1. HP's memristor and applications 2. Models of resistance switching. 4. 3D circuit architectures 5. Proposal for evaluation framework

Size: px
Start display at page:

Download "1. HP's memristor and applications 2. Models of resistance switching. 4. 3D circuit architectures 5. Proposal for evaluation framework"

Transcription

1 OUTL LINE 1. HP's memristor and applications 2. Models of resistance switching 3. Volatility speed tradeo ffs 4. 3D circuit architectures 5. Proposal for evaluation framework

2 HP S MEMRISTOR memristor = memory + resistor October 29 HP s memristor = TiO 2 resistance change due to oxygen vacancy migration circuit theory + TiO 2 devices = HP s memristor L.Chua, S.Kang several groups, R.S.Williams T.W.Hickmott first L.Chua, IEEE Trans. Circuit Theory (1971); L.Chua et al. Proc. IEEE (1976) pure memristor vs. memristive small subset: T.W.Hickmott JAP (1962); R.Meyer et al. APL (25); B.J.Choi et al. JAP (25); C.Yoshida et al. APL (27); K.M.Kim et al. APL (27); K.Tsunoda et al. APL (27) v = R(w) i dw/dt = i unipolar/bipolar l RRAM, CBRAM, PCR RAM etc. are all memristive devices no simple dynamical model so far for experimental devices still okay for most applications (using feedback) applications: memories, FPGAs, electronic synapse, analog circuits (trimming) just a small biased subset (the&exp) for mem: Baek et al. IEDM (25); D.Strukov et al. J. Nanoscience&Nanotechnol (27); J.Green et al. Nature (27); S.H.Jo Nano Letters 9 87 (29); FPGAs: D.Strukov et al. Nanotechnol (25); D.Strukov et al. IEEE Tran.Nanotechnol (27); Q.Xia et al. Nano Letters (29); ANNs: K.Likharev et al. Ann. New York Acad. Sci (23); G.Snider Nanotechnology (27); analog: S.Shin et al. Proc. ICCCAS (29) starting point (t=) R 3 >> 2 >> 1 resistance change range R.S.Williams IEEE Spectrum (28); J.Yang et al. Nature Nano (28); D.Strukov et al. Nature (28) 3 v = R(w,i,t) i i= sin[ t] 2 dw/dt = f(w,i,t),, ) q 1 3 >> 2 >> 1 i-v collapses to straight line at high frequencies for pure memristors nonlinear i-v with no hysteresis (i.e. at small biases) & nonlinear ionic drift = not a pure memristor good starting point: M.Pickett et al. JAP (29) J.Borghetti (priv.comm.) i t v

3 BULK vs INTERFACE BIPOLAR RESIST TIVE SWITCHING Dopant N D (x)/n DO bulk theory semiconductor with N A fixed and N D (x) mobile ions w OFF: n + n p n n p n time t/t ON: n + n n + N A D.Strukov et al. Small (29) inte erface OFF ON October 29 ONOFF I. barrier height/leakage modulation TO CMO e.g. two system: R.Meyer et al. Proc. NVMTS (28) tial φ/(e G /e) Poten.2 Current v t Voltage Length x/l 1 1D model but initial conditions for 3D (i.e. after forming) are hard to simulate and experiment H.Yang et al. Nature Mat (29) IIa. barrier width/bridging due to radial ion motion Ag H 2 O Pt Ag H 2 O Pt e.g. in CBRAM: X.Guo et al. APL 91 1 (27) chalcogenide electrolytes: M.N.Kozicki et al. J Non-Crys. Solids (26) IIb. barrier width/bridging due to vertical ion motion Co oncentration (log sc cale) gap profile Barrier width grossly simplified picture, mix of all mechanisms in reality E=1,1,.1 MV/cm time, s D.Strukov et al. (preliminary data)

4 WRITE SPEED VS. RETENTION linear ionic transport store ~ write ( v ) ( v V ) I V D nonlinear effect due to temperature and/or electric field e.g. temperature only: U A store V k T write I V V T U k T B store B write ~ ( e e ) V T D.Strukov et al. Appl.Phys.A (29) A October 29 other sources of nonlinearity? Buttler Volmer reactions R.Waser et al. Adv.Mat (29) Electrochemical effects e/ write store L=1 nm 3 nm 1 nm 3 nm 1 1 ionic 1 A B conductor mobile.1.2 U B (ev).3.5 interacting ions D.Strukov (unpublished) Joule heating M.Janousch et al. Adv.Mat (27) XRF map infrared K K map voltage, V temperature on I-V curre ent, ma perform 3D coupled electrothermal simulations fit experimental data using equivalent circuit J.Borghetti et al.jap (29) to appear strong nonlinearity in ionic transport required for high retention, even more for half select 11 K TiO 2 (ρ I,κ I ) OFF state d OUT w OFF d C metallic channel (ρ C,κ C ) electrode (ρ E,κ E ) L v R C r R ON extract geometry from fitting ON state z d ON w ON D.Strukov et al. MRS (29) ) Temperature (K) Local ma) I ( K 14K 3K INTERMEDIATE ON OFF V (V) ON Domain fitted on data Extrapolation OFF 1 2 I (ma) SHORT 3

5 3D STACKING FOR CMOL CIRCUITS peripheral addr ess word address read/write drive word line decoder decoder predecoder October 29 d d hybrid stack of thin film crossbar arrays (m s) n wires main idea: area + peripheral interface word line decoder switching s 1 st 2 nd 3 rd decoder control lines decoder predecoder area distributed N 4 data lines 1 st 2 nd just few examples: M.-J.Lee IEDM 85 (28) M.Johnson IEEE J Solid State Circuits (23) crossbar s CMOS tilted crossbar area interface 2F 2F N N 2 theory: K.Likharev Interface (25); D.Strukov et al. PNAS (29) N 3 rd virtual crossbar xpoint in 1 st crossbar wire via drive/sense data xpoint in 2 nd address D.Strukov (unpublished) N 4 total.. but only (N) 2 per nanowire 2 switching nanowire 1 CMOS via bit line sense/driver CMOS xpoint element less semi-selected devices for read op. parallel write for current controlled devices less maximum current density but less dense D.Strukov (unpublished) CMOS only CMOS +xbar xbar and exp with just one xbar : Q.Xia et al. Nano Letters (29)

6 PROPOSAL FOR EVALUATION METRIC intrinsic circuit and device tradeoffs electromigration issues in wires, smaller blocks (less dense), and low throughput smaller readout margins etc potentially volatile device resistance low high switching speed slow fast e.g. reset current scaling thkw (K/W) V RESET (V) L=3 nm nm.1 c =2 K/W-m (e.g. Ti) R/L.1 1 RL 3 1 slow RC likely volatile and/or large switching voltages low endurance, bad repeatability e.g. due to higher electric field and temperatures axial radial =6 K/W-m (e.g. TiO 2 ) =1 K/W-m (e.g. SiO 2 ) 1 3 =6 K/W-m c =2 K/W-m ΔT=, c =.8-cm 1.3 L=3 nm.1.1 I RESET (ma) 1 D.Strukov (in preparation) proposa al for software framework electronic device characterization: (1) nonlinearity in I-V shape; (2) nonlinearity in switching; (3) nature of the switching compliance for reset and set; (4) polarity of switching; (5) asymmetry of switching threshold voltages; (6) switching speed; (7) retention; (8) nominal set/reset voltage/current values; (9) variations in I-V shape upon cycling (repeatability); (1) endurance; (11) device yield; (12) forming step, etc. design constrains: density, cost, speed, power power density, throughput fabrication consideration: design rules s, electromigration specs, electorode thermal and electrical resistivity, manufacturing cost main goals October 29 material device characterization published device data OPTIMAL CIRCUIT ARHCITECTURE via parametric search: circuit architecture, block size, sensing/ biasing scheme, voltage scaling, def. tolerance scheme etc. explore for more then drop-in replacement expose important missing device and circuit information help in focusing on the most important issues

Novel Devices and Circuits for Computing

Novel Devices and Circuits for Computing Novel Devices and Circuits for Computing UCSB 594BB Winter 213 Lectures 5 and 6: VCM cell Class Outline VCM = Valence Change Memory General features Forming SET and RESET Heating Switching models Scaling

More information

RRAM technology: From material physics to devices. Fabien ALIBART IEMN-CNRS, Lille

RRAM technology: From material physics to devices. Fabien ALIBART IEMN-CNRS, Lille RRAM technology: From material physics to devices Fabien ALIBART IEMN-CNRS, Lille Outline Introduction: RRAM technology and applications Few examples: Ferroelectric tunnel junction memory Mott Insulator

More information

Finding the Missing Memristor

Finding the Missing Memristor February 11, 29 Finding the Missing Memristor 3 nm Stan Williams HP 26 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Acknowledgments People

More information

Electrical and Reliability Characteristics of RRAM for Cross-point Memory Applications. Hyunsang Hwang

Electrical and Reliability Characteristics of RRAM for Cross-point Memory Applications. Hyunsang Hwang Electrical and Reliability Characteristics of RRAM for Cross-point Memory Applications Hyunsang Hwang Dept. of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST), KOREA

More information

Applications of Memristors in ANNs

Applications of Memristors in ANNs Applications of Memristors in ANNs Outline Brief intro to ANNs Firing rate networks Single layer perceptron experiment Other (simulation) examples Spiking networks and STDP ANNs ANN is bio inpsired inpsired

More information

Neuromorphic computing with Memristive devices. NCM group

Neuromorphic computing with Memristive devices. NCM group Neuromorphic computing with Memristive devices NCM group Why neuromorphic? New needs for computing Recognition, Mining, Synthesis (Intel) Increase of Fault (nanoscale engineering) SEMICONDUCTOR TECHNOLOGY

More information

Novel Devices and Circuits for Computing

Novel Devices and Circuits for Computing Novel Devices and Circuits for Computing UCSB 594BB Winter 2013 Lecture 4: Resistive switching: Logic Class Outline Material Implication logic Stochastic computing Reconfigurable logic Material Implication

More information

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching

Size-dependent Metal-insulator Transition Random Materials Crystalline & Amorphous Purely Electronic Switching Nanometallic RRAM I-Wei Chen Department of Materials Science and Engineering University of Pennsylvania Philadelphia, PA 19104 Nature Nano, 6, 237 (2011) Adv Mater,, 23, 3847 (2011) Adv Func Mater,, 22,

More information

Novel Devices and Circuits for Computing

Novel Devices and Circuits for Computing Novel Devices and Circuits for Computing UCSB 594BB Winter 2013 Lecture 3: ECM cell Class Outline ECM General features Forming and SET process RESET Variants and scaling prospects Equivalent model Electrochemical

More information

1 Ionic Memory Technology

1 Ionic Memory Technology j1 1 Ionic Memory Technology An Chen Ionic memory devices based on ion migration and electrochemical reactions have shown promising characteristics for next-generation memory technology. Both cations (e.g.,

More information

Pinched hysteresis loops are a fingerprint of square law capacitors

Pinched hysteresis loops are a fingerprint of square law capacitors Pinched hysteresis loops are a fingerprint of square law capacitors Blaise Mouttet Abstract It has been claimed that pinched hysteresis curves are the fingerprint of memristors. This paper demonstrates

More information

Window Function Analysis of Nonlinear Behaviour of Fourth Fundamental Passive Circuit Element: Memristor

Window Function Analysis of Nonlinear Behaviour of Fourth Fundamental Passive Circuit Element: Memristor IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 12, Issue 3, Ver. III (May - June 217), PP 58-63 www.iosrjournals.org Window Function Analysis

More information

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology From Spin Torque Random Access Memory to Spintronic Memristor Xiaobin Wang Seagate Technology Contents Spin Torque Random Access Memory: dynamics characterization, device scale down challenges and opportunities

More information

Resistive Memories Based on Amorphous Films

Resistive Memories Based on Amorphous Films Resistive Memories Based on Amorphous Films Wei Lu University of Michigan Electrical Engineering and Computer Science Crossbar Inc 1 Introduction Hysteretic resistive switches and crossbar structures Simple

More information

Addressing Challenges in Neuromorphic Computing with Memristive Synapses

Addressing Challenges in Neuromorphic Computing with Memristive Synapses Addressing Challenges in Neuromorphic Computing with Memristive Synapses Vishal Saxena 1, Xinyu Wu 1 and Maria Mitkova 2 1 Analog Mixed-Signal and Photonic IC (AMPIC) Lab 2 Nanoionic Materials and Devices

More information

Resistive Random Access Memories (RRAMs)

Resistive Random Access Memories (RRAMs) Resistive Random Access Memories (RRAMs) J. Joshua Yang HP Labs, Palo Alto, CA, USA (currently) ECE Dept., Umass Amherst (Jan/2015 - ) 1 Copyright 2010 Hewlett-Packard Development Company, L.P. Resistive

More information

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches

Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Ultralow-Power Reconfigurable Computing with Complementary Nano-Electromechanical Carbon Nanotube Switches Presenter: Tulika Mitra Swarup Bhunia, Massood Tabib-Azar, and Daniel Saab Electrical Eng. And

More information

Experimental and Theoretical Study of Electrode Effects in HfO2 based RRAM

Experimental and Theoretical Study of Electrode Effects in HfO2 based RRAM Experimental and Theoretical Study of Electrode Effects in HfO2 based RRAM C. Cagli 1, J. Buckley 1, V. Jousseaume 1, T. Cabout 1, A. Salaun 1, H. Grampeix 1, J. F. Nodin 1,H. Feldis 1, A. Persico 1, J.

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Santosh Murali for the degree of Master of Science in Electrical and Computer Engineering presented on December 20, 2011. Title: Investigation of Bipolar Resistive Switching

More information

Influence of electrode materials on CeO x based resistive switching

Influence of electrode materials on CeO x based resistive switching Influence of electrode materials on CeO x based resistive switching S. Kano a, C. Dou a, M. Hadi a, K. Kakushima b, P. Ahmet a, A. Nishiyama b, N. Sugii b, K. Tsutsui b, Y. Kataoka b, K. Natori a, E. Miranda

More information

The N3XT Technology for. Brain-Inspired Computing

The N3XT Technology for. Brain-Inspired Computing The N3XT Technology for Brain-Inspired Computing SystemX Alliance 27..8 Department of Electrical Engineering 25.4.5 2 25.4.5 Source: Google 3 25.4.5 Source: vrworld.com 4 25.4.5 Source: BDC Stanford Magazine

More information

EE 434 Lecture 13. Basic Semiconductor Processes Devices in Semiconductor Processes

EE 434 Lecture 13. Basic Semiconductor Processes Devices in Semiconductor Processes EE 434 Lecture 3 Basic Semiconductor Processes Devices in Semiconductor Processes Quiz 9 The top view of a device fabricated in a bulk CMOS process is shown in the figure below a) Identify the device b)

More information

A Hybrid CMOS/Memristive Nanoelectronic Circuit for Programming Synaptic Weights

A Hybrid CMOS/Memristive Nanoelectronic Circuit for Programming Synaptic Weights A Hybrid CMOS/Memristive Nanoelectronic Circuit for Programming Synaptic Weights Arne Heittmann and Tobias G. Noll Chair of Electrical Engineering and Computer Systems RWTH Aachen University -52062 Aachen,

More information

Device and Circuit Interaction Analysis of Stochastic Behaviors in Cross-Point RRAM Arrays

Device and Circuit Interaction Analysis of Stochastic Behaviors in Cross-Point RRAM Arrays Device and Circuit Interaction Analysis of Stochastic Behaviors in Cross-Point RRAM Arrays Haitong Li, Student Member, IEEE, Peng Huang, Bin Gao, Member, IEEE, Xiaoyan Liu, Member, IEEE, Jinfeng Kang,

More information

A short history of memristor development. R. Stanley Williams HP Labs

A short history of memristor development. R. Stanley Williams HP Labs A short history of memristor development R. Stanley Williams HP Labs Historical Background During the 1960's, Prof. Leon Chua, who was then at Purdue University, established the mathematical foundation

More information

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications?

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? Advanced Topics In Solid State Devices EE290B Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? August 28, 2007 Prof. Eli Yablonovitch Electrical Engineering & Computer Sciences

More information

The switching location of a bipolar memristor: chemical, thermal and structural mapping

The switching location of a bipolar memristor: chemical, thermal and structural mapping IOP PUBLISHING Nanotechnology 22 (2011) 254015 (6pp) The switching location of a bipolar memristor: chemical, thermal and structural mapping NANOTECHNOLOGY doi:10.1088/0957-4484/22/25/254015 John Paul

More information

Advanced Flash and Nano-Floating Gate Memories

Advanced Flash and Nano-Floating Gate Memories Advanced Flash and Nano-Floating Gate Memories Mater. Res. Soc. Symp. Proc. Vol. 1337 2011 Materials Research Society DOI: 10.1557/opl.2011.1028 Scaling Challenges for NAND and Replacement Memory Technology

More information

Memory and computing beyond CMOS

Memory and computing beyond CMOS Memory and computing beyond CMOS Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano daniele.ielmini@polimi.it Outline 2 Introduction What is CMOS? What comes after CMOS? Example:

More information

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB MEMORY Moores Law for DRAM 2x increase in capacity every 18 months 2006: 4GB Corollary to Moores Law Cost / chip ~ constant (packaging) Cost / bit = 2X reduction / 18 months Current (2008) ~ 1 micro-cent

More information

Experimental and theoretical understanding of Forming, SET and RESET operations in Conductive Bridge RAM (CBRAM) for memory stack optimization

Experimental and theoretical understanding of Forming, SET and RESET operations in Conductive Bridge RAM (CBRAM) for memory stack optimization Experimental and theoretical understanding of Forming, SET and RESET operations in Conductive Bridge RAM (CBRAM) for memory stack optimization J. Guy, G. Molas, P. Blaise, C. Carabasse, M. Bernard, A.

More information

Symetrix Corporation Background

Symetrix Corporation Background Symetrix Corporation Background Symetrix has strong history as IP provider > 25 years of development >200 U.S. and foreign patents. > $70M in research revenues, royalties and other income from development.

More information

Analysis of charge-transport properties in GST materials for next generation phase-change memory devices. Fabio Giovanardi Tutor: Prof.

Analysis of charge-transport properties in GST materials for next generation phase-change memory devices. Fabio Giovanardi Tutor: Prof. Analysis of charge-transport properties in GST materials for next generation phase-change memory devices Fabio Giovanardi Tutor: Prof. Massimo Rudan The use of phase-change chalcogenide alloy films to

More information

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS CHAPTER-6 6.1 Introduction The suitability and potentiality of a material for device applications can be determined from the frequency and temperature response

More information

An Overview of Spin-based Integrated Circuits

An Overview of Spin-based Integrated Circuits ASP-DAC 2014 An Overview of Spin-based Integrated Circuits Wang Kang, Weisheng Zhao, Zhaohao Wang, Jacques-Olivier Klein, Yue Zhang, Djaafar Chabi, Youguang Zhang, Dafiné Ravelosona, and Claude Chappert

More information

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits

Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Emerging Interconnect Technologies for CMOS and beyond-cmos Circuits Sou-Chi Chang, Rouhollah M. Iraei Vachan Kumar, Ahmet Ceyhan and Azad Naeemi School of Electrical & Computer Engineering Georgia Institute

More information

Song and Feng Pan b) * Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering,

Song and Feng Pan b) * Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information to Forming-free and self-rectifying resistive switching of the simple

More information

Supporting Information

Supporting Information Supporting Information Monolithically Integrated Flexible Black Phosphorus Complementary Inverter Circuits Yuanda Liu, and Kah-Wee Ang* Department of Electrical and Computer Engineering National University

More information

Administrative Stuff

Administrative Stuff EE141- Spring 2004 Digital Integrated Circuits Lecture 30 PERSPECTIVES 1 Administrative Stuff Homework 10 posted just for practice. No need to turn in (hw 9 due today). Normal office hours next week. HKN

More information

Chapter 12 Memristor SPICE Modeling

Chapter 12 Memristor SPICE Modeling Chapter Memristor SPICE Modeling Chris Yakopcic, Tarek M. Taha, Guru Subramanyam, and Robinson E. Pino Abstract Modeling of memristor devices is essential for memristor based circuit and system design.

More information

Metal Oxide Resistive Memory using Graphene Edge. Electrode

Metal Oxide Resistive Memory using Graphene Edge. Electrode 1 Metal Oxide Resistive Memory using Graphene Edge Electrode Seunghyun Lee 1*, Joon Sohn 1*, Zizhen Jiang 1, Hong-Yu Chen 1,2, H. -S. Philip Wong 1 1 Department of Electrical Engineering and Stanford SystemX

More information

Access from the University of Nottingham repository:

Access from the University of Nottingham repository: ElHassan, Nemat Hassan Ahmed (2017) Development of phase change memory cell electrical circuit model for non-volatile multistate memory device. PhD thesis, University of Nottingham. Access from the University

More information

Bipolar resistive switching in amorphous titanium oxide thin films

Bipolar resistive switching in amorphous titanium oxide thin films Bipolar resistive switching in amorphous titanium oxide thin films Hu Young Jeong and Jeong Yong Lee Department of Materials Science and Engineering, KAIST, Daejeon 305-701, Korea Min-Ki Ryu and Sung-Yool

More information

Electrical Conduction in Ceramic Materials 1 Ref: Barsoum, Fundamentals of Ceramics, Ch7, McGraw-Hill, 2000

Electrical Conduction in Ceramic Materials 1 Ref: Barsoum, Fundamentals of Ceramics, Ch7, McGraw-Hill, 2000 MME 467 Ceramics for Advanced Applications Lecture 19 Electrical Conduction in Ceramic Materials 1 Ref: Barsoum, Fundamentals of Ceramics, Ch7, McGraw-Hill, 2000 Prof. A. K. M. B. Rashid Department of

More information

W hen the number of stored electrons reaches statistical limits, continued scaling is more and more

W hen the number of stored electrons reaches statistical limits, continued scaling is more and more OPEN SUBJECT AREAS: ELECTRICAL AND ELECTRONIC ENGINEERING ELECTRONIC DEVICES Received 10 April 2014 Accepted 3 July 2014 Published 22 July 2014 Study of Multi-level Characteristics for 3D Vertical Resistive

More information

Supplementary Figure 1 Phase detection EFM measurements verifying the nature of the

Supplementary Figure 1 Phase detection EFM measurements verifying the nature of the Supplementary Figure 1 Phase detection EFM measurements verifying the nature of the accumulated charges. (a) Topographic profile and (b) EFM phase image of the region after being stimulated by a positive

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure S1 - Steady state emfs for the OFF state and the RESET transition from ON to OFF state corresponding to a dissolution of the filament The dissolution is induced

More information

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories Lec 13 Semiconductor Memories 1 Semiconductor Memory Types Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) Read-Only Memory (ROM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

STOCHASTIC LOGIC Architectures for post-cmos switches

STOCHASTIC LOGIC Architectures for post-cmos switches STOCHASTIC LOGIC Architectures for post-cmos switches David S. Ricketts Electrical & Computer Carnegie Mellon University www.ece.cmu.edu/~ricketts Jehoshua (Shuki) Bruck Engineering Electrical Engineering

More information

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room).

A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). A final review session will be offered on Thursday, May 10 from 10AM to 12noon in 521 Cory (the Hogan Room). The Final Exam will take place from 12:30PM to 3:30PM on Saturday May 12 in 60 Evans.» All of

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

NEEDS Thermoelectric Compact Model Documentation Version 1.0.0

NEEDS Thermoelectric Compact Model Documentation Version 1.0.0 NEEDS Thermoelectric Compact Model Documentation Version 1.0.0 Published on August 31, 2015 Introduction The NEEDS thermoelectric compact model (TEsegment.va) describes a homogeneous segment of thermoelectric

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

NRAM: High Performance, Highly Reliable Emerging Memory

NRAM: High Performance, Highly Reliable Emerging Memory NRAM: High Performance, Highly Reliable Emerging Memory Sheyang Ning,2, Tomoko Ogura Iwasaki, Darlene Viviani 2, Henry Huang 2, Monte Manning 2, Thomas Rueckes 2, Ken Takeuchi Chuo University 2 Nantero

More information

The challenges of configurable hybrid Memristor-CMOS Integrated circuits fabrication: Physics and Materials Science

The challenges of configurable hybrid Memristor-CMOS Integrated circuits fabrication: Physics and Materials Science The challenges of configurable hybrid Memristor-CMOS Integrated circuits fabrication: Physics and Materials Science Gilberto Medeiros-Ribeiro HP Labs Outline Context Memristor basics Memristor fabrication

More information

Technological Exploration of RRAM Crossbar Array for Matrix-Vector Multiplication

Technological Exploration of RRAM Crossbar Array for Matrix-Vector Multiplication Xia L,Gu P,Li B et al. Technological exploration of RRAM crossbar array for matrix-vector multiplication. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 31(1): 3 19 Jan. 2016. DOI 10.1007/s11390-016-1608-8

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices P-N Junctions (Diodes): Physical

More information

A Universal Memory Model for Design Exploration. Ketul Sutaria, Chi-Chao Wang, Yu (Kevin) Cao School of ECEE, ASU

A Universal Memory Model for Design Exploration. Ketul Sutaria, Chi-Chao Wang, Yu (Kevin) Cao School of ECEE, ASU A Universal Memory Model for Design Exploration Ketul Sutaria, Chi-Chao Wang, Yu (Kevin) Cao School of ECEE, ASU Universal Memory Modeling because there is no universal memory device! Modeling needs in

More information

Resistive Switching Statistics in MIM structures for Non-volatile memory applications

Resistive Switching Statistics in MIM structures for Non-volatile memory applications ESCOLA D ENGINYERIA Electronic Engineering Department Resistive Switching Statistics in MIM structures for Non-volatile memory applications A dissertation submitted by Xiaojuan Lian In fulfillment of the

More information

ALCT Measurement Principles

ALCT Measurement Principles Current-based Measurements At a basic electronics level, a liquid crystal sample cell may be modeled as a combination dynamic capacitor and resistor in parallel. As such, the majority of ALCT measurements

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Mahendra Pakala, Silicon Systems Group, AMAT Dec 16 th, 2014 AVS 2014 *All data in presentation is internal Applied generated data

More information

Supplementary Figure 1. Visible (λ = 633 nm) Raman spectra of a-co x layers. (a) Raman spectra of

Supplementary Figure 1. Visible (λ = 633 nm) Raman spectra of a-co x layers. (a) Raman spectra of a In te n s ity [a.u.] c In te n s ity [a.u.] 6 4 2 4 3 2 1 3 2.5 2 1.5 1 p O 2 3.5 1,5 3, 4,5 R a m a n s h ift [c m -1 ] p ris tin e 1 o C 2 o C 3 o C 4 o C 5 o C b d In te n s ity [a.u.] In te n s ity

More information

SEMICONDUCTOR MEMORIES

SEMICONDUCTOR MEMORIES SEMICONDUCTOR MEMORIES Semiconductor Memory Classification RWM NVRWM ROM Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable (PROM) SRAM FIFO FLASH DRAM LIFO Shift Register CAM

More information

RESISTIVE-SWITCHING (RS) random access memory

RESISTIVE-SWITCHING (RS) random access memory 420 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 1, JANUARY 2013 Dependence of Read Margin on Pull-Up Schemes in High-Density One Selector One Resistor Crossbar Array Chun-Li Lo, Tuo-Hung Hou, Mei-Chin

More information

TECHNOLOGY ROADMAP EMERGING RESEARCH DEVICES 2013 EDITION FOR

TECHNOLOGY ROADMAP EMERGING RESEARCH DEVICES 2013 EDITION FOR INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 01 EDITION EMERGING RESEARCH DEVICES THE ITRS IS DEVISED AND INTENDED FOR TECHNOLOGY ASSESSMENT ONLY AND IS WITHOUT REGARD TO ANY COMMERCIAL CONSIDERATIONS

More information

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Hendrik Bluhm Andre Kruth Lotte Geck Carsten Degenhardt 1 0 Ψ 1 Quantum Computing

More information

OXIDE BASED NON-VOLATILE RESISTANCE RANDOM ACCESS MEMORY

OXIDE BASED NON-VOLATILE RESISTANCE RANDOM ACCESS MEMORY OXIDE BASED NON-VOLATILE RESISTANCE RANDOM ACCESS MEMORY Zheng Ke School of Electrical & Electronic Engineering A thesis submitted to the Nanyang Technological University in fulfilment of the requirement

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

Mechanism of Switching and Related Challenges in Transition Metal Oxide Based RRAM Devices

Mechanism of Switching and Related Challenges in Transition Metal Oxide Based RRAM Devices Mechanism of Switching and Related Challenges in Transition Metal Oxide Based RRAM Devices Rashmi Jha and Branden Long Dept. of Electrical Engineering and Computer Science University of Toledo Toledo,

More information

Engineering, University of Wisconsin-Madison, Madison, WI Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706

Engineering, University of Wisconsin-Madison, Madison, WI Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706 Radiation-Induced Effects on HfO x -Based Resistive Random Access Memory K-W Hsu 1, T-H Chang 2, L. Zhao 3, R.J. Agasie 4, T. B. Betthauser 5, R.J. Nickles 5, Y. Nishi 3, Z. Ma 2, and J.L. Shohet 1 1 Plasma

More information

Cation-based resistive memory

Cation-based resistive memory Cation-based resistive memory Emerging Non-Volatile Memory Technologies Symposium San Francisco Bay Area Nanotechnology Council April 6, 2012 Michael N. Kozicki Professor of Electrical Engineering School

More information

Lecture 18 Field-Effect Transistors 3

Lecture 18 Field-Effect Transistors 3 Lecture 18 Field-Effect Transistors 3 Schroder: Chapters, 4, 6 1/38 Announcements Homework 4/6: Is online now. Due Today. I will return it next Wednesday (30 th May). Homework 5/6: It will be online later

More information

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides

Fermi Level Pinning at Electrical Metal Contacts. of Monolayer Molybdenum Dichalcogenides Supporting information Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides Changsik Kim 1,, Inyong Moon 1,, Daeyeong Lee 1, Min Sup Choi 1, Faisal Ahmed 1,2, Seunggeol

More information

THE LINE OF RESISTANCE

THE LINE OF RESISTANCE ADDENDA TO: THE LINE OF RESISTANCE Dr. Lawrence D. Woolf General Atomics San Diego, CA 92121 Larry.Woolf@gat.com July 5, 2001 ADDENDUM TO 1A: ELECTRICAL RESISTIVITY OF GRAPHITE There is another way to

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Comparative Analysis of Practical Threshold Voltage Extraction Techniques for CMOS. Yu-Hsing Cheng ON Semiconductor October 15, 2018

Comparative Analysis of Practical Threshold Voltage Extraction Techniques for CMOS. Yu-Hsing Cheng ON Semiconductor October 15, 2018 Comparative Analysis of Practical Threshold Voltage Extraction Techniques for CMOS and LDMOS Devices in 180 nm Technology Yu-Hsing Cheng ON Semiconductor October 15, 2018 Outline Overview and Background

More information

Digital Electronics Part II Electronics, Devices and Circuits

Digital Electronics Part II Electronics, Devices and Circuits Digital Electronics Part Electronics, Devices and Circuits Dr.. J. Wassell ntroduction n the coming lectures we will consider how logic gates can be built using electronic circuits First, basic concepts

More information

Modelling of Diamond Devices with TCAD Tools

Modelling of Diamond Devices with TCAD Tools RADFAC Day - 26 March 2015 Modelling of Diamond Devices with TCAD Tools A. Morozzi (1,2), D. Passeri (1,2), L. Servoli (2), K. Kanxheri (2), S. Lagomarsino (3), S. Sciortino (3) (1) Engineering Department

More information

Time-Shared Twin Memristor Crossbar Reducing the Number of Arrays by Half for Pattern Recognition

Time-Shared Twin Memristor Crossbar Reducing the Number of Arrays by Half for Pattern Recognition Ngoc Truong et al. Nanoscale Research Letters (2017) 12:205 DOI 10.1186/s11671-017-1973-4 NANO EXPRESS Time-Shared Twin Memristor Crossbar Reducing the Number of Arrays by Half for Pattern Recognition

More information

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors Slide 1 Electronic Sensors Electronic sensors can be designed to detect a variety of quantitative aspects of a given physical system. Such quantities include: Temperatures Light (Optoelectronics) Magnetic

More information

During such a time interval, the MOS is said to be in "deep depletion" and the only charge present in the semiconductor is the depletion charge.

During such a time interval, the MOS is said to be in deep depletion and the only charge present in the semiconductor is the depletion charge. Q1 (a) If we apply a positive (negative) voltage step to a p-type (n-type) MOS capacitor, which is sufficient to generate an inversion layer at equilibrium, there is a time interval, after the step, when

More information

Digital Electronics Part II - Circuits

Digital Electronics Part II - Circuits Digital Electronics Part - Circuits Dr.. J. Wassell Gates from Transistors ntroduction Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits The

More information

Modeling Multistability and Hysteresis in Devices

Modeling Multistability and Hysteresis in Devices Modeling Multistability and Hysteresis in Devices Tianshi Wang EECS Department, University of California, Berkeley Devices with Hysteresis memristor (RRAM, CBRAM, PCM...) ESD snapback magnetic core Ida/McAndrew.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17653 Supplementary Methods Electronic transport mechanism in H-SNO In pristine RNO, pronounced electron-phonon interaction results in polaron formation that dominates the electronic

More information

Computational Science Studies toward Future Nano-Devices. Kenji Shiraishi. University of Tsukuba

Computational Science Studies toward Future Nano-Devices. Kenji Shiraishi. University of Tsukuba Computational Science Studies toward Future Nano-Devices Kenji Shiraishi University of Tsukuba 1 1. Introduction Contents 2. Key physics in ionic materials obtained by computational sciences. 3. Operation

More information

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices?

3/10/2013. Lecture #1. How small is Nano? (A movie) What is Nanotechnology? What is Nanoelectronics? What are Emerging Devices? EECS 498/598: Nanocircuits and Nanoarchitectures Lecture 1: Introduction to Nanotelectronic Devices (Sept. 5) Lectures 2: ITRS Nanoelectronics Road Map (Sept 7) Lecture 3: Nanodevices; Guest Lecture by

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

Magnetic tunnel junction beyond memory from logic to neuromorphic computing WANJUN PARK DEPT. OF ELECTRONIC ENGINEERING, HANYANG UNIVERSITY

Magnetic tunnel junction beyond memory from logic to neuromorphic computing WANJUN PARK DEPT. OF ELECTRONIC ENGINEERING, HANYANG UNIVERSITY Magnetic tunnel junction beyond memory from logic to neuromorphic computing WANJUN PARK DEPT. OF ELECTRONIC ENGINEERING, HANYANG UNIVERSITY Magnetic Tunnel Junctions (MTJs) Structure High density memory

More information

Quantum Phenomena & Nanotechnology (4B5)

Quantum Phenomena & Nanotechnology (4B5) Quantum Phenomena & Nanotechnology (4B5) The 2-dimensional electron gas (2DEG), Resonant Tunneling diodes, Hot electron transistors Lecture 11 In this lecture, we are going to look at 2-dimensional electron

More information

Lecture Notes 2 Charge-Coupled Devices (CCDs) Part I. Basic CCD Operation CCD Image Sensor Architectures Static and Dynamic Analysis

Lecture Notes 2 Charge-Coupled Devices (CCDs) Part I. Basic CCD Operation CCD Image Sensor Architectures Static and Dynamic Analysis Lecture Notes 2 Charge-Coupled Devices (CCDs) Part I Basic CCD Operation CCD Image Sensor Architectures Static and Dynamic Analysis Charge Well Capacity Buried channel CCD Transfer Efficiency Readout Speed

More information

The State of ZettaRAM (Invited Paper)

The State of ZettaRAM (Invited Paper) The State of ZettaRAM (Invited Paper) Eric Rotenberg Department of Electrical and Computer Engineering North Carolina State University Raleigh, NC USA ericro@ece.ncsu.edu, http://www.tinker.ncsu.edu/ericro

More information

Transistors - a primer

Transistors - a primer ransistors - a primer What is a transistor? Solid-state triode - three-terminal device, with voltage (or current) at third terminal used to control current between other two terminals. wo types: bipolar

More information

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application 2011 11th Non-Volatile Memory Technology Symposium @ Shanghai, China, Nov. 9, 20112 MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application Takahiro Hanyu 1,3, S. Matsunaga 1, D. Suzuki

More information

Lecture 5 Fault Modeling

Lecture 5 Fault Modeling Lecture 5 Fault Modeling Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes

More information

Supplementary Materials for

Supplementary Materials for Supplementary Materials for Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing He Tian,, Lianfeng Zhao,, Xuefeng Wang, Yao-Wen

More information

Numerical modeling of resistive switching in RRAM device.

Numerical modeling of resistive switching in RRAM device. Numerical modeling of resistive switching in RRAM device. D. Niraula *, V. Karpov Department of Physics and Astronomy, The University of Toledo, Toledo, OH, USA *Corresponding author: 2801 W. Bancroft

More information