A Perpendicular Spin Torque Switching based MRAM for the 28 nm Technology Node

Size: px
Start display at page:

Download "A Perpendicular Spin Torque Switching based MRAM for the 28 nm Technology Node"

Transcription

1 A Perpendicular Spin Torque Switching based MRAM for the 28 nm Technology Node U.K. Klostermann 1, M. Angerbauer 1, U. Grüning 1, F. Kreupl 1, M. Rührig 2, F. Dahmani 3, M. Kund 1, G. Müller 1 1 Qimonda AG 2 Siemens AG 3 Altis Semiconductor <1>

2 Perpendicular Spin Torque (P-ST) based MRAM o A New Concept Outline Assessment for 28 nm Node o Data Retention o Low Switching Currents o Cell to Cell Interaction o Barrier Reliability Cell Layout Read Analysis <2>

3 Magnetic Hysteresis: Cell Resistance R Low Conventional MRAM 0 Magnetic Field H High WRITE: Word/Bit line field used to set magnetic free layer READ: Electrical determination of R by sense amplifiers Anti- Parallel 1 Parallel 0 <3>

4 Spin Torque Select-Based MRAM Bit Line free layer barrier pinned S D magneto resistance resistance change MR [%] [ % ] "1" Set "0" 20 Set "1" "0" switching voltage V c [mv] c [ mv ] Writing is done by a critical select current <4>

5 Perpendicular Anisotropy In-Plane Magnetization Perpendicular Magnetization interface H k shape H k free layer barrier reference layer Perpendicular anisotropy is very high <5>

6 Realization CoFeTb CoFeTb Source: Spin transfer switching in TbCoFe / CoFeB / MgO / CoFeB / TbCoFe magnetoresistive tunneling junctions with perpendicular magnetic anisotropy, M. Nakayama et al., BB-09, 52 nd Magnetism and Magnetic Materials Conference (MMM) in Tampa, Nov Feasibility of concept is demonstrated MTJ stack engineering is important <6>

7 Scalability of Activation Energy E a 1 = Vol M 2 s H MTJ size Anisotropy Material k activation energy E a [k B T ] activation energy E a [ k B T ] P-ST I-ST Perpendicular In-Plane Product Target: 85 k B T MTJ width w [nm] w [ nm ] High anisotropy ensures scaling below 20 nm <7>

8 Scalability of Switching Current switching current current I c I [µa] c [ µa ] I c P-ST I c I-ST I c ~ w I c ~ const MTJ width width w w [nm] [ nm ] In-Plane Perpendicular Absence of demagnetization fields reduces required switching current I c ~ 30 µa <8>

9 field component H (x or z) [ Oe ] p disturb, x or z [ ] Cell to Cell Interaction P-ST I-ST Perpendicular In-Plane distance from center x [F = 28 nm] distance from center x [ F = 28 nm ] Significantly reduced stray field interaction <9>

10 Impact of Interaction on E a activation energy E a [ k B T ] activation energy E a [k B T ] 90 Product Target: 85 k B T In-Plane Perpendicular P-ST I-ST structural cell size [F 2 with F = 28 nm] structural cell size [ F ² with F = 28 nm ] Correct E a by H 1 disturb H k ~1.5 High data retention at dense spacing <10>

11 switching voltage V voltage c or V BD [V] [ V ] Reliability Estimates V c P-ST V c I-ST V BD at Product Life Time In-Plane 0.2 Perpendicular RA RA of of MTJ barrier [Ωµm [ Ωµm² 2 ] ] P-ST allows to use high RA for reliable operation <11>

12 Cell Layout at 28 nm Node 6 28 nm 2F 3F 6 F² layout ensures sufficient current drivability <12>

13 single bit error per 1 access 1E-10 1E-14 1E-18 1E-22 1E-26 1E-30 Read Disturb γ := ratio (read / write) current γ = 0.5 γ = 0.4 γ = temperature T [ C] [ C ] I c ~ 30 µa At I c ~ 30 µa a read current of I r ~ 10 µa (γ ~ 0.3) is feasible without read disturb <13>

14 MTJ Stack Performance Measured magneto resistance (MR) for in-plane systems MR = ( R 1 - R 0 ) / R 0 [%] MR [ % ] RA of RA MTJ of barrier MTJ [Ωµm [ Ωµm² 2 ] ] MR := ( R 1 - R 0 ) / R 0 I-ST demonstrated high MR at low RA P-ST will require similar stack performance <14>

15 Read Circuit WL c Source Line MTJ BL 1.1 V potential select transistor reference current Typical: R 0 = 6 kω R 1 = 12 kω R para = 14 kω CSL READ_EN MBL I_REF voltage compliance for MTJ: controlling MBL potential by V_READ = 0.95 V V_READ V_READ SA_IN EQL SA_REF OUT optimized SA current compliance I r Current compliance avoids read disturb <15>

16 signal [V] [ V ] signal [ [V] V ] Read Operation Simulation 1,2 0,8 0,4 0,0 1,2 0,8 0,4 READ_EN OUT MBL SA_IN SA_REF 0, time [[ns] ] Fast random array read access time ~ 30 ns demonstrated I r read read current current [ [µa] ] <16>

17 Summary Perpendicular Spin Torque has been studied targeting the 28 nm node. Expected benefits are: long data retention (> C) low write current (~ 30 µa) small cell sizes (~ 6 F²) high write endurance and no read disturb Random access speeds are 30 ns for read and 10 ns for write. <17>

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Mahendra Pakala, Silicon Systems Group, AMAT Dec 16 th, 2014 AVS 2014 *All data in presentation is internal Applied generated data

More information

Page 1. A portion of this study was supported by NEDO.

Page 1. A portion of this study was supported by NEDO. MRAM : Materials and Devices Current-induced Domain Wall Motion High-speed MRAM N. Ishiwata NEC Corporation Page 1 A portion of this study was supported by NEDO. Outline Introduction Positioning and direction

More information

A Technology-Agnostic MTJ SPICE Model with User-Defined Dimensions for STT-MRAM Scalability Studies

A Technology-Agnostic MTJ SPICE Model with User-Defined Dimensions for STT-MRAM Scalability Studies A Technology-Agnostic MTJ SPICE Model with User-Defined Dimensions for STT-MRAM Scalability Studies Model download website: mtj.umn.edu Jongyeon Kim 1, An Chen 2, Behtash Behin-Aein 2, Saurabh Kumar 1,

More information

Lecture 6 NEW TYPES OF MEMORY

Lecture 6 NEW TYPES OF MEMORY Lecture 6 NEW TYPES OF MEMORY Memory Logic needs memory to function (efficiently) Current memories Volatile memory SRAM DRAM Non-volatile memory (Flash) Emerging memories Phase-change memory STT-MRAM (Ferroelectric

More information

Magnetic tunnel junction beyond memory from logic to neuromorphic computing WANJUN PARK DEPT. OF ELECTRONIC ENGINEERING, HANYANG UNIVERSITY

Magnetic tunnel junction beyond memory from logic to neuromorphic computing WANJUN PARK DEPT. OF ELECTRONIC ENGINEERING, HANYANG UNIVERSITY Magnetic tunnel junction beyond memory from logic to neuromorphic computing WANJUN PARK DEPT. OF ELECTRONIC ENGINEERING, HANYANG UNIVERSITY Magnetic Tunnel Junctions (MTJs) Structure High density memory

More information

MRAM: Device Basics and Emerging Technologies

MRAM: Device Basics and Emerging Technologies MRAM: Device Basics and Emerging Technologies Matthew R. Pufall National Institute of Standards and Technology 325 Broadway, Boulder CO 80305-3337 Phone: +1-303-497-5206 FAX: +1-303-497-7364 E-mail: pufall@boulder.nist.gov

More information

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology

From Spin Torque Random Access Memory to Spintronic Memristor. Xiaobin Wang Seagate Technology From Spin Torque Random Access Memory to Spintronic Memristor Xiaobin Wang Seagate Technology Contents Spin Torque Random Access Memory: dynamics characterization, device scale down challenges and opportunities

More information

Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction

Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction November 3-4, 2011 Berkeley, CA, USA Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction Hideo Ohno 1,2 1 Center for Spintronics Integrated Systems, Tohoku University, Japan 2 Laboratory for Nanoelectronics

More information

Wouldn t it be great if

Wouldn t it be great if IDEMA DISKCON Asia-Pacific 2009 Spin Torque MRAM with Perpendicular Magnetisation: A Scalable Path for Ultra-high Density Non-volatile Memory Dr. Randall Law Data Storage Institute Agency for Science Technology

More information

Embedded MRAM Technology For logic VLSI Application

Embedded MRAM Technology For logic VLSI Application 2011 11th Non-Volatile Memory Technology Symposium Embedded MRAM Technology For logic VLSI Application November 7, 2011 Naoki Kasai 1, Shoji Ikeda 1,2, Takahiro Hanyu 1,3, Tetsuo Endoh 1,4, and Hideo Ohno

More information

Thermal Magnetic Random Access Memory

Thermal Magnetic Random Access Memory Thermal Magnetic andom Access Memory IEEE International Conference on Computer Design New Memory Technologies San Jose, CA October 4, 2005 James Deak NVE Corporation Participants Jim Daughton - PI Art

More information

9. Spin Torque Majority Gate

9. Spin Torque Majority Gate eyond MOS computing 9. Spin Torque Majority Gate Dmitri Nikonov Thanks to George ourianoff Dmitri.e.nikonov@intel.com 1 Outline Spin majority gate with in-pane magnetization Spin majority gate with perpendicular

More information

SPICE Modeling of STT-RAM for Resilient Design. Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU

SPICE Modeling of STT-RAM for Resilient Design. Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU SPICE odeling of STT-RA for Resilient Design Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU OUTLINE - 2 - Heterogeneous emory Design A Promising Candidate:

More information

NONVOLATILE SPINTRONICS: PERSPECTIVES ON INSTANT-ON NONVOLATILE NANOELECTRONIC SYSTEMS

NONVOLATILE SPINTRONICS: PERSPECTIVES ON INSTANT-ON NONVOLATILE NANOELECTRONIC SYSTEMS SPIN Vol. 2, No. 2 (2012) 1250009 (22 pages) World Scienti c Publishing Company DOI: 10.1142/S2010324712500099 NONVOLATILE SPINTRONICS: PERSPECTIVES ON INSTANT-ON NONVOLATILE NANOELECTRONIC SYSTEMS K.

More information

Low Energy SPRAM. Figure 1 Spin valve GMR device hysteresis curve showing states of parallel (P)/anti-parallel (AP) poles,

Low Energy SPRAM. Figure 1 Spin valve GMR device hysteresis curve showing states of parallel (P)/anti-parallel (AP) poles, Zachary Foresta Nanoscale Electronics 04-22-2009 Low Energy SPRAM Introduction The concept of spin transfer was proposed by Slonczewski [1] and Berger [2] in 1996. They stated that when a current of polarized

More information

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application

MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application 2011 11th Non-Volatile Memory Technology Symposium @ Shanghai, China, Nov. 9, 20112 MTJ-Based Nonvolatile Logic-in-Memory Architecture and Its Application Takahiro Hanyu 1,3, S. Matsunaga 1, D. Suzuki

More information

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications?

Advanced Topics In Solid State Devices EE290B. Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? Advanced Topics In Solid State Devices EE290B Will a New Milli-Volt Switch Replace the Transistor for Digital Applications? August 28, 2007 Prof. Eli Yablonovitch Electrical Engineering & Computer Sciences

More information

Author : Fabrice BERNARD-GRANGER September 18 th, 2014

Author : Fabrice BERNARD-GRANGER September 18 th, 2014 Author : September 18 th, 2014 Spintronic Introduction Spintronic Design Flow and Compact Modelling Process Variation and Design Impact Semiconductor Devices Characterisation Seminar 2 Spintronic Introduction

More information

Low-power non-volatile spintronic memory: STT-RAM and beyond

Low-power non-volatile spintronic memory: STT-RAM and beyond IOP PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 46 (2013) 074003 (10pp) doi:10.1088/0022-3727/46/7/074003 Low-power non-volatile spintronic memory: STT-RAM and beyond K L Wang,

More information

NRAM: High Performance, Highly Reliable Emerging Memory

NRAM: High Performance, Highly Reliable Emerging Memory NRAM: High Performance, Highly Reliable Emerging Memory Sheyang Ning,2, Tomoko Ogura Iwasaki, Darlene Viviani 2, Henry Huang 2, Monte Manning 2, Thomas Rueckes 2, Ken Takeuchi Chuo University 2 Nantero

More information

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008 Current induced resistance change of magnetic tunnel junctions with ultra-thin MgO tunnel barriers Patryk Krzysteczko, 1, Xinli Kou, 2 Karsten Rott, 1 Andy Thomas, 1 and Günter Reiss 1 1 Bielefeld University,

More information

Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond

Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond TUTORIAL: APPLIED RESEARCH IN MAGNETISM Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 1 Center for Spintronics Integrated Systems, Tohoku University, Japan 2 Laboratory

More information

Spintronics. Seminar report SUBMITTED TO: SUBMITTED BY:

Spintronics.  Seminar report SUBMITTED TO: SUBMITTED BY: A Seminar report On Spintronics Submitted in partial fulfillment of the requirement for the award of degree of Electronics SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface I have

More information

Nomenclature, Advantages, Applications. Logic States, Read Ops, Write Ops

Nomenclature, Advantages, Applications. Logic States, Read Ops, Write Ops Critical Factors in Testing MRAM Devices W. Stevenson Cypress Semiconductor, Inc Inc. Southwest Test Workshop June G. Asmerom C. Taylor Electroglas AGENDA / OBJECTIVE MRAM Device? Nomenclature, Advantages,

More information

Kaushik Roy Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN https://engineering.purdue.edu/nrl/index.

Kaushik Roy Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN https://engineering.purdue.edu/nrl/index. Beyond Charge-Based Computing: STT- MRAMs Kaushik Roy Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN https://engineering.purdue.edu/nrl/index.html 1 Failure probability

More information

Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions

Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions Ryan Stearrett Ryan Stearrett, W. G. Wang, Xiaoming Kou, J. F. Feng, J. M. D. Coey, J. Q. Xiao, and E. R. Nowak, Physical

More information

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Overview Background A brief history GMR and why it occurs TMR structure What is spin transfer? A novel device A future

More information

Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects

Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects Yiming Huai Co-founder, Grandis, Inc., 1123 Cadillac Court, Milpitas, CA 95035,

More information

Spin-transfer switching and thermal stability in an FePt/Au/FePt nanopillar prepared by alternate monatomic layer deposition

Spin-transfer switching and thermal stability in an FePt/Au/FePt nanopillar prepared by alternate monatomic layer deposition Spin-transfer switching and thermal stability in an FePt/Au/FePt nanopillar prepared by alternate monatomic layer deposition Kay Yakushiji, Shinji Yuasa, Taro Nagahama, Akio Fukushima, Hitoshi Kubota,

More information

New Approaches to Reducing Energy Consumption of MRAM write cycles, Ultra-high efficient writing (Voltage-Control) Spintronics Memory (VoCSM)

New Approaches to Reducing Energy Consumption of MRAM write cycles, Ultra-high efficient writing (Voltage-Control) Spintronics Memory (VoCSM) New Approaches to Reducing Energy Consumption of MRAM write cycles, Ultra-high efficient writing (Voltage-Control) Spintronics Memory (VoCSM) Hiroaki Yoda Corporate Research & Development Center, Toshiba

More information

Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond

Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond TUTORIAL: APPLIED RESEARCH IN MAGNETISM Magnetic Tunnel Junction for Integrated Circuits: Scaling and Beyond Hideo Ohno 1,2 1 Center for Spintronics Integrated Systems, Tohoku University, Japan 2 Laboratory

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

MESL: Proposal for a Non-volatile Cascadable Magneto-Electric Spin Logic

MESL: Proposal for a Non-volatile Cascadable Magneto-Electric Spin Logic MESL: Proposal for a Non-volatile Cascadable Magneto-Electric Spin Logic Akhilesh Jaiswal 1,, and Kaushik Roy 1 1 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907,

More information

Test System Requirements For Wafer Level MRAM Test

Test System Requirements For Wafer Level MRAM Test Test System Requirements For Wafer Level MRAM Test Raphael Robertazzi IBM/Infineon MRAM Development Alliance With Acknowledgement To Cascade Microtech Inc. And Temptronics Inc. 6/07/04 SWTW-2004 Page [1]

More information

Gate voltage modulation of spin-hall-torque-driven magnetic switching. Cornell University, Ithaca, NY 14853

Gate voltage modulation of spin-hall-torque-driven magnetic switching. Cornell University, Ithaca, NY 14853 Gate voltage modulation of spin-hall-torque-driven magnetic switching Luqiao Liu 1, Chi-Feng Pai 1, D. C. Ralph 1,2 and R. A. Buhrman 1 1 Cornell University, Ithaca, NY 14853 2 Kavli Institute at Cornell,

More information

Compact Modeling of STT-RAM and MeRAM A Verilog-A model of Magnetic Tunnel Junction Behavioral Dynamics

Compact Modeling of STT-RAM and MeRAM A Verilog-A model of Magnetic Tunnel Junction Behavioral Dynamics UNIVERSITY OF CALIFORNIA, LOS ANGELES Compact Modeling of STT-RAM and MeRAM A Verilog-A model of Magnetic Tunnel Junction Behavioral Dynamics Dheeraj Srinivasan 3/8/2013 +This work was done under the advisement

More information

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853 Magnetic oscillations driven by the spin Hall ect in 3-terminal magnetic tunnel junction devices Luqiao Liu 1, Chi-Feng Pai 1, D. C. Ralph 1,2, R. A. Buhrman 1 1 Cornell University, Ithaca, NY 14853 2

More information

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory Center for Spintronic Materials, Interfaces, and Novel Architectures Voltage Controlled Antiferromagnetics and Future Spin Memory Maxim Tsoi The University of Texas at Austin Acknowledgments: H. Seinige,

More information

GMR Read head. Eric Fullerton ECE, CMRR. Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE

GMR Read head. Eric Fullerton ECE, CMRR. Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE GMR Read head Eric Fullerton ECE, CMRR Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE 1 Product scaling 5 Mbyte 100 Gbyte mobile drive 8 Gbyte UCT) ATE

More information

This document is an author-formatted work. The definitive version for citation appears as:

This document is an author-formatted work. The definitive version for citation appears as: This document is an author-formatted work. The definitive version for citation appears as: A. Roohi, R. Zand, D. Fan and R. F. DeMara, "Voltage-based Concatenatable Full Adder using Spin Hall Effect Switching,"

More information

Mon., Feb. 04 & Wed., Feb. 06, A few more instructive slides related to GMR and GMR sensors

Mon., Feb. 04 & Wed., Feb. 06, A few more instructive slides related to GMR and GMR sensors Mon., Feb. 04 & Wed., Feb. 06, 2013 A few more instructive slides related to GMR and GMR sensors Oscillating sign of Interlayer Exchange Coupling between two FM films separated by Ruthenium spacers of

More information

Bipolar junction transistors

Bipolar junction transistors Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma

More information

Leveraging ECC to Mitigate Read Disturbance, False Reads and Write Faults in STT-RAM

Leveraging ECC to Mitigate Read Disturbance, False Reads and Write Faults in STT-RAM Leveraging ECC to Mitigate Read Disturbance, False Reads and Write Faults in STT-RAM Seyed Mohammad Seyedzadeh, Rakan Maddah, Alex Jones, Rami Melhem University of Pittsburgh Intel Corporation seyedzadeh@cs.pitt.edu,

More information

LM34 - Precision Fahrenheit Temperature Sensor

LM34 - Precision Fahrenheit Temperature Sensor - Precision Fahrenheit Temperature Sensor Features Typical Application Calibrated directly in degrees Fahrenheit Linear +10.0 mv/ F scale factor 1.0 F accuracy guaranteed (at +77 F) Parametric Table Supply

More information

Improving STT-MRAM Density Through Multibit Error Correction

Improving STT-MRAM Density Through Multibit Error Correction Improving STT-MRAM Density Through Multibit Error Correction Brandon Del Bel, Jongyeon Kim, Chris H. Kim, and Sachin S. Sapatnekar Department of ECE, University of Minnesota {delbel, kimx2889, chriskim,

More information

A Universal Memory Model for Design Exploration. Ketul Sutaria, Chi-Chao Wang, Yu (Kevin) Cao School of ECEE, ASU

A Universal Memory Model for Design Exploration. Ketul Sutaria, Chi-Chao Wang, Yu (Kevin) Cao School of ECEE, ASU A Universal Memory Model for Design Exploration Ketul Sutaria, Chi-Chao Wang, Yu (Kevin) Cao School of ECEE, ASU Universal Memory Modeling because there is no universal memory device! Modeling needs in

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance 03/18/2010 Instructor: Dr. Elbio R. Dagotto Class: Solid State Physics 2 Nozomi Shirato Department of Materials Science and Engineering ntents: Giant Magnetoresistance (GMR) Discovery

More information

Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel. Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free Layer

Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel. Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free Layer Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free Layer Jun HAYAKAWA 1,2, Shoji IKEDA 2, Young Min LEE 2, Ryutaro SASAKI

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

Spin transport in Magnetic Tunnel Junctions

Spin transport in Magnetic Tunnel Junctions Spin transport in Magnetic Tunnel Junctions This tutorial shows how to simulate and analyze the electronic transport properties of magnetic tunnel junctions (MTJs). You will study the collinear and non-collinear

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Electron spin transport in Magnetic Multilayers and Carbon Materials. Kurt Stokbro CEO, Founder QuantumWise A/S (Copenhagen, Denmark)

Electron spin transport in Magnetic Multilayers and Carbon Materials. Kurt Stokbro CEO, Founder QuantumWise A/S (Copenhagen, Denmark) Electron spin transport in Magnetic Multilayers and Carbon Materials Kurt Stokbro CEO, Founder QuantumWise A/S (Copenhagen, Denmark) www.quantumwise.com (kurt.stokbro@quantumwise.com) Outline Methodology

More information

Electric-Field-Controlled Magnetoelectric RAM: Progress, Challenges, and Scaling

Electric-Field-Controlled Magnetoelectric RAM: Progress, Challenges, and Scaling IEEE TRANSACTIONS ON MAGNETICS, VOL. 51, NO. 11, NOVEMBER 2015 3401507 Electric-Field-Controlled Magnetoelectric RAM: Progress, Challenges, and Scaling Pedram Khalili Amiri 1,2,JuanG.Alzate 1, Xue Qing

More information

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik Spin orbit torque driven magnetic switching and memory Debanjan Bhowmik Spin Transfer Torque Fixed Layer Free Layer Fixed Layer Free Layer Current coming out of the fixed layer (F2) is spin polarized in

More information

Emerging spintronics-based logic technologies

Emerging spintronics-based logic technologies Center for Spintronic Materials, Interfaces, and Novel Architectures Emerging spintronics-based logic technologies Zhaoxin Liang Meghna Mankalale Jian-Ping Wang Sachin S. Sapatnekar University of Minnesota

More information

Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

Magneto-Seebeck effect in spin-valve with in-plane thermal gradient Magneto-Seebeck effect in spin-valve with in-plane thermal gradient S. Jain 1, a), D. D. Lam 2, b), A. Bose 1, c), H. Sharma 3, d), V. R. Palkar 1, e), C. V. Tomy 3, f), Y. Suzuki 2, g) 1, h) and A. A.

More information

Spin Torque and Magnetic Tunnel Junctions

Spin Torque and Magnetic Tunnel Junctions Spin Torque and Magnetic Tunnel Junctions Ed Myers, Frank Albert, Ilya Krivorotov, Sergey Kiselev, Nathan Emley, Patrick Braganca, Greg Fuchs, Andrei Garcia, Ozhan Ozatay, Eric Ryan, Jack Sankey, John

More information

From Hall Effect to TMR

From Hall Effect to TMR From Hall Effect to TMR 1 Abstract This paper compares the century old Hall effect technology to xmr technologies, specifically TMR (Tunnel Magneto-Resistance) from Crocus Technology. It covers the various

More information

Spin-Based Logic and Memory Technologies for Low-Power Systems

Spin-Based Logic and Memory Technologies for Low-Power Systems Spin-Based Logic and Memory Technologies for Low-Power Systems A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Jongyeon Kim IN PARTIAL FULFILLMENT OF THE

More information

arxiv: v1 [physics.app-ph] 1 May 2017

arxiv: v1 [physics.app-ph] 1 May 2017 Magnetic Skyrmions for Cache Memory Mei-Chin Chen 1 and Kaushik Roy 1 1 School of Electrical and Computer Engineering, Purdue University, West Lafayette, 47906, USA * chen1320@purdue.edu ABSTRACT arxiv:1705.01095v1

More information

Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory

Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 19 (2007) 165209 (13pp) doi:10.1088/0953-8984/19/16/165209 Spin-transfer torque switching in magnetic tunnel junctions and

More information

During such a time interval, the MOS is said to be in "deep depletion" and the only charge present in the semiconductor is the depletion charge.

During such a time interval, the MOS is said to be in deep depletion and the only charge present in the semiconductor is the depletion charge. Q1 (a) If we apply a positive (negative) voltage step to a p-type (n-type) MOS capacitor, which is sufficient to generate an inversion layer at equilibrium, there is a time interval, after the step, when

More information

Modelling and Circuit Design for STT-MRAM. Aynaz Vatankhahghadim

Modelling and Circuit Design for STT-MRAM. Aynaz Vatankhahghadim Modelling and Circuit Design for STT-MRAM by Aynaz Vatankhahghadim A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer

More information

Magnetic core memory (1951) cm 2 ( bit)

Magnetic core memory (1951) cm 2 ( bit) Magnetic core memory (1951) 16 16 cm 2 (128 128 bit) Semiconductor Memory Classification Read-Write Memory Non-Volatile Read-Write Memory Read-Only Memory Random Access Non-Random Access EPROM E 2 PROM

More information

MAGNETORESISTIVE random access memory

MAGNETORESISTIVE random access memory 1 Comparative Evaluation of Spin-Transfer-Torque and Magnetoelectric Random Access Memory Shaodi Wang, Hochul Lee, Farbod Ebrahimi, P. Khalili Amiri, Kang L. Wang, Fellow, IEEE, and Puneet Gupta Department

More information

Two-terminal spin orbit torque magnetoresistive random access memory

Two-terminal spin orbit torque magnetoresistive random access memory Two-terminal spin orbit torque magnetoresistive random access memory Noriyuki Sato 1, Fen Xue 1,3, Robert M. White 1,2, Chong Bi 1, and Shan X. Wang 1,2,* 1 Stanford University, Department of Electrical

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

Shape anisotropy revisited in single-digit

Shape anisotropy revisited in single-digit Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions K. Watanabe 1, B. Jinnai 2, S. Fukami 1,2,3,4*, H. Sato 1,2,3,4, and H. Ohno 1,2,3,4,5 1 Laboratory for Nanoelectronics and

More information

Magnetization Dynamics in Spintronic Structures and Devices

Magnetization Dynamics in Spintronic Structures and Devices Japanese Journal of Applied Physics Vol. 45, No. 5A, 2006, pp. 3835 3841 #2006 The Japan Society of Applied Physics Magnetization Dynamics in Spintronic Structures and Devices Structure, Materials and

More information

Solid-State Electronics

Solid-State Electronics Solid-State Electronics 84 (2013) 191 197 Contents lists available at SciVerse ScienceDirect Solid-State Electronics journal homepage: www.elsevier.com/locate/sse Implication logic gates using spin-transfer-torque-operated

More information

MODELING OF THE ADVANCED SPIN TRANSFER TORQUE MEMORY: MACRO- AND MICROMAGNETIC SIMULATIONS

MODELING OF THE ADVANCED SPIN TRANSFER TORQUE MEMORY: MACRO- AND MICROMAGNETIC SIMULATIONS MODELING OF THE ADVANCED SPIN TRANSFER TORQUE MEMORY: MACRO- AND MICROMAGNETIC SIMULATIONS Alexander Makarov, Viktor Sverdlov, Dmitry Osintsev, Josef Weinbub, and Siegfried Selberherr Institute for Microelectronics

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

Thursday, July 20 7:30-8:10 Breakfast 8:10-8:30 Welcome and Introduction. Morning Session: The Path Towards MRAM Session Chair: Bob McMichael

Thursday, July 20 7:30-8:10 Breakfast 8:10-8:30 Welcome and Introduction. Morning Session: The Path Towards MRAM Session Chair: Bob McMichael Thursday, July 20 7:30-8:10 Breakfast 8:10-8:30 Welcome and Introduction Morning Session: The Path Towards MRAM Session Chair: Bob McMichael v 8:30-9:15 MRAM Technologies and Metrologies: Present State

More information

Spin-Based Computing: Device Concepts, Current Status, and a Case Study on a High-Performance Microprocessor

Spin-Based Computing: Device Concepts, Current Status, and a Case Study on a High-Performance Microprocessor CONTRIBUTED P A P E R Spin-Based Computing: Device Concepts, Current Status, and a Case Study on a High-Performance Microprocessor This paper provides a review of various spintronic devices being considered

More information

5 Magnetic Sensors Introduction Theory. Applications

5 Magnetic Sensors Introduction Theory. Applications Sensor devices Magnetic sensors Outline 5 Magnetic Sensors Introduction Theory GalvanomagneticG Effects Applications Introduction A magnetic sensor is a transducer that converts a magnetic field into an

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 10: Characterization Techniques Episode I: VSM and MOKE Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24 Introduction

More information

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference Josephson Effect - the Josephson effect describes tunneling of Cooper pairs through a barrier - a Josephson junction is a contact between two superconductors separated from each other by a thin (< 2 nm)

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

Optical studies of current-induced magnetization

Optical studies of current-induced magnetization Optical studies of current-induced magnetization Virginia (Gina) Lorenz Department of Physics, University of Illinois at Urbana-Champaign PHYS403, December 5, 2017 The scaling of electronics John Bardeen,

More information

Magnetic tunnel junctions using Co-based Heusler alloy electrodes

Magnetic tunnel junctions using Co-based Heusler alloy electrodes Magnetic tunnel junctions using Co-based Heusler alloy electrodes 1 Half-metallic Heusler alloy thin films for spintronic devices E F E Energy gap Co 2 YZ: L2 1 structure 2a MgO.5957 nm a Co.5654 2MnSi

More information

A design methodology and device/circuit/ architecture compatible simulation framework for low-power magnetic quantum cellular automata systems

A design methodology and device/circuit/ architecture compatible simulation framework for low-power magnetic quantum cellular automata systems Purdue University Purdue e-pubs Department of Electrical and Computer Engineering Faculty Publications Department of Electrical and Computer Engineering January 2009 A design methodology and device/circuit/

More information

Supplementary material for : Spindomain-wall transfer induced domain. perpendicular current injection. 1 ave A. Fresnel, Palaiseau, France

Supplementary material for : Spindomain-wall transfer induced domain. perpendicular current injection. 1 ave A. Fresnel, Palaiseau, France SUPPLEMENTARY INFORMATION Vertical-current-induced Supplementary material for : Spindomain-wall transfer induced domain motion wallin MgO-based motion in MgO-based magnetic magnetic tunnel tunneljunctions

More information

Quantum Transport Simula0on: A few case studies where it is necessary

Quantum Transport Simula0on: A few case studies where it is necessary Quantum Transport Simula0on: A few case studies where it is necessary Sayeef Salahuddin Laboratory for Emerging and Exploratory Devices (LEED) EECS, UC Berkeley sayeef@eecs.berkeley.edu The celebrated

More information

AN ABSTRACT OF THE THESIS OF

AN ABSTRACT OF THE THESIS OF AN ABSTRACT OF THE THESIS OF Linda Engelbrecht for the degree of Doctor of Philosophy in Electrical and Computer Engineering presented on March 18, 2011. Title: Modeling Spintronics Devices in Verilog-A

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

Advanced Flash and Nano-Floating Gate Memories

Advanced Flash and Nano-Floating Gate Memories Advanced Flash and Nano-Floating Gate Memories Mater. Res. Soc. Symp. Proc. Vol. 1337 2011 Materials Research Society DOI: 10.1557/opl.2011.1028 Scaling Challenges for NAND and Replacement Memory Technology

More information

Cryogenic memory element based on a single Abrikosov vortex

Cryogenic memory element based on a single Abrikosov vortex Cryogenic memory element based on a single Abrikosov vortex Vladimir Krasnov, T. Golod and A. Iovan Experimental Condensed Matter Physics Group Department of Physics Stockholm University AlbaNova University

More information

DATA SHEET. BC556; BC557 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Mar 27.

DATA SHEET. BC556; BC557 PNP general purpose transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1997 Mar 27. DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1997 Mar 27 FEATURES Low current (max. 100 ma) Low voltage (max. 65 V). APPLICATIONS General purpose switching and amplification.

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

Emerging Memory Technologies

Emerging Memory Technologies Emerging Memory Technologies Minal Dubewar 1, Nibha Desai 2, Subha Subramaniam 3 1 Shah and Anchor kutchhi college of engineering, 2 Shah and Anchor kutchhi college of engineering, 3 Shah and Anchor kutchhi

More information

INCREASING power density and static leakage currents

INCREASING power density and static leakage currents IEEE TRANSACTIONS ON MAGNETICS, VOL. 51, NO. 5, MAY 2015 3400408 Straintronics-Based Random Access Memory as Universal Data Storage Devices Mahmood Barangi and Pinaki Mazumder, Fellow, IEEE Department

More information

L4970A 10A SWITCHING REGULATOR

L4970A 10A SWITCHING REGULATOR L4970A 10A SWITCHING REGULATOR 10A OUTPUT CURRENT.1 TO 40 OUTPUT OLTAGE RANGE 0 TO 90 DUTY CYCLE RANGE INTERNAL FEED-FORWARD LINE REGULA- TION INTERNAL CURRENT LIMITING PRECISE.1 ± 2 ON CHIP REFERENCE

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

HAL501...HAL506, HAL508 Hall Effect Sensor ICs MICRONAS INTERMETALL MICRONAS. Edition May 5, DS

HAL501...HAL506, HAL508 Hall Effect Sensor ICs MICRONAS INTERMETALL MICRONAS. Edition May 5, DS MICRONAS INTERMETALL HAL1...HAL, HAL Hall Effect Sensor ICs Edition May, 1997 1--1DS MICRONAS HAL1...HAL HAL Hall Effect Sensor IC in CMOS technology Common Features: switching offset compensation at khz

More information

Skyrmions in magnetic tunnel junctions

Skyrmions in magnetic tunnel junctions Skyrmions in magnetic tunnel junctions Xueying Zhang 1, 2, Wenlong Cai 1, Xichao Zhang 3, Zilu Wang 1, Zhi Li 1,2, Yu Zhang 1, Kaihua Cao 1, Na Lei 1, 2, Wang Kang 1, Yue Zhang 1, Haiming Yu 1, Yan Zhou

More information

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Enhanced spin orbit torques by oxygen incorporation in tungsten films Enhanced spin orbit torques by oxygen incorporation in tungsten films Timothy Phung IBM Almaden Research Center, San Jose, California, USA 1 Motivation: Memory devices based on spin currents Spin Transfer

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Spin Hall effect clocking of nanomagnetic logic without a magnetic field

Spin Hall effect clocking of nanomagnetic logic without a magnetic field SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2013.241 Spin Hall effect clocking of nanomagnetic logic without a magnetic field (Debanjan Bhowmik *, Long You *, Sayeef Salahuddin) Supplementary Section

More information