, Latches, and Flip Flop Prof. YingLi Tian Nov. 6, 2017 Department of Electrical Engineering The City College of New York The City University

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 7 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 7 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 7 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering SEQUENTIAL CIRCUITS: LATCHES Overview Circuits require memory to store intermediate

More information

Latches. October 13, 2003 Latches 1

Latches. October 13, 2003 Latches 1 Latches The second part of CS231 focuses on sequential circuits, where we add memory to the hardware that we ve already seen. Our schedule will be very similar to before: We first show how primitive memory

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2017 UNIVERSITY OF BOLTON TW35 SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER 2-2016/2017 INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS MODULE NO: EEE5002

More information

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering

ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN. Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Week 9 Dr. Srinivas Shakkottai Dept. of Electrical and Computer Engineering TIMING ANALYSIS Overview Circuits do not respond instantaneously to input changes

More information

UNIVERSITY OF WISCONSIN MADISON

UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Prof. Gurindar Sohi TAs: Minsub Shin, Lisa Ossian, Sujith Surendran Midterm Examination 2 In Class (50 minutes) Friday,

More information

CSE140: Components and Design Techniques for Digital Systems. Midterm Information. Instructor: Mohsen Imani. Sources: TSR, Katz, Boriello & Vahid

CSE140: Components and Design Techniques for Digital Systems. Midterm Information. Instructor: Mohsen Imani. Sources: TSR, Katz, Boriello & Vahid CSE140: Components and Design Techniques for Digital Systems Midterm Information Instructor: Mohsen Imani Midterm Topics In general: everything that was covered in homework 1 and 2 and related lectures,

More information

Memory Elements I. CS31 Pascal Van Hentenryck. CS031 Lecture 6 Page 1

Memory Elements I. CS31 Pascal Van Hentenryck. CS031 Lecture 6 Page 1 Memory Elements I CS31 Pascal Van Hentenryck CS031 Lecture 6 Page 1 Memory Elements (I) Combinational devices are good for computing Boolean functions pocket calculator Computers also need to remember

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 6 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

More information

Topic 8: Sequential Circuits. Bistable Devices. S-R Latches. Consider the following element. Readings : Patterson & Hennesy, Appendix B.4 - B.

Topic 8: Sequential Circuits. Bistable Devices. S-R Latches. Consider the following element. Readings : Patterson & Hennesy, Appendix B.4 - B. Topic 8: Sequential Circuits Bistable Devices Readings : Consider the following element Patterson & Hennesy, Appendix B.4 - B.6 Goals Basic Principles behind Memory Elements Clocks Applications of sequential

More information

State and Finite State Machines

State and Finite State Machines State and Finite State Machines See P&H Appendix C.7. C.8, C.10, C.11 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Big Picture: Building a Processor memory inst register

More information

Synchronous Sequential Logic

Synchronous Sequential Logic 1 IT 201 DIGITAL SYSTEMS DESIGN MODULE4 NOTES Synchronous Sequential Logic Sequential Circuits - A sequential circuit consists of a combinational circuit and a feedback through the storage elements in

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

Sequential vs. Combinational

Sequential vs. Combinational Sequential Circuits Sequential vs. Combinational Combinational Logic: Output depends only on current input TV channel selector (-9) inputs system outputs Sequential Logic: Output depends not only on current

More information

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science

Sequential Logic. Rab Nawaz Khan Jadoon DCS. Lecturer COMSATS Lahore Pakistan. Department of Computer Science Sequential Logic Rab Nawaz Khan Jadoon DCS COMSATS Institute of Information Technology Lecturer COMSATS Lahore Pakistan Digital Logic and Computer Design Sequential Logic Combinational circuits with memory

More information

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10)

ELEC Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) ELEC 2200-002 Digital Logic Circuits Fall 2014 Sequential Circuits (Chapter 6) Finite State Machines (Ch. 7-10) Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering

More information

vidyarthiplus.com vidyarthiplus.com vidyarthiplus.com ANNA UNIVERSITY- COMBATORE B.E./ B.TECH. DEGREE EXAMINATION - JUNE 2009. ELECTRICAL & ELECTONICS ENGG. - FOURTH SEMESTER DIGITAL LOGIC CIRCUITS PART-A

More information

ALU, Latches and Flip-Flops

ALU, Latches and Flip-Flops CSE14: Components and Design Techniques for Digital Systems ALU, Latches and Flip-Flops Tajana Simunic Rosing Where we are. Last time: ALUs Plan for today: ALU example, latches and flip flops Exam #1 grades

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

CPE100: Digital Logic Design I

CPE100: Digital Logic Design I Chapter 3 Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu http://www.ee.unlv.edu/~b1morris/cpe1/ CPE1: Digital Logic Design I Section 14: Dr. Morris Sequential Logic Design Chapter 3 Chapter

More information

Appendix B. Review of Digital Logic. Baback Izadi Division of Engineering Programs

Appendix B. Review of Digital Logic. Baback Izadi Division of Engineering Programs Appendix B Review of Digital Logic Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Elect. & Comp. Eng. 2 DeMorgan Symbols NAND (A.B) = A +B NOR (A+B) = A.B AND A.B = A.B = (A +B ) OR

More information

Memory, Latches, & Registers

Memory, Latches, & Registers Memory, Latches, & Registers 1) Structured Logic Arrays 2) Memory Arrays 3) Transparent Latches 4) How to save a few bucks at toll booths 5) Edge-triggered Registers L13 Memory 1 General Table Lookup Synthesis

More information

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Faculty of Applied Science and Engineering Edward S. Rogers Sr. Department of Electrical and Computer Engineering Final Examination ECE 241F - Digital Systems Examiners: J. Rose and

More information

CS/COE0447: Computer Organization

CS/COE0447: Computer Organization CS/COE0447: Computer Organization and Assembly Language Logic Design Review Sangyeun Cho Dept. of Computer Science Logic design? Digital hardware is implemented by way of logic design Digital circuits

More information

Lecture 3 Review on Digital Logic (Part 2)

Lecture 3 Review on Digital Logic (Part 2) Lecture 3 Review on Digital Logic (Part 2) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ ircuit Optimization Simplest implementation ost criterion literal

More information

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits.

Digital Logic. CS211 Computer Architecture. l Topics. l Transistors (Design & Types) l Logic Gates. l Combinational Circuits. CS211 Computer Architecture Digital Logic l Topics l Transistors (Design & Types) l Logic Gates l Combinational Circuits l K-Maps Figures & Tables borrowed from:! http://www.allaboutcircuits.com/vol_4/index.html!

More information

CS470: Computer Architecture. AMD Quad Core

CS470: Computer Architecture. AMD Quad Core CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flip-flops Functional bocks: Combinational, Sequential Instruction

More information

CMU Introduction to Computer Architecture, Spring 2015 HW 2: ISA Tradeoffs, Microprogramming and Pipelining

CMU Introduction to Computer Architecture, Spring 2015 HW 2: ISA Tradeoffs, Microprogramming and Pipelining CMU 18-447 Introduction to Computer Architecture, Spring 2015 HW 2: ISA Tradeoffs, Microprogramming and Pipelining Instructor: Prof Onur Mutlu TAs: Rachata Ausavarungnirun, Kevin Chang, Albert Cho, Jeremie

More information

Laboratory Exercise #8 Introduction to Sequential Logic

Laboratory Exercise #8 Introduction to Sequential Logic Laboratory Exercise #8 Introduction to Sequential Logic ECEN 248: Introduction to Digital Design Department of Electrical and Computer Engineering Texas A&M University 2 Laboratory Exercise #8 1 Introduction

More information

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits

EE40 Lec 15. Logic Synthesis and Sequential Logic Circuits EE40 Lec 15 Logic Synthesis and Sequential Logic Circuits Prof. Nathan Cheung 10/20/2009 Reading: Hambley Chapters 7.4-7.6 Karnaugh Maps: Read following before reading textbook http://www.facstaff.bucknell.edu/mastascu/elessonshtml/logic/logic3.html

More information

CS/COE1541: Introduction to Computer Architecture. Logic Design Review. Sangyeun Cho. Computer Science Department University of Pittsburgh

CS/COE1541: Introduction to Computer Architecture. Logic Design Review. Sangyeun Cho. Computer Science Department University of Pittsburgh CS/COE54: Introduction to Computer Architecture Logic Design Review Sangyeun Cho Computer Science Department Logic design? Digital hardware is implemented by way of logic design Digital circuits process

More information

CS/COE0447: Computer Organization

CS/COE0447: Computer Organization Logic design? CS/COE0447: Computer Organization and Assembly Language Logic Design Review Digital hardware is implemented by way of logic design Digital circuits process and produce two discrete values:

More information

Lecture 13: Sequential Circuits, FSM

Lecture 13: Sequential Circuits, FSM Lecture 13: Sequential Circuits, FSM Today s topics: Sequential circuits Finite state machines 1 Clocks A microprocessor is composed of many different circuits that are operating simultaneously if each

More information

Computers also need devices capable of Storing data and information Performing mathematical operations on such data

Computers also need devices capable of Storing data and information Performing mathematical operations on such data Sequential Machines Introduction Logic devices examined so far Combinational Output function of input only Output valid as long as input true Change input change output Computers also need devices capable

More information

CMPE12 - Notes chapter 2. Digital Logic. (Textbook Chapters and 2.1)"

CMPE12 - Notes chapter 2. Digital Logic. (Textbook Chapters and 2.1) CMPE12 - Notes chapter 2 Digital Logic (Textbook Chapters 3.1-3.5 and 2.1)" Truth table" The most basic representation of a logic function." Brute force representation listing the output for all possible

More information

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS

Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS Department of Electrical & Electronics EE-333 DIGITAL SYSTEMS 1) Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X -Y and (b) Y - X using 2's complements. a) X = 1010100

More information

ECE 448 Lecture 6. Finite State Machines. State Diagrams, State Tables, Algorithmic State Machine (ASM) Charts, and VHDL Code. George Mason University

ECE 448 Lecture 6. Finite State Machines. State Diagrams, State Tables, Algorithmic State Machine (ASM) Charts, and VHDL Code. George Mason University ECE 448 Lecture 6 Finite State Machines State Diagrams, State Tables, Algorithmic State Machine (ASM) Charts, and VHDL Code George Mason University Required reading P. Chu, FPGA Prototyping by VHDL Examples

More information

Reg. No. Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. Computer Science and Engineering

Reg. No. Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. Computer Science and Engineering Sp 6 Reg. No. Question Paper Code : 27156 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Second Semester Computer Science and Engineering CS 6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) WINTER 17 EXAMINATION Subject Name: Digital Techniques Model Answer Subject Code: 17333 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given

More information

on candidate s understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.

on candidate s understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept. WINTER 17 EXAMINATION Subject Name: Digital Techniques Model Answer Subject Code: 17333 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given

More information

Chapter 6 Introduction to state machines

Chapter 6 Introduction to state machines 9..7 hapter 6 Introduction to state machines Dr.-Ing. Stefan Werner Table of content hapter : Switching Algebra hapter : Logical Levels, Timing & Delays hapter 3: Karnaugh-Veitch-Maps hapter 4: ombinational

More information

Digital Control of Electric Drives

Digital Control of Electric Drives Digital Control of Electric Drives Logic Circuits - equential Description Form, Finite tate Machine (FM) Czech Technical University in Prague Faculty of Electrical Engineering Ver.. J. Zdenek 27 Logic

More information

Different encodings generate different circuits

Different encodings generate different circuits FSM State Encoding Different encodings generate different circuits no easy way to find best encoding with fewest logic gates or shortest propagation delay. Binary encoding: K states need log 2 K bits i.e.,

More information

Module - 19 Gated Latches

Module - 19 Gated Latches Digital Circuits and Systems Prof. Shankar Balachandran Department of Electrical Engineering Indian Institute of Technology, Bombay And Department of Computer Science and Engineering Indian Institute of

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function Question Paper Digital Electronics (EE-204-F) MDU Examination May 2015 1. (a) represent (32)10 in (i) BCD 8421 code (ii) Excess-3 code (iii) ASCII code (b) Design half adder using only NAND gates. ( c)

More information

Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4

Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4 Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4 4.1.1 Signal... 4 4.1.2 Comparison of Analog and Digital Signal... 7 4.2 Number Systems... 7 4.2.1 Decimal Number System... 7 4.2.2 Binary

More information

Week-5. Sequential Circuit Design. Acknowledgement: Most of the following slides are adapted from Prof. Kale's slides at UIUC, USA.

Week-5. Sequential Circuit Design. Acknowledgement: Most of the following slides are adapted from Prof. Kale's slides at UIUC, USA. Week-5 Sequential Circuit Design Acknowledgement: Most of the following slides are adapted from Prof. Kale's slides at UIUC, USA. Storing a value: SR = 00 What if S = 0 and R = 0? The equations on the

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Adders 2 Circuit Delay Transistors have instrinsic resistance and capacitance

More information

Synchronous Sequential Circuit Design. Dr. Ehab A. H. AL-Hialy Page 1

Synchronous Sequential Circuit Design. Dr. Ehab A. H. AL-Hialy Page 1 Synchronous Sequential Circuit Design Dr. Ehab A. H. AL-Hialy Page Motivation Analysis of a few simple circuits Generalizes to Synchronous Sequential Circuits (SSC) Outputs are Function of State (and Inputs)

More information

Parity Checker Example. EECS150 - Digital Design Lecture 9 - Finite State Machines 1. Formal Design Process. Formal Design Process

Parity Checker Example. EECS150 - Digital Design Lecture 9 - Finite State Machines 1. Formal Design Process. Formal Design Process Parity Checker Example A string of bits has even parity if the number of 1 s in the string is even. Design a circuit that accepts a bit-serial stream of bits and outputs a 0 if the parity thus far is even

More information

Sequential Logic. Road Traveled So Far

Sequential Logic. Road Traveled So Far Comp 2 Spring 25 2/ Lecture page Sequential Logic These must be the slings and arrows of outrageous fortune ) Synchronous as an implementation of Sequential 2) Synchronous Timing Analysis 3) Single synchronous

More information

State & Finite State Machines

State & Finite State Machines State & Finite State Machines Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University See P&H Appendix C.7. C.8, C.10, C.11 Big Picture: Building a Processor memory inst register file

More information

Ch 7. Finite State Machines. VII - Finite State Machines Contemporary Logic Design 1

Ch 7. Finite State Machines. VII - Finite State Machines Contemporary Logic Design 1 Ch 7. Finite State Machines VII - Finite State Machines Contemporary Logic esign 1 Finite State Machines Sequential circuits primitive sequential elements combinational logic Models for representing sequential

More information

Adders, subtractors comparators, multipliers and other ALU elements

Adders, subtractors comparators, multipliers and other ALU elements CSE4: Components and Design Techniques for Digital Systems Adders, subtractors comparators, multipliers and other ALU elements Instructor: Mohsen Imani UC San Diego Slides from: Prof.Tajana Simunic Rosing

More information

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING COMPUTER SCIENCES DEPARTMENT UNIVERSITY OF WISCONSIN-MADISON

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING COMPUTER SCIENCES DEPARTMENT UNIVERSITY OF WISCONSIN-MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING COMPUTER SCIENCES DEPARTMENT UNIVERSITY OF WISCONSIN-MADISON Prof. Mark D. Hill & Prof. Mikko Lipasti TAs Sanghamitra Roy, Eric Hill, Samuel Javner, Natalie

More information

CSC9R6 Computer Design. Practical Digital Logic

CSC9R6 Computer Design. Practical Digital Logic CSC9R6 Computer Design Practical Digital Logic 1 References (for this part of CSC9R6) Hamacher et al: Computer Organization App A. In library Floyd: Digital Fundamentals Ch 1, 3-6, 8-10 web page: www.prenhall.com/floyd/

More information

Digital Electronics Sequential Logic

Digital Electronics Sequential Logic /5/27 igital Electronics Sequential Logic r. I. J. Wassell Sequential Logic The logic circuits discussed previously are known as combinational, in that the output depends only on the condition of the latest

More information

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007

EECS Components and Design Techniques for Digital Systems. FSMs 9/11/2007 EECS 150 - Components and Design Techniques for Digital Systems FSMs 9/11/2007 Sarah Bird Electrical Engineering and Computer Sciences University of California, Berkeley Slides borrowed from David Culler

More information

ENGG 1203 Tutorial _03 Laboratory 3 Build a ball counter. Lab 3. Lab 3 Gate Timing. Lab 3 Steps in designing a State Machine. Timing diagram of a DFF

ENGG 1203 Tutorial _03 Laboratory 3 Build a ball counter. Lab 3. Lab 3 Gate Timing. Lab 3 Steps in designing a State Machine. Timing diagram of a DFF ENGG 1203 Tutorial _03 Laboratory 3 Build a ball counter Timing diagram of a DFF Lab 3 Gate Timing difference timing for difference kind of gate, cost dependence (1) Setup Time = t2-t1 (2) Propagation

More information

6. Finite State Machines

6. Finite State Machines 6. Finite State Machines 6.4x Computation Structures Part Digital Circuits Copyright 25 MIT EECS 6.4 Computation Structures L6: Finite State Machines, Slide # Our New Machine Clock State Registers k Current

More information

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring

Appendix A: Digital Logic. Principles of Computer Architecture. Principles of Computer Architecture by M. Murdocca and V. Heuring - Principles of Computer rchitecture Miles Murdocca and Vincent Heuring 999 M. Murdocca and V. Heuring -2 Chapter Contents. Introduction.2 Combinational Logic.3 Truth Tables.4 Logic Gates.5 Properties

More information

Synchronous Sequential Circuit

Synchronous Sequential Circuit Synchronous Sequential Circuit The change of internal state occurs in response to the synchronized clock pulses. Data are read during the clock pulse (e.g. rising-edge triggered) It is supposed to wait

More information

Last lecture Counter design Finite state machine started vending machine example. Today Continue on the vending machine example Moore/Mealy machines

Last lecture Counter design Finite state machine started vending machine example. Today Continue on the vending machine example Moore/Mealy machines Lecture 2 Logistics HW6 due Wednesday Lab 7 this week (Tuesday exception) Midterm 2 Friday (covers material up to simple FSM (today)) Review on Thursday Yoky office hour on Friday moved to Thursday 2-:2pm

More information

Adders allow computers to add numbers 2-bit ripple-carry adder

Adders allow computers to add numbers 2-bit ripple-carry adder Lecture 12 Logistics HW was due yesterday HW5 was out yesterday (due next Wednesday) Feedback: thank you! Things to work on: ig picture, ook chapters, Exam comments Last lecture dders Today Clarification

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Review for the Midterm Stephen A. Edwards Columbia University Spring 22 The Midterm 75 minutes 4 5 problems Closed book Simple calculators are OK, but unnecessary One double-sided

More information

COMPUTER SCIENCE TRIPOS

COMPUTER SCIENCE TRIPOS CST.2016.2.1 COMPUTER SCIENCE TRIPOS Part IA Tuesday 31 May 2016 1.30 to 4.30 COMPUTER SCIENCE Paper 2 Answer one question from each of Sections A, B and C, and two questions from Section D. Submit the

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Review for the Final Stephen A. Edwards Columbia University Summer 25 The Final 2 hours 8 problems Closed book Simple calculators are OK, but unnecessary One double-sided

More information

Logic design? Transistor as a switch. Layered design approach. CS/COE1541: Introduction to Computer Architecture. Logic Design Review.

Logic design? Transistor as a switch. Layered design approach. CS/COE1541: Introduction to Computer Architecture. Logic Design Review. Logic design? CS/COE54: Introduction to Computer rchitecture Digital hardware is implemented by way of logic design Digital circuits process and produce two discrete values: and Example: -bit full adder

More information

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1

Sequential Logic. Handouts: Lecture Slides Spring /27/01. L06 Sequential Logic 1 Sequential Logic Handouts: Lecture Slides 6.4 - Spring 2 2/27/ L6 Sequential Logic Roadmap so far Fets & voltages Logic gates Combinational logic circuits Sequential Logic Voltage-based encoding V OL,

More information

Review for B33DV2-Digital Design. Digital Design

Review for B33DV2-Digital Design. Digital Design Review for B33DV2 The Elements of Modern Behaviours Design Representations Blocks Waveforms Gates Truth Tables Boolean Algebra Switches Rapid Prototyping Technologies Circuit Technologies TTL MOS Simulation

More information

CMPEN 411. Spring Lecture 18: Static Sequential Circuits

CMPEN 411. Spring Lecture 18: Static Sequential Circuits CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 18: Static Sequential Circuits [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #15: Combinational Logic Blocks 2005-07-14 CS 61C L15 Blocks (1) Andy Carle Outline CL Blocks Latches & Flip Flops A Closer Look CS

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) State any two Boolean laws. (Any 2 laws 1 mark each) Subject Code: 17333 Model Answer Page 1/ 27 Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model

More information

11.1 As mentioned in Experiment 10, sequential logic circuits are a type of logic circuit where the output of

11.1 As mentioned in Experiment 10, sequential logic circuits are a type of logic circuit where the output of EE 2449 Experiment 11 Jack Levine and Nancy Warter-Perez CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-2449 Digital Logic Lab EXPERIMENT 11 SEQUENTIAL CIRCUITS

More information

S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques

S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 100 Q.1(a) Attempt any SIX of the following : [12] Q.1(a) (i) Derive AND gate and OR gate

More information

CSE370: Introduction to Digital Design

CSE370: Introduction to Digital Design CSE370: Introduction to Digital Design Course staff Gaetano Borriello, Brian DeRenzi, Firat Kiyak Course web www.cs.washington.edu/370/ Make sure to subscribe to class mailing list (cse370@cs) Course text

More information

CPE/EE 422/522. Chapter 1 - Review of Logic Design Fundamentals. Dr. Rhonda Kay Gaede UAH. 1.1 Combinational Logic

CPE/EE 422/522. Chapter 1 - Review of Logic Design Fundamentals. Dr. Rhonda Kay Gaede UAH. 1.1 Combinational Logic CPE/EE 422/522 Chapter - Review of Logic Design Fundamentals Dr. Rhonda Kay Gaede UAH UAH Chapter CPE/EE 422/522. Combinational Logic Combinational Logic has no control inputs. When the inputs to a combinational

More information

Example: vending machine

Example: vending machine Example: vending machine Release item after 15 cents are deposited Single coin slot for dimes, nickels o change Reset Coin Sensor Vending Machine FSM Open Release Mechanism Clock Spring 2005 CSE370 - guest

More information

Design of Digital Circuits Lecture 14: Microprogramming. Prof. Onur Mutlu ETH Zurich Spring April 2017

Design of Digital Circuits Lecture 14: Microprogramming. Prof. Onur Mutlu ETH Zurich Spring April 2017 Design of Digital Circuits Lecture 4: Microprogramming Prof. Onur Mutlu ETH Zurich Spring 27 7 April 27 Agenda for Today & Next Few Lectures! Single-cycle Microarchitectures! Multi-cycle and Microprogrammed

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 23, 2017 Energy and Power Optimization, Design Space Exploration, Synchronous MOS Logic Lecture Outline! Energy and Power Optimization

More information

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors CSC258 Week 3 1 Logistics If you cannot login to MarkUs, email me your UTORID and name. Check lab marks on MarkUs, if it s recorded wrong, contact Larry within a week after the lab. Quiz 1 average: 86%

More information

CSE370 HW6 Solutions (Winter 2010)

CSE370 HW6 Solutions (Winter 2010) SE370 HW6 Solutions (Winter 2010) 1. L2e, 6.10 For this problem we are given a blank waveform with clock and input and asked to draw out the how different flip-flops and latches would behave. LK a) b)

More information

SUMMER 18 EXAMINATION Subject Name: Principles of Digital Techniques Model Answer Subject Code:

SUMMER 18 EXAMINATION Subject Name: Principles of Digital Techniques Model Answer Subject Code: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memory Components Integrated Circuits Digital Computers 2 LOGIC GATES

More information

Review for Final Exam

Review for Final Exam CSE140: Components and Design Techniques for Digital Systems Review for Final Exam Mohsen Imani CAPE Please submit your evaluations!!!! RTL design Use the RTL design process to design a system that has

More information

(Boolean Algebra, combinational circuits) (Binary Codes and -arithmetics)

(Boolean Algebra, combinational circuits) (Binary Codes and -arithmetics) Task 1. Exercises: Logical Design of Digital Systems Seite: 1 Self Study (Boolean Algebra, combinational circuits) 1.1 Minimize the function f 1 a ab ab by the help of Boolean algebra and give an implementation

More information

Lecture 13: Sequential Circuits, FSM

Lecture 13: Sequential Circuits, FSM Lecture 13: Sequential Circuits, FSM Today s topics: Sequential circuits Finite state machines Reminder: midterm on Tue 2/28 will cover Chapters 1-3, App A, B if you understand all slides, assignments,

More information

Chapter 3. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 3 <1>

Chapter 3. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 3 <1> Chapter 3 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 3 Chapter 3 :: Topics Introduction Latches and Flip-Flops Synchronous Logic Design Finite

More information