Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

Size: px
Start display at page:

Download "Perpendicular MTJ stack development for STT MRAM on Endura PVD platform"

Transcription

1 Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Mahendra Pakala, Silicon Systems Group, AMAT Dec 16 th, 2014 AVS 2014 *All data in presentation is internal Applied generated data

2 OUTLINE STT MRAM Background Perpendicular Magnetic Tunnel Junction Basics Perpendicular Magnetic Tunnel Junction Using Endura PVD 2

3 Key Drivers for STT MRAM Today s Hierarchy CPU/ Register 10 ns 1 ns L1 Cache - SRAM L2, L3 Cache - SRAM STT MRAM 100 ns Main Off Chip Memory - DRAM 10 4 ns Local Storage - FLASH 10 6 ns Local Storage- HDD 10 9 ns Offline Storage - TAPE Scaling challenges of current RAM Latency gap between Storage and RAM 3

4 Endurance Random Read Access (s) Memory Performance Comparison SRAM DRAM STTRAM NAND NOR NAND NOR DRAM STTRAM SRAM Random Program Time (s) Cell Size (mm 2 ) STT RAM attributes: Endurance, Fast Access & Non-Volatility 4

5 Energy STTRAM BIT OPERATION Storing Data Magnetic direction of storage layer SL RL k B T FM INS FM 0 DE = KV 1 Reading Data Reading is done by sensing the resistance (high or low) Writing Data Writing is done using Spin Transfer Torque (STT) switching (MRAM, a precursor used magnetic field writing not scalable) i MgO SL Angle K, Anisotropy is material property and, V is the volume of storage layer N-B thermally activated flip probability: F t = 1 exp N t τ o exp E k B T Tunneling Magneto-resistance (TMR): TMR% = R AP R P R P 100 Switching current: D (= DE/ k B T) is a measure of length of data retention. High TMR% and low s (R) for fast read Low I c at high D is one of the tradeoffs in design 5

6 Switching Current (Writing) vs. Data Retention Switching Current (I co ) Data Retention / Thermal Stability (D) moment of SL damping const. Volume of SL Anisotropy (~ effective field for pmtj) I co α M V η H eff = VH km s 2 k B T spin polarization effective field Low I co at high D is key challenge for Magnetic Tunnel Junction (MTJ) stack development (along with high TMR, large pinning and thermal stability of stacks) 6

7 STT RAM Technology Options Type 1 NV SRAM / NV DRAM Type 2 SRAM, edram, Embedded Type 3 DRAM, Dense Standalone Pitch > 200 nm Pitch < 200 nm CD < 60 nm Pitch < 70 nm CD < 30nm M In-plane MTJ M Bottom Pin pmtj M Top Pin pmtj Perpendicular MTJ preferred for scalability Many new thin films (few Å) and, interfaces to control 7

8 Key Enabler: Magnetic Tunnel Junctions (MTJ) STT MRAM Sampling: Everspin TDK/Headway MTJ Developing: Toshiba/Hynix Samsung Global Foundries Micron Intel.... In-plane MTJ manufacturability demonstrated in HDD/MRAM (in products since 2007) Current Industry focus is on Perpendicular MTJ to enable high density arrays 8

9 OUTLINE STT MRAM Background Perpendicular Magnetic Tunnel Junction Basics Perpendicular Magnetic Tunnel Junction Using Endura PVD 9

10 MAX RESISTANCE (R MAX or R AP ) MIN RESISTANCE (R MIN or R P ) Magnetic Tunneling Junction (MTJ) a) Density of States in Semiconductor E 1 st Insulator/ Ferromagnet 2 nd Ferromagnet Barrier E E A Conduction 2 nd Ferromagnet E f E f E f Insulator 1 st Ferromagnet Valence D ( E) D (E) D ( E) D (E) D ( E) b) Density of States in Ferromagnet E D (E) RA(Ω. μm 2 ) = R P A i E E TMR% = R AP R P R P 100 E f E f E f D ( E) D (E) D ( E) D (E) D (E) D (E) 2 spin independent channel conduction amorphous barrier Spin filtering for tunneling through MgO crystalline barrier 10

11 Growth and Annealing of MgO MTJ Annealing at 300 to 450 C to obtain high TMR% 11

12 Anisotropy in Magnetic Films Anisotropy: Preferred direction/axis of magnetization. Many sources only 2 shown here Shape Anisotropy (in-plane) Demagnetizing field (H D ) M S Interfacial Anisotropy ( to plane) Symmetry breaking Strain Electron hybridization t _ H D = 4 M S cos t Metal or Oxides Ferromagnet film prefer in-plane magnetization, to reduce demagnetization field/energy For a film to have perpendicular ( ) magnetization, need to satisfy: H K H D > 0 K = K V + K S / t Effective Anisotropy bulk interface H K = 2K / M S 12

13 Stray Field Balance in MTJ: SAF SAF: Synthetic Anti-Ferromagnet SL Balanced SL M SL RL M RL RL PL Ru spacer RKKY Oscillatory Coupling in nonmagnetic spacer layer (Ru, Ir, Cr, ) Eg., CoFe\Ru\CoFe(FCC) j > 0 Ferromagnetic coupling spacer thickness j < 0: Anti-ferromagnetic coupling Reduces stray field on storage layer. Increases pin layer stability 13

14 STT MRAM: pmtj Stack Engineering Summary PMA Interface & Bulk PMA Basic MTJ Spin Dependent Coherent tunneling SyAF /SAF Pin MTJ RKKY coupling // MgO CoFeB (t) Ta SL e RL M SL M RL MgO e SL RL PL BCC FCC Thickness and thermal budget control Atomic level matching across interface 4.5Å 8.5Å Ru (t) RKKY coupling as function of Ru thickness Sub Å control of film thickness and interface roughness MgO growth condition for crystal texture/quality (low impurity, OH) and anneal Crystalline texture for magnetic materials 14

15 OUTLINE STT MRAM Background Perpendicular Magnetic Tunnel Junction Basics Perpendicular Magnetic Tunnel Junction Using Endura PVD 15

16 Perpendicular MTJ Stack Deposition Endura PVD Platform

17 Perpendicular MTJ Stack Blanket Film Performance: Transport/Tunneling (CIPT) Optimized Top Pin (RA:12, TMR : 200%) Top Pin Bottom Pin Thermal Stability of Bottom Pin High TMR and BEOL Thermal Budget Compatibility for MTJ Stack Dep 17

18 Moment Perpendicular MTJ Stack Blanket Film Performance, Magnetics (VSM) Bottom Pin Top Pin SL SAF PL RL FL Field (koe) Large pinning strength for SAF and square loop for Free Layer 18

19 Patterned pmtj Performance Metrics 1) Quasi Static Test (measure MTJ resistance as field is scanned), 2) Pulse current measurements V R AP Hc Field Scan Direction Hoff High TMR for fast read Low H off for reliability Low R P sigma for yield R P TMR = R AP R P R P 100% High H c ( Hk) for data retention 19

20 Resistance (Ohms) MTJ Size Dependence (Patterned): Top Pin 20nm H c ~ 850 Oe Patterned H off R min :30k, R max : 70k TMR ~ 153% Field (Oe) 20nm (smallest CD) High TMR and H C can be achieved by MTJ stack optimization and etch process tuning. 20nm bits with highest TMR of ~ 153% and Hc ~ 850 Oe. 20

21 Switching Current (Ic) & Scalability 20-25nm (smallest CD) Low switching current (~ 20uA) obtained by pmtj stack optimization D (data retention) ~ 50 for ~ 20nm. 21

22 Summary STT MRAM offers good endurance, speed and non-volatility. Hence being considered for embedded, cache and stand alone memory. One key challenge for making high density STT MRAM is developing materials with low switching current (I co ) at high thermal stability (D), with high TMR% & pinning. Using Endura PVD system, perpendicular MTJ stacks with performance suitable for dense arrays were demonstrated. Blanket film performance: TMR ~ 200% at RA ~ 12. Pinning > 2kOe. 20nm patterned MTJ: I co of ~ 20uA, D > 50, patterned TMR of ~ 153% Thanks for your attention! 22

23

Lecture 6 NEW TYPES OF MEMORY

Lecture 6 NEW TYPES OF MEMORY Lecture 6 NEW TYPES OF MEMORY Memory Logic needs memory to function (efficiently) Current memories Volatile memory SRAM DRAM Non-volatile memory (Flash) Emerging memories Phase-change memory STT-MRAM (Ferroelectric

More information

A Perpendicular Spin Torque Switching based MRAM for the 28 nm Technology Node

A Perpendicular Spin Torque Switching based MRAM for the 28 nm Technology Node A Perpendicular Spin Torque Switching based MRAM for the 28 nm Technology Node U.K. Klostermann 1, M. Angerbauer 1, U. Grüning 1, F. Kreupl 1, M. Rührig 2, F. Dahmani 3, M. Kund 1, G. Müller 1 1 Qimonda

More information

Author : Fabrice BERNARD-GRANGER September 18 th, 2014

Author : Fabrice BERNARD-GRANGER September 18 th, 2014 Author : September 18 th, 2014 Spintronic Introduction Spintronic Design Flow and Compact Modelling Process Variation and Design Impact Semiconductor Devices Characterisation Seminar 2 Spintronic Introduction

More information

A Technology-Agnostic MTJ SPICE Model with User-Defined Dimensions for STT-MRAM Scalability Studies

A Technology-Agnostic MTJ SPICE Model with User-Defined Dimensions for STT-MRAM Scalability Studies A Technology-Agnostic MTJ SPICE Model with User-Defined Dimensions for STT-MRAM Scalability Studies Model download website: mtj.umn.edu Jongyeon Kim 1, An Chen 2, Behtash Behin-Aein 2, Saurabh Kumar 1,

More information

Embedded MRAM Technology For logic VLSI Application

Embedded MRAM Technology For logic VLSI Application 2011 11th Non-Volatile Memory Technology Symposium Embedded MRAM Technology For logic VLSI Application November 7, 2011 Naoki Kasai 1, Shoji Ikeda 1,2, Takahiro Hanyu 1,3, Tetsuo Endoh 1,4, and Hideo Ohno

More information

Page 1. A portion of this study was supported by NEDO.

Page 1. A portion of this study was supported by NEDO. MRAM : Materials and Devices Current-induced Domain Wall Motion High-speed MRAM N. Ishiwata NEC Corporation Page 1 A portion of this study was supported by NEDO. Outline Introduction Positioning and direction

More information

New Approaches to Reducing Energy Consumption of MRAM write cycles, Ultra-high efficient writing (Voltage-Control) Spintronics Memory (VoCSM)

New Approaches to Reducing Energy Consumption of MRAM write cycles, Ultra-high efficient writing (Voltage-Control) Spintronics Memory (VoCSM) New Approaches to Reducing Energy Consumption of MRAM write cycles, Ultra-high efficient writing (Voltage-Control) Spintronics Memory (VoCSM) Hiroaki Yoda Corporate Research & Development Center, Toshiba

More information

Wouldn t it be great if

Wouldn t it be great if IDEMA DISKCON Asia-Pacific 2009 Spin Torque MRAM with Perpendicular Magnetisation: A Scalable Path for Ultra-high Density Non-volatile Memory Dr. Randall Law Data Storage Institute Agency for Science Technology

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

MRAM: Device Basics and Emerging Technologies

MRAM: Device Basics and Emerging Technologies MRAM: Device Basics and Emerging Technologies Matthew R. Pufall National Institute of Standards and Technology 325 Broadway, Boulder CO 80305-3337 Phone: +1-303-497-5206 FAX: +1-303-497-7364 E-mail: pufall@boulder.nist.gov

More information

Thermal Magnetic Random Access Memory

Thermal Magnetic Random Access Memory Thermal Magnetic andom Access Memory IEEE International Conference on Computer Design New Memory Technologies San Jose, CA October 4, 2005 James Deak NVE Corporation Participants Jim Daughton - PI Art

More information

Magnetization Dynamics in Spintronic Structures and Devices

Magnetization Dynamics in Spintronic Structures and Devices Japanese Journal of Applied Physics Vol. 45, No. 5A, 2006, pp. 3835 3841 #2006 The Japan Society of Applied Physics Magnetization Dynamics in Spintronic Structures and Devices Structure, Materials and

More information

Magnetic tunnel junction beyond memory from logic to neuromorphic computing WANJUN PARK DEPT. OF ELECTRONIC ENGINEERING, HANYANG UNIVERSITY

Magnetic tunnel junction beyond memory from logic to neuromorphic computing WANJUN PARK DEPT. OF ELECTRONIC ENGINEERING, HANYANG UNIVERSITY Magnetic tunnel junction beyond memory from logic to neuromorphic computing WANJUN PARK DEPT. OF ELECTRONIC ENGINEERING, HANYANG UNIVERSITY Magnetic Tunnel Junctions (MTJs) Structure High density memory

More information

SPICE Modeling of STT-RAM for Resilient Design. Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU

SPICE Modeling of STT-RAM for Resilient Design. Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU SPICE odeling of STT-RA for Resilient Design Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU OUTLINE - 2 - Heterogeneous emory Design A Promising Candidate:

More information

Mon., Feb. 04 & Wed., Feb. 06, A few more instructive slides related to GMR and GMR sensors

Mon., Feb. 04 & Wed., Feb. 06, A few more instructive slides related to GMR and GMR sensors Mon., Feb. 04 & Wed., Feb. 06, 2013 A few more instructive slides related to GMR and GMR sensors Oscillating sign of Interlayer Exchange Coupling between two FM films separated by Ruthenium spacers of

More information

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application 2011 11th Non-Volatile Memory Technology Symposium @ Shanghai, China, Nov. 9, 20112 MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application Takahiro Hanyu 1,3, S. Matsunaga 1, D. Suzuki

More information

NONVOLATILE SPINTRONICS: PERSPECTIVES ON INSTANT-ON NONVOLATILE NANOELECTRONIC SYSTEMS

NONVOLATILE SPINTRONICS: PERSPECTIVES ON INSTANT-ON NONVOLATILE NANOELECTRONIC SYSTEMS SPIN Vol. 2, No. 2 (2012) 1250009 (22 pages) World Scienti c Publishing Company DOI: 10.1142/S2010324712500099 NONVOLATILE SPINTRONICS: PERSPECTIVES ON INSTANT-ON NONVOLATILE NANOELECTRONIC SYSTEMS K.

More information

Thursday, July 20 7:30-8:10 Breakfast 8:10-8:30 Welcome and Introduction. Morning Session: The Path Towards MRAM Session Chair: Bob McMichael

Thursday, July 20 7:30-8:10 Breakfast 8:10-8:30 Welcome and Introduction. Morning Session: The Path Towards MRAM Session Chair: Bob McMichael Thursday, July 20 7:30-8:10 Breakfast 8:10-8:30 Welcome and Introduction Morning Session: The Path Towards MRAM Session Chair: Bob McMichael v 8:30-9:15 MRAM Technologies and Metrologies: Present State

More information

Low-power non-volatile spintronic memory: STT-RAM and beyond

Low-power non-volatile spintronic memory: STT-RAM and beyond IOP PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 46 (2013) 074003 (10pp) doi:10.1088/0022-3727/46/7/074003 Low-power non-volatile spintronic memory: STT-RAM and beyond K L Wang,

More information

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology From Spin Torque Random Access Memory to Spintronic Memristor Xiaobin Wang Seagate Technology Contents Spin Torque Random Access Memory: dynamics characterization, device scale down challenges and opportunities

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction

Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction November 3-4, 2011 Berkeley, CA, USA Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction Hideo Ohno 1,2 1 Center for Spintronics Integrated Systems, Tohoku University, Japan 2 Laboratory for Nanoelectronics

More information

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Enhanced spin orbit torques by oxygen incorporation in tungsten films Enhanced spin orbit torques by oxygen incorporation in tungsten films Timothy Phung IBM Almaden Research Center, San Jose, California, USA 1 Motivation: Memory devices based on spin currents Spin Transfer

More information

Compact Modeling of STT-RAM and MeRAM A Verilog-A model of Magnetic Tunnel Junction Behavioral Dynamics

Compact Modeling of STT-RAM and MeRAM A Verilog-A model of Magnetic Tunnel Junction Behavioral Dynamics UNIVERSITY OF CALIFORNIA, LOS ANGELES Compact Modeling of STT-RAM and MeRAM A Verilog-A model of Magnetic Tunnel Junction Behavioral Dynamics Dheeraj Srinivasan 3/8/2013 +This work was done under the advisement

More information

A Universal Memory Model for Design Exploration. Ketul Sutaria, Chi-Chao Wang, Yu (Kevin) Cao School of ECEE, ASU

A Universal Memory Model for Design Exploration. Ketul Sutaria, Chi-Chao Wang, Yu (Kevin) Cao School of ECEE, ASU A Universal Memory Model for Design Exploration Ketul Sutaria, Chi-Chao Wang, Yu (Kevin) Cao School of ECEE, ASU Universal Memory Modeling because there is no universal memory device! Modeling needs in

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

9. Spin Torque Majority Gate

9. Spin Torque Majority Gate eyond MOS computing 9. Spin Torque Majority Gate Dmitri Nikonov Thanks to George ourianoff Dmitri.e.nikonov@intel.com 1 Outline Spin majority gate with in-pane magnetization Spin majority gate with perpendicular

More information

A Review of Spintronics based Data Storage. M.Tech Student Professor

A Review of Spintronics based Data Storage. M.Tech Student Professor A Review of Spintronics based Data Storage By: Mohit P. Tahiliani S. Vadakkan M.Tech Student Professor NMAMIT, Nitte NMAMIT, Nitte CONTENTS Introduction Giant Magneto Resistance (GMR) Tunnel Magneto Resistance

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 1: Introduction Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Magnetism and Magnetic Materials What is magnetism? What is its origin? Magnetic properties

More information

Spintronics. Seminar report SUBMITTED TO: SUBMITTED BY:

Spintronics.  Seminar report SUBMITTED TO: SUBMITTED BY: A Seminar report On Spintronics Submitted in partial fulfillment of the requirement for the award of degree of Electronics SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface I have

More information

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Overview Background A brief history GMR and why it occurs TMR structure What is spin transfer? A novel device A future

More information

Introduction to magnetic recording + recording materials

Introduction to magnetic recording + recording materials Introduction to magnetic recording + recording materials Laurent Ranno Institut Néel, Nanoscience Dept, CNRS-UJF, Grenoble, France I will give two lectures about magnetic recording. In the first one, I

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Two-terminal spin orbit torque magnetoresistive random access memory

Two-terminal spin orbit torque magnetoresistive random access memory Two-terminal spin orbit torque magnetoresistive random access memory Noriyuki Sato 1, Fen Xue 1,3, Robert M. White 1,2, Chong Bi 1, and Shan X. Wang 1,2,* 1 Stanford University, Department of Electrical

More information

Voltage effects in poly and single-crystal 3d ferromagnetic metal/mgo systems

Voltage effects in poly and single-crystal 3d ferromagnetic metal/mgo systems Title Author(s) Voltage effects in poly and single-crystal 3d ferromagnetic metal/mgo systems Shukla Kumar, Amit Citation Issue Date Text Version ETD URL https://doi.org/10.18910/70775 DOI 10.18910/70775

More information

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008 Current induced resistance change of magnetic tunnel junctions with ultra-thin MgO tunnel barriers Patryk Krzysteczko, 1, Xinli Kou, 2 Karsten Rott, 1 Andy Thomas, 1 and Günter Reiss 1 1 Bielefeld University,

More information

Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions

Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions Ryan Stearrett Ryan Stearrett, W. G. Wang, Xiaoming Kou, J. F. Feng, J. M. D. Coey, J. Q. Xiao, and E. R. Nowak, Physical

More information

Magnetic core memory (1951) cm 2 ( bit)

Magnetic core memory (1951) cm 2 ( bit) Magnetic core memory (1951) 16 16 cm 2 (128 128 bit) Semiconductor Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access Non-Random Access EPROM E 2 PROM

More information

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications?

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? Advanced Topics In Solid State Devices EE290B Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? August 28, 2007 Prof. Eli Yablonovitch Electrical Engineering & Computer Sciences

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Spin Torque and Magnetic Tunnel Junctions

Spin Torque and Magnetic Tunnel Junctions Spin Torque and Magnetic Tunnel Junctions Ed Myers, Frank Albert, Ilya Krivorotov, Sergey Kiselev, Nathan Emley, Patrick Braganca, Greg Fuchs, Andrei Garcia, Ozhan Ozatay, Eric Ryan, Jack Sankey, John

More information

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB

Moores Law for DRAM. 2x increase in capacity every 18 months 2006: 4GB MEMORY Moores Law for DRAM 2x increase in capacity every 18 months 2006: 4GB Corollary to Moores Law Cost / chip ~ constant (packaging) Cost / bit = 2X reduction / 18 months Current (2008) ~ 1 micro-cent

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Semiconductor memories

Semiconductor memories Semiconductor memories Semiconductor Memories Data in Write Memory cell Read Data out Some design issues : How many cells? Function? Power consuption? Access type? How fast are read/write operations? Semiconductor

More information

Nomenclature, Advantages, Applications. Logic States, Read Ops, Write Ops

Nomenclature, Advantages, Applications. Logic States, Read Ops, Write Ops Critical Factors in Testing MRAM Devices W. Stevenson Cypress Semiconductor, Inc Inc. Southwest Test Workshop June G. Asmerom C. Taylor Electroglas AGENDA / OBJECTIVE MRAM Device? Nomenclature, Advantages,

More information

Magnetic Race- Track Memory: Current Induced Domain Wall Motion!

Magnetic Race- Track Memory: Current Induced Domain Wall Motion! Magnetic Race- Track Memory: Current Induced Domain Wall Motion! Stuart Parkin IBM Fellow IBM Almaden Research Center San Jose, California parkin@almaden.ibm.com Digital data storage Two main types of

More information

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 12 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 20/February/2018 (P/T 005) Quick Review over the Last Lecture Origin of magnetism : ( Circular current ) is equivalent to a

More information

From Hall Effect to TMR

From Hall Effect to TMR From Hall Effect to TMR 1 Abstract This paper compares the century old Hall effect technology to xmr technologies, specifically TMR (Tunnel Magneto-Resistance) from Crocus Technology. It covers the various

More information

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik Spin orbit torque driven magnetic switching and memory Debanjan Bhowmik Spin Transfer Torque Fixed Layer Free Layer Fixed Layer Free Layer Current coming out of the fixed layer (F2) is spin polarized in

More information

Advanced Flash and Nano-Floating Gate Memories

Advanced Flash and Nano-Floating Gate Memories Advanced Flash and Nano-Floating Gate Memories Mater. Res. Soc. Symp. Proc. Vol. 1337 2011 Materials Research Society DOI: 10.1557/opl.2011.1028 Scaling Challenges for NAND and Replacement Memory Technology

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS147 Supplementary Materials for Bias voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions Se-Chung Oh 1,

More information

Magnetic tunnel junctions using Co-based Heusler alloy electrodes

Magnetic tunnel junctions using Co-based Heusler alloy electrodes Magnetic tunnel junctions using Co-based Heusler alloy electrodes 1 Half-metallic Heusler alloy thin films for spintronic devices E F E Energy gap Co 2 YZ: L2 1 structure 2a MgO.5957 nm a Co.5654 2MnSi

More information

Test System Requirements For Wafer Level MRAM Test

Test System Requirements For Wafer Level MRAM Test Test System Requirements For Wafer Level MRAM Test Raphael Robertazzi IBM/Infineon MRAM Development Alliance With Acknowledgement To Cascade Microtech Inc. And Temptronics Inc. 6/07/04 SWTW-2004 Page [1]

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance 03/18/2010 Instructor: Dr. Elbio R. Dagotto Class: Solid State Physics 2 Nozomi Shirato Department of Materials Science and Engineering ntents: Giant Magnetoresistance (GMR) Discovery

More information

Index. annealing temperature 236, 238, 250, 310, , , 491, 691

Index. annealing temperature 236, 238, 250, 310, , , 491, 691 Index Abbe s diffraction limit 42 absorption coefficient 96 97, 107 108, 128 access device 436, 599, 604, 607, 615 access transistor 435 437, 592 593, 596, 603, 606 activation energy 215, 296 297, 411,

More information

SPIN TRANSFER TORQUE: A MULTISCALE PICTURE

SPIN TRANSFER TORQUE: A MULTISCALE PICTURE CHAPTER SPIN TRANSFER TORQUE: A MULTISCALE PICTURE Yunkun Xie, Ivan Rungger 2, Kamaram Munira 3, Maria Tsoneva Stamenova 2, Stefano Sanvito 3, and Avik W. Ghosh Charles L Brown School of Electrical and

More information

Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel. Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free Layer

Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel. Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free Layer Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free Layer Jun HAYAKAWA 1,2, Shoji IKEDA 2, Young Min LEE 2, Ryutaro SASAKI

More information

arxiv: v1 [physics.app-ph] 1 May 2017

arxiv: v1 [physics.app-ph] 1 May 2017 Magnetic Skyrmions for Cache Memory Mei-Chin Chen 1 and Kaushik Roy 1 1 School of Electrical and Computer Engineering, Purdue University, West Lafayette, 47906, USA * chen1320@purdue.edu ABSTRACT arxiv:1705.01095v1

More information

Low Energy SPRAM. Figure 1 Spin valve GMR device hysteresis curve showing states of parallel (P)/anti-parallel (AP) poles,

Low Energy SPRAM. Figure 1 Spin valve GMR device hysteresis curve showing states of parallel (P)/anti-parallel (AP) poles, Zachary Foresta Nanoscale Electronics 04-22-2009 Low Energy SPRAM Introduction The concept of spin transfer was proposed by Slonczewski [1] and Berger [2] in 1996. They stated that when a current of polarized

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

EE141- Fall 2002 Lecture 27. Memory EE141. Announcements. We finished all the labs No homework this week Projects are due next Tuesday 9am EE141

EE141- Fall 2002 Lecture 27. Memory EE141. Announcements. We finished all the labs No homework this week Projects are due next Tuesday 9am EE141 - Fall 2002 Lecture 27 Memory Announcements We finished all the labs No homework this week Projects are due next Tuesday 9am 1 Today s Lecture Memory:» SRAM» DRAM» Flash Memory 2 Floating-gate transistor

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

Semiconductor Memories

Semiconductor Memories Semiconductor References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey UCB Principles of CMOS VLSI Design: A Systems Perspective, 2nd Ed., N. H. E. Weste and K. Eshraghian

More information

Emerging Memory Technologies

Emerging Memory Technologies Emerging Memory Technologies Minal Dubewar 1, Nibha Desai 2, Subha Subramaniam 3 1 Shah and Anchor kutchhi college of engineering, 2 Shah and Anchor kutchhi college of engineering, 3 Shah and Anchor kutchhi

More information

Leveraging ECC to Mitigate Read Disturbance, False Reads and Write Faults in STT-RAM

Leveraging ECC to Mitigate Read Disturbance, False Reads and Write Faults in STT-RAM Leveraging ECC to Mitigate Read Disturbance, False Reads and Write Faults in STT-RAM Seyed Mohammad Seyedzadeh, Rakan Maddah, Alex Jones, Rami Melhem University of Pittsburgh Intel Corporation seyedzadeh@cs.pitt.edu,

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

Kaushik Roy Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN https://engineering.purdue.edu/nrl/index.

Kaushik Roy Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN https://engineering.purdue.edu/nrl/index. Beyond Charge-Based Computing: STT- MRAMs Kaushik Roy Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN https://engineering.purdue.edu/nrl/index.html 1 Failure probability

More information

Field-free magnetization reversal by spin Hall effect and exchange bias

Field-free magnetization reversal by spin Hall effect and exchange bias Eindhoven University of Technology MASTER Field-free magnetization reversal by spin Hall effect and exchange bias Vermijs, G. Award date: 2016 Disclaimer This document contains a student thesis (bachelor's

More information

Improving STT-MRAM Density Through Multibit Error Correction

Improving STT-MRAM Density Through Multibit Error Correction Improving STT-MRAM Density Through Multibit Error Correction Brandon Del Bel, Jongyeon Kim, Chris H. Kim, and Sachin S. Sapatnekar Department of ECE, University of Minnesota {delbel, kimx2889, chriskim,

More information

PS3-RAM: A Fast Portable and Scalable Statistical STT-RAM Reliability Analysis Method

PS3-RAM: A Fast Portable and Scalable Statistical STT-RAM Reliability Analysis Method PS3-RAM: A Fast Portable and Scalable Statistical STT-RAM Reliability Analysis Method ujie en, Yaojun Zhang, Yiran Chen Yu ang Yuan Xie University of Pittsburgh Tsinghua University Pennsylvania State University

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories Spin-transfer-torque efficiency enhanced by edge-damage of perpendicular magnetic random access memories Kyungmi Song 1 and Kyung-Jin Lee 1,2,* 1 KU-KIST Graduate School of Converging Science and Technology,

More information

GMU, ECE 680 Physical VLSI Design 1

GMU, ECE 680 Physical VLSI Design 1 ECE680: Physical VLSI Design Chapter VIII Semiconductor Memory (chapter 12 in textbook) 1 Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance N. Shirato urse: Solid State Physics 2, Spring 2010, Instructor: Dr. Elbio Dagotto Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Linda Engelbrecht for the degree of Doctor of Philosophy in Electrical and Computer Engineering presented on March 18, 2011. Title: Modeling Spintronics Devices in Verilog-A

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2018 Memory Overview, Memory Core Cells Today! Charge Leakage/Charge Sharing " Domino Logic Design Considerations! Logic Comparisons!

More information

Thin Film Transistors (TFT)

Thin Film Transistors (TFT) Thin Film Transistors (TFT) a-si TFT - α-si:h (Hydrogenated amorphous Si) deposited with a PECVD system (low temp. process) replaces the single crystal Si substrate. - Inverted staggered structure with

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11733 1 Ising-Macrospin model The Ising-Macrospin (IM) model simulates the configuration of the superlattice (SL) by assuming every layer is a single spin (macrospin)

More information

Modelling and Circuit Design for STT-MRAM. Aynaz Vatankhahghadim

Modelling and Circuit Design for STT-MRAM. Aynaz Vatankhahghadim Modelling and Circuit Design for STT-MRAM by Aynaz Vatankhahghadim A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer

More information

MAGNETO-RESISTANCE AND INDUCED DOMAIN STRUCTURE IN TUNNEL JUNCTIONS

MAGNETO-RESISTANCE AND INDUCED DOMAIN STRUCTURE IN TUNNEL JUNCTIONS Mat. Res. Soc. Symp. Proc. Vol. 674 001 Materials Research Society MAGNETO-RESISTANCE AND INDUCED DOMAIN STRUCTURE IN TUNNEL JUNCTIONS M. Hehn, O. Lenoble, D. Lacour and A. Schuhl Laboratoire de Physique

More information

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Mahendra DC 1, Mahdi Jamali 2, Jun-Yang Chen 2, Danielle

More information

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

! Charge Leakage/Charge Sharing.  Domino Logic Design Considerations. ! Logic Comparisons. ! Memory.  Classification.  ROM Memories. ESE 57: Digital Integrated Circuits and VLSI Fundamentals Lec 9: March 9, 8 Memory Overview, Memory Core Cells Today! Charge Leakage/ " Domino Logic Design Considerations! Logic Comparisons! Memory " Classification

More information

Spin-Based Computing: Device Concepts, Current Status, and a Case Study on a High-Performance Microprocessor

Spin-Based Computing: Device Concepts, Current Status, and a Case Study on a High-Performance Microprocessor CONTRIBUTED P A P E R Spin-Based Computing: Device Concepts, Current Status, and a Case Study on a High-Performance Microprocessor This paper provides a review of various spintronic devices being considered

More information

Shape anisotropy revisited in single-digit

Shape anisotropy revisited in single-digit Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions K. Watanabe 1, B. Jinnai 2, S. Fukami 1,2,3,4*, H. Sato 1,2,3,4, and H. Ohno 1,2,3,4,5 1 Laboratory for Nanoelectronics and

More information

Chapter 3 Basics Semiconductor Devices and Processing

Chapter 3 Basics Semiconductor Devices and Processing Chapter 3 Basics Semiconductor Devices and Processing Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm 1 Objectives Identify at least two

More information

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES CRR Report Number 29, Winter 2008 SPIN TRANSFER TORQUES IN HIGH ANISOTROPY AGNETIC NANOSTRUCTURES Eric Fullerton 1, Jordan Katine 2, Stephane angin 3, Yves Henry 4, Dafine Ravelosona 5, 1 University of

More information

An Overview of Spin-based Integrated Circuits

An Overview of Spin-based Integrated Circuits ASP-DAC 2014 An Overview of Spin-based Integrated Circuits Wang Kang, Weisheng Zhao, Zhaohao Wang, Jacques-Olivier Klein, Yue Zhang, Djaafar Chabi, Youguang Zhang, Dafiné Ravelosona, and Claude Chappert

More information

V High frequency magnetic measurements

V High frequency magnetic measurements V High frequency magnetic measurements Rémy Lassalle-Balier What we are doing and why Ferromagnetic resonance CHIMP memory Time-resolved magneto-optic Kerr effect NISE Task 8 New materials Spin dynamics

More information

MatSci 224 Magnetism and Magnetic. November 5, 2003

MatSci 224 Magnetism and Magnetic. November 5, 2003 MatSci 224 Magnetism and Magnetic Materials November 5, 2003 How small is small? What determines whether a magnetic structure is made of up a single domain or many domains? d Single domain d~l d d >> l

More information

Highly thermally stable sub-20nm magnetic random-access memory based on perpendicular shape anisotropy

Highly thermally stable sub-20nm magnetic random-access memory based on perpendicular shape anisotropy Highly thermally stable sub-20nm magnetic random-access memory based on perpendicular shape anisotropy N. Perrissin 1, S. Lequeux 1, N. Strelkov 1,2, L. Vila 1, L. Buda-Prejbeanu 1, S. Auffret 1, R.C.

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 21: April 4, 2017 Memory Overview, Memory Core Cells Penn ESE 570 Spring 2017 Khanna Today! Memory " Classification " ROM Memories " RAM Memory

More information

Infrastructure of Thin Films Laboratory in Institute of Molecular Physics Polish Academy of Sciences

Infrastructure of Thin Films Laboratory in Institute of Molecular Physics Polish Academy of Sciences Infrastructure of Thin Films Laboratory in Institute of Molecular Physics Polish Academy of Sciences Outline Sample preparation Magnetron sputtering Ion-beam sputtering Pulsed laser deposition Electron-beam

More information

Influence of electrode materials on CeO x based resistive switching

Influence of electrode materials on CeO x based resistive switching Influence of electrode materials on CeO x based resistive switching S. Kano a, C. Dou a, M. Hadi a, K. Kakushima b, P. Ahmet a, A. Nishiyama b, N. Sugii b, K. Tsutsui b, Y. Kataoka b, K. Natori a, E. Miranda

More information

Semiconductor Memory Classification

Semiconductor Memory Classification Semiconductor Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable (PROM) SRAM FIFO FLASH

More information

MESL: Proposal for a Non-volatile Cascadable Magneto-Electric Spin Logic

MESL: Proposal for a Non-volatile Cascadable Magneto-Electric Spin Logic MESL: Proposal for a Non-volatile Cascadable Magneto-Electric Spin Logic Akhilesh Jaiswal 1,, and Kaushik Roy 1 1 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907,

More information

Spin-Based Logic and Memory Technologies for Low-Power Systems

Spin-Based Logic and Memory Technologies for Low-Power Systems Spin-Based Logic and Memory Technologies for Low-Power Systems A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Jongyeon Kim IN PARTIAL FULFILLMENT OF THE

More information

EE130: Integrated Circuit Devices

EE130: Integrated Circuit Devices EE130: Integrated Circuit Devices (online at http://webcast.berkeley.edu) Instructor: Prof. Tsu-Jae King (tking@eecs.berkeley.edu) TA s: Marie Eyoum (meyoum@eecs.berkeley.edu) Alvaro Padilla (apadilla@eecs.berkeley.edu)

More information