num1a ** num_1a.sp **SAM *circuit description * bias conditions vds vgs * Mosfet circuit M nch L=.5u w=8u R page 1

Size: px
Start display at page:

Download "num1a ** num_1a.sp **SAM *circuit description * bias conditions vds vgs * Mosfet circuit M nch L=.5u w=8u R page 1"

Transcription

1 ** num_1a.sp **SAM *circuit description vds vgs * Mosfet circuit M nch L=.5u w=8u R ~, Mosfet model.model nch nmos LEVEL = 1 TONS LST NODE POST.DC vds m vgs 0 1.PRNT DC er1) Vel).PLOT DC er1) Vel) num1a page 1

2 4m, 3.6m 3.8m // 3.4m 3.2m 3m --; / 2.8m / / / / / ** num_1 a.sp **sam ", _. 2.6m ", m /,/ / c 2.2m - (/) - -c 2m ClJ... ::J 18m ~ 0 1.6m / / 1.4m ~~ _ /,,'" 1.2m / ~ " 1m 800u u H ~~ / /" 400u / / 1 200u u.1 '/ ' ~~ ~~ Voltage X (lin) (VOLTS) --- Desi n T e Wave Symbol DO: NUMA DC DO:swO:i(rl) ~

3 ** num_1b.sp **SAM *Circuit description vds m vgs * Mosfet circuit M nch L=.5u w=8u R ,~ Mosfet model.model nch nmos LEVEL=3 + uo=600 tox= e-9 + vto=0.8 gamma=0.8 phi= kappa=o xj=o + nsub=le16 rsh=o + tcv=1.5e-3 bex=-1.5 TONS LST NODE POST.DC vds m vgs a.prnt DC (R1) V(l). PLOT DC (R1) Vel) num1b Page 1

4 ** num_1 b.sp **sam 1.4m 1.2m 1m 800u c --< '=fl c -Q)... ::::l U 600u ; 1 J / \. (2) 400u 200u o Voltage X (lin) (VOLTS) Design DO: NUMB Type DC Wave DO:sw(): i(,.) Symbol *

5 ** num_1b_2.sp **SAM *circuit description vds m vgs * Mosfet circuit M nch L=.5u w=8u R " Mosfet model.model nch nmos LEVEL=3 + uo=600 tox= e-9 + vto=o.8 gamma=o.8 phi=o.64 + kappa=o xj=o + nsub=le16 rsh=o + tcv=1.5e-3 bex=-1.5 TONS LST NODE POST.DC vgs PRNT DC (R1) v(3). PLOT DC (R1) V(3) page 1

6 10u 1u 100n :', 10n.1 1n 100p 10p 1p 100f 10f. ~ 1f )..Q 100e ~ $ 10e-18 num_1b_2.sp "sam c (1) t: 1e-18 ::l o 100e-21 10e-21 1e e-24 10e-24 1e e-27 10e-27 1e e-30 10e-30 1e-30 o Voltage X (lin) (VOLTS) Design Type Wave Symbol DO: :\,LJV B 2 DC DO:swO:i(r1) x:-

7 "~, num_2a. sp '''''SAM num2a *Circuit description vds m vgs * Mosfet circuit M CMOSN R L=5U w=10u ~, Mosfet model.model CMOSN NMOS ( LEVEL = 49 +VERSON = 3.1 TNOM = 27 TOX =1.41E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTHO = K1 = K2 = K3 = K3B = wo = 1E-8 NLX = 1E-9 +DVTOW = 0 DVT1W = 0 DVT2w = 0 +DVTO = DVT1 = DVT2 = uo = UA = 1E-13 UB = E-18 +UC = E-12 VSAT = E5 AO = AGS = BO = E-6 B1 = 5E-6 +KETA = E-3 A E-4 A RDSW = E3 PRWG = PRWB = WR 1 WNT = E-7 LNT = E-8 +XL = 1E-7 XW = 0 DWG = E-9 +DWB E-8 VOFF = 0 NFACTOR = CT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETAO = E-3 ETAB = E-4 +DSUB = PCLM = PDBLC1 = PDBLC2 = E-3 PDBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-4 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = ua1 = 4.31E-9 ~ +ub1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 WW = 0 +WWN 1 WWL = 0 LL 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2.01E-10 CGSO = 2.01E-10 CGBO = 1E-9 +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.8 MJSW = CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG CF = 0 PVTHO = PRDSW = PK2 = WKETA LKETA = ) TONS LST NODE POST.DC vds m Vgs 0.PRNT DC (R1) V(l).PLOT DC (R1) V(l) page 1

8 ** num_2a.sp "sam m 1.2m ~ 1m -'..-. c: -(/) 800u -; -c: Q)... :J 0 600u - 400u _. 200u o Voltage X (lin) (VOLTS) Design 00: NU!"12A Type DC Wave OO:s"O:i(rl) Symbol *

9 ** num_2b.sp **SAM *circuit description vds m vgs * Mosfet circuit M CMOSN R L=2u W=10u num2b * Mosfet model.model CMOSN NMOS e LEVEL = 49 +VERSON = 3.1 TNOM = 27 TOX =1.41E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTHO = K1 = K2 = K3 = K3B = wo = 1E-8 NLX = 1E-9 +DVTOW = 0 DVT1w = 0 DVT2w = 0 +DVTO = DVT1 = DVT2 = uo = UA = 1E-13 UB = E-18 +UC = E-12 VSAT = E5 AO = AGS = BO = E-6 B1 = 5E-6 +KETA = E-3 A1 = E-4 A2 = RDSW = E3 PRWG = PRWB = WR = 1 WNT = E-7 LNT = E-8 +XL = 1E-7 XW = 0 DWG = E-9 +DWB = E-8 VOFF = 0 NFACTOR = CT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETAO = E-3 ETAB = E-4 +DSUB = PCLM = PDBLC1 = PDBLC2 = E-3 PDBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-4 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOB MOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = ua1 = 4.31E-9 +UB1 = -7.61E-18 uc1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 WW = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2.01E-10 CGSO = 2.01E-10 CGBO = 1E-9 +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.8 MJSW = CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = CF = 0 PVTHO = PRDSW = PK2 = WKETA LKETA = ) TONS LST NODE POST.DC vds m vgs PRNT DC er1) Vel).PLOT DC er1) vel) page 1

10 ** num_2b.sp **sam ;za(j r;j- ~ 5,5m 5m 4,5m 4m -< (0 --- c 3,5m ~ 3m -' (/) -c Q)... ::::l 2,5m 0-2m ~ 1,5m 1m '~ 500u o Voltage X (lin) (VOLTS) Design Type Wave Symbol' DO NUM2B DC DO swoi(r1 )

11 ** num_2c.sp **SAM *Circuit description vds m vgs * Mosfet circuit M CMOSN R L=0.8u w=10u num2c * Mosfet model.model CMOSN NMOS ( LEVEL = 49 +VERSON = 3.1 TNOM = 27 TOX =1.41E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTHO = K1 = K2 = K3 = K3B = wo = 1E-8 NLX = 1E-9 +DVTOW = 0 DVT1w = 0 DVT2w = 0 +DVTO = DVT1 = DVT2 = UO = UA = 1E-13 UB = E-18 +UC = E-12 VSAT = E5 AO = AGS = BO = E-6 B1 = 5E-6 +KETA = E-3 Al = E-4 A2 = RDSW = E3 PRWG = PRWB = WR = 1 WNT = E-7 LNT = E-8 +XL = 1E-7 XW = 0 DWG = E-9 +DWB = E-8 VOFF = 0 NFACTOR = CT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETAO = E-3 ETAB = E-4 +DSUB = PCLM = PDBLC1 = PDBLC2 = E-3 PDBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-4 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = UA1 = 4.31E-9 +UB1 = -7.61E-18 uc1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 ww = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2.01E-10 CGSO = 2.01E-10 CGBO = 1E-9 +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.8 MJSW = CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = CF = 0 PVTHO = PRDSW = PK2 = WKETA LKETA = TONS LST NODE POST.DC vds m vgs PRNT DC (R1) V(l). PLOT DC (R1) V(l) page 1

12 26m j 24m ~ l 22m 20m 18m ** num_2c.sp **sam 1,. 1, rr 16m -- 1: c 1 i :::=.. en 14m. & -~ +-' c '\ ~~ '7,'~ _Sl~ _ p 't~ L Q).. d 7»""'t.. ~ 12m j ~v~ o s 10m -1 ~ 8m 6m 1 4m c;:> ~~ ) c 2m o o x x Voltage X (lin) (VOLTS) Design Type Wave Symbol Symbol DO NUM2C DC DOswO:i(r1 ) A-

13 ** num_3a.sp **SAM *Circuit description v lou v AC 1 num3a * Mosfet circuit M CMOSN L=5u W=10U M CMOSN L=5u W=10U M CMOSN L=5U W=10U M CMOSN L=5U w=10u * Mosfet model.model CMOSN NMOS ( LEVEL = 49 +VERSON = 3.1 TNOM = 27 TOX =1.41E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTHO = K1 = K2 = K3 = K3B = wo = 1E-8 NLX = 1E-9 +DVTOW = 0 DVT1w = 0 DVT2w = 0 +DVTO = DVT1 = DVT2 = uo = UA = 1E-13 UB = E-18 +UC = E-12 VSAT = E5 AO = AGS = BO = E-6 B1 = 5E-6 +KETA = E-3 Al = E-4 A2 = RDSW = E3 PRWG = PRWB = WR = 1 WNT = E-7 LNT = E-8 +XL = 1E-7 XW = 0 DWG = E-9 +DWB = E-8 VOFF = 0 NFACTOR = CT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETAO = E-3 ETAB = E-4 +DSUB = PCLM = PDBLC1 = PDBLC2 = E-3 PDBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-4 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = UA1 = 4.31E-9 +ub1 = -7.61E-18 uc1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 WW = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 ~ +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2.01E-10 CGSO = 2.01E-10 CGBO = 1E +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.8 MJSW = O CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = O CF = 0 PVTHO = PRDSW = PK2 = WKETA = ETA = ) TONS LST NODE POST.AC DEC 10 10M 100MEG. PROBE AC RO=PAR('1/(v2)') page 1

14 3g _. num_3a.sp "sam g 2.6g 2.4g...j 2.2g 2g ~ \ " 1.8g -. c :::::.. 1.6g en co E g co a.. 1.2g ' \ ~ x 600x 400x 200x o l 10m 100m k 10k 100k 1x 10x Frequency (log) (HERTZ) 100x Design Type Wave Symbol DO NUM3A AC DOacO:par(ro)

15 ** num_3b.sp **SAM *circuit description v / lou v AC ~ * Mosfet ci~;:'it M1 1 2 O~~SN L=0.8u w=10u M CMOSN L=0.8u W=10U M CMOSN L=0.8u w=10u M CMOSN L=0.8u W=10U num3b * Mosfet model.model CMOSN NMOS ( LEVEL = 49 +VERSON = 3.1 TNOM = 27 TOX =1.41E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTHO = K1 = K2 = K3 = K3B = wo = 1E-8 NLX = 1E-9 +DVTOW = 0 DVT1w = 0 DVT2w = 0 +DVTO = DVT1 = DVT2 = uo = UA = 1E-13 UB = E-18 +UC = E-12 VSAT = E5 AO = AGS = BO = E-6 B1 = 5E-6 +KETA = E-3 A1 = E-4 A2 = RDSW = E3 PRWG = PRWB = WR = 1 WNT = E-7 LNT = E-8 +XL = 1E-7 XW = 0 DWG = E-9 +DWB = E-8 VOFF = 0 NFACTOR = CT = 0 CDSC = 2.4E-4 CDS CD = 0 +CDSCB = 0 ETAO = E-3 ETAB = E-4 +DSUB = PCLM = PDBLC1 = PDBLC2 = E-3 PDBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-4 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOB MOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = UA1 = 4.31E-9 +UB1 = -7.61E-18 uc1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 ww = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2.01E-10 CGSO = 2.01E-10 CGBO = 1E-9~ +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.8 MJSW = CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = CF = 0 PVTHO = PRDSW = ~404 +PK2 = WKETA LKE A = ) TONS LST NO POST.AC DEC 10 10M 100MEG.PROBE AC RO=PAR('1/(V2)') page 1

16 110x. --- ** num_3b.sp **sam 100x 90x l 80x ~ lox -..S: 60x - en E ro ' ro x \ \~ \ 40x 30x 20x 10x 0 10m 100m k 10k 100k 1x 10x Frequency (log) (HERTZ) 100x Design Type Wave Symbol DO NUM38 AC DO:acO:par(ro)

17 ** num_4a.sp **SAM *circuit description V lou v AC 1 num4a * Mosfet circuit M o CMOSN L=5u W=10U M CMOSN L=5u W=10U M CMOSN L=5u W=10U M o CMOSN L=5U w=10u * Mosfet model.model CMOSN NMOS ( LEVEL = 49 +VERSON = 3.1 TNOM = 27 TOX =1.41E-8 +XJ 1.5E-7 NCH = 1.7E17 VTHO = K1 = K2 = K3 = K3B = wo = 1E-8 NLX = 1E-9 +DVTOW = 0 DVT1w = 0 DVT2w = 0 +DVTO = DVT1 = DVT2 = uo = UA = 1E-13 UB = E-18 +UC = E-12 VSAT = E5 AO = AGS = BO = E-6 B1 = 5E-6 +KETA E-3 A1 = E-4 A RDSW = E3 PRWG = PRWB = WR = 1 WNT = E-7 LNT = E-8 +XL = 1E-7 XW = 0 DWG = E-9 +DWB = E-8 VOFF = 0 NFACTOR = CT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETAO = E-3 ETAB = E-4 +DSUB = PCLM = PDBLC1 = PDBLC2 = E-3 PDBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-4 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = UA1 = 4.31E-9 +UB1 = -7.61E-18 uc1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 WW = 0 +WWN 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2.01E-10 CGSO = 2.01E-10 CGBO = 1E-9 +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.8 MJSW = CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = CF = 0 PVTHO = PRDSW = PK2 = WKETA LKETA = ) TONS LST NODE POST.AC DEC 10 10M 100MEG (.PROBE AC RO=PAR('l/(V2)') page 1

18 ~ ** num_4a.sp **sam 2.4g 2.2g 2g 1 1.8g 1.6g -- c: 1.4g - en E rn g rn D x 600x x 200x 0 10m 100m k 10k Frequency (log) (HERTZ) 100k 1x 10x 100x Design Type Wave Symbol DO:,/UM4A AC OO:acO:par(rn) G

19 ** num_4b.sp **SAM *circuit description v lou v AC 1 num4b * Mosfet circuit M o CMOSN L=0.8u w=10u M CMOSN L=0.8u w=10u M CMOSN L=0.8u w=10u M o CMOSN L=0.8u w=10u * Mosfet model.model CMOSN NMOS ( LEVEL = 49 +VERSON = 3.1 TN OM = 27 TOX =1.41E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTHO = K1 = K2 = K3 = K3B = wo = 1E-8 NLX = 1E-9 +DVTOW = 0 DVT1W = 0 DVT2w = 0 +DVTO = DVT1 = DVT2 = uo = UA = 1E-13 UB = E-18 +UC = E-12 VSAT = E5 AO = AGS = BO = E-6 B1 = 5E-6 +KETA = E-3 A1 = E-4 A2 = RDSW = E3 PRWG = PRWB = WR = 1 WNT = E-7 LNT = E-8 +XL = 1E-7 XW = 0 DWG = E-9 +DWB = E-8 VOFF = 0 NFACTOR = CT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETAO = E-3 ETAB = E-4 +DSUB = PCLM = PDBLC1 = PDBLC2 = E-3 PDBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-4 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = UA1 = 4.31E-9 +UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 WW = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2.01E-10 CGSO = 2.01E-10 CGBO = 1E-9 +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.8 MJSW = CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = CF = 0 PVTHO = PRDSW = PK2 = WKETA LKETA = ) TONS LST NODE POST.AC DEC 10 10M 1G.PROBE AC RO=PAR('l/(v2)') page 1

20 ** num_4b_sp **sam 110x 100x 90x -,... c til E ~ co 0.. BOx lox 60x SOx 40x 30x 20x 10x o 10m 100m k 10k 100k Frequency (log) (HERTZ) 1x 10x 100x 19 Design Type Wave Symbol DO: NUM4B AC DO acopar(ro)

21 ~* num_5a.sp *~SAM *circuit description v lou v AC 1 E * Mosfet circuit M CMOSN L=0.8u M CMOSN L=0.8u M CMOSN L=0.8u M CMOSN L=0.8u num5a * Mosfet model.model CMOSN NMOS ( LEVEL = 49 +VERSON = 3.1 TNOM = 27 TOX =1.41E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTHO = K1 = K2 = K3 = K3B = wo = 1E-8 NLX = 1E-9 +DVTOW = 0 DVT1w = 0 DVT2w = 0 +DVTO = DVT1 = DVT2 = uo = UA = 1E-13 UB = E-18 +UC = E-12 VSAT = E5 AO = AGS = BO = E-6 B1 = 5E-6 +KETA = E-3 A1 = E-4 A2 = RDSW = E3 PRWG = PRWB = WR = 1 WNT = E-7 LNT = E-8 +XL = 1E-7 XW = 0 DWG = E-9 +DWB = E-8 VOFF = 0 NFACTOR = CT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETAO = E-3 ETAB = E-4 +DSUB = PCLM = PDBLC1 = PDBLC2 = E-3 PDBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-4 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = UA1 = 4.31E-9 +ub1 = -7.61E-18 uc1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 WW = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2.01E-10 CGSO = 2.01E-10 CGBO = 1E-9 +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.8 MJSW = CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = CF = 0 PVTHO = PRDSW = PK2 = WKETA = LKETA = ) TONS LST NODE POST.AC DEC 10 10M 100MEG. PROBE AC RO=PAR('2/(V2)') page 1 ~age ~

22 ** num_5b.sp **SAM *Circuit description v OU v AC 1 E * Mosfet circuit M CMOSN L=0.8U W=10u M CMOSN L=0.8u W=10u M CMOSN L=0.8u W=10u M CMOSN L=0.8u W=10u num5b * Mosfet model.model CMOSN NMOS ( LEVEL = 49 +VERSON = 3.1 TNOM = 27 TOX =1.41E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTHO = K1 = K2 = K3 = K3B = wo = 1E-8 NLX = 1E-9 +DVTOW = 0 DVT1w = 0 DVT2w = 0 +DVTO = DVT1 = DVT2 = uo = UA = 1E-13 UB = E-18 +UC = E-12 VSAT = E5 AO = AGS = BO = E-6 B1 = 5E-6 +KETA = E-3 Al = E-4 A2 = RDSW = E3 PRWG = PRWB = WR = 1 WNT = E-7 LNT = E-8 +XL = 1E-7 XW = 0 DWG = E-9 +DWB = E-8 VOFF = 0 NFACTOR = CT = 0 CDSC = 2.4E-4 CDSCD = 0 +CDSCB = 0 ETAO = E-3 ETAB = E-4 +DSUB = PCLM = PDBLC1 = PDBLC2 = E-3 PDBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-4 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = UA1 = 4.31E-9 +UB1 = -7.61E-18 uc1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 ww = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2.01E-10 CGSO = 2.01E-10 +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.8 MJSW = O. +CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = O. +CF = 0 PVTHO = PRDSW = PK2 = WKETA LETA = ) TONS LST NODE POST.AC DEC 10 10M 100MEG.PROBE AC RO=PAR('2/(v2)') page 1

23 ** num_5c.sp **SAM num5c *Circuit description V lou v AC 1 E * Mosfet circuit M CMOSN L=0.8u w=10u M CMOSN L=0.8u w=10u M CMOSN L=0.8u W=10U M CMOSN L=0.8u w=10u * Mosfet model.model CMOSN NMOS ( LEVEL = 49 +VERSON = 3.1 TNOM = 27 TOX =1.41E-8 +XJ = 1.5E-7 NCH = 1.7E17 VTHO = K1 = K2 = K3 = K3B = wo = 1E-8 NLX = 1E-9 +DVTOW = 0 DVT1w = 0 DVT2w = 0 +DVTO = DVT1 = DVT2 = uo = UA = 1E-13 UB = E-18 +UC = E-12 VSAT = E5 AO = AGS = BO = E-6 B1 = 5E-6 +KETA = E-3 A1 = E-4 A2 = RDSW = E3 PRWG = PRWB = WR = 1 WNT = E-7 LNT = E-8 +XL = 1E-7 XW = 0 DWG = E-9 +DWB = E-8 VOFF = 0 NFACTOR = CT = 0 CDSC = 2.4E-4 CDS CD = 0 +CDSCB = 0 ETAO = E-3 ETAB = E-4 +DSUB = PCLM = PDBLC1 = PDBLC2 = E-3 PDBLCB = DROUT = PSCBE1 = E8 PSCBE2 = E-4 PVAG = 0 +DELTA = 0.01 RSH = 81.8 MOBMOD = 1 +PRT = 0 UTE = -1.5 KT1 = KT1L = 0 KT2 = ua1 = 4.31E-9 +UB1 = -7.61E-18 uc1 = -5.6E-11 AT = 3.3E4 +WL = 0 WLN = 1 ww = 0 +WWN = 1 WWL = 0 LL = 0 +LLN = 1 LW = 0 LWN = 1 +LWL = 0 CAPMOD = 2 XPART = 0.5 +CGDO = 2.01E-10 CGSO = 2.01E-10 CGBO = 1E-9 +CJ = E-4 PB = MJ = CJSW = E-10 PBSW = 0.8 MJSW = CJSWG = 1.64E-10 PBSWG = 0.8 MJSWG = CF = 0 PVTHO = PRDSW = PK2 = WKETA LKETA = ) TONS LST NODE POST.AC DEC 10 10M 100MEG. PROBE AC RO=PAR('2/(v2)') page 1

24 (PW,,, ~() ** num_5a.sp **sam 1.4g 1.2g -, c ~ 800x rj) E ('0... a.. 1~ ~ \ ('0 ~~::2 600x ~ 400x 1 200x ) <;;~.- -:.1 ~ o 10m 100m k 10k 100k 1x 10x Frequency (log) (HERTZ) 100x Design Type File Wave Symbol DO NUM5A AC ee4111 labs\lab2\num5a.aco OO:acO:par(ro) 01: NUM5B AC EE4111 Labs\lab2\num5b.acO 01acOpar(ro) 02: NlJ'15C AC EE4111 Labs\lab2\num5c.acO 02:acO:par(ro) ~

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1)

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1) (S&S 4.1 4.3) NMOS: electrons flow from Source to Drain PMOS: holes flow from Source to Drain In cut-off ( v < V ), i = 0 GS t D NMOS I-V Characteristics In triode, ( v > V but v v v ) GS t DS GS T W 1

More information

Integrated Circuit Design: OTA in 0.5µm Technology

Integrated Circuit Design: OTA in 0.5µm Technology Integrated Circuit Design: OTA in 0.5µm Technology Omar X. Avelar, Omar de la Mora & Diego I. Romero INTEGRATED CIRCUITS DESIGN (ESI108A) Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO)

More information

Study of MOSFET circuit

Study of MOSFET circuit ECE 570 Computer Aided Engineering for Integrated Circuits IC 752 - E Simulation Assignment No. 3 - Due: Oct. 30 (Th.), 2003 Study of MOSFET circuit Simulate the basic circuit of CMOS shift register shown

More information

EE 330 Homework 5 Fall 2018 (This assignment is due Wednesday Sept 19 at 12:00 noon)

EE 330 Homework 5 Fall 2018 (This assignment is due Wednesday Sept 19 at 12:00 noon) EE 330 Homework 5 Fall 2018 (This assignment is due Wednesday Sept 19 at 12:00 noon) Assume the CMOS process is characterized by model parameters VTH=1V and µcox=100µa/v 2. If any other model parameters

More information

EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded)

EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded) EE 330 Homework 5 Spring 2017 (This assignment will not be collected or graded) Assume the CMOS process is characterized by model parameters V TH =1V and µc OX =100µA/V 2. If any other model parameters

More information

APPENDIX A: Parameter List

APPENDIX A: Parameter List APPENDIX A: Parameter List A.1 BSIM3v3 Model Control Parameters none level BSIMv3 model selector 8 none Mobmod mobmod Mobility model selector 1 none Capmod capmod Flag for the short channel 2 none capacitance

More information

APPENDIX A: Parameter List

APPENDIX A: Parameter List APPENDIX A: Parameter List A.1 BSIM3v3 Model Control Parameters none level BSIMv3 model selector 8 none Mobmod mobmod Mobility model selector 1 none Capmod capmod Flag for the short channel 1 none capacitance

More information

APPENDIX D: Binning BSIM3v3 Parameters

APPENDIX D: Binning BSIM3v3 Parameters APPENDIX D: Binning BSIM3v3 Parameters Below is a list of all BSIM3v3 model parameters which can or cannot be binned. All model parameters which can be binned follow the following implementation: P L P

More information

APPENDIX D: Model Parameter Binning

APPENDIX D: Model Parameter Binning APPENDIX D: Model Parameter Binning Below is the information on parameter binning regarding which model parameters can or cannot be binned. All those parameters which can be binned follow this implementation:

More information

Page 1 of (2 pts) What is the purpose of the keeper transistor in a dynamic logic gate?

Page 1 of (2 pts) What is the purpose of the keeper transistor in a dynamic logic gate? Page 1 of 6 EE 434 Exam 2 Fall 2004 Name Instructions: nswer the following questions and solve the following problems. In problems relating to timing or delay calculations, assume you are working in a

More information

Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model

Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model Old Content - visit altium.com/documentation Modified by Phil Loughhead on 4-Mar-2014 Model Kind Transistor Model Sub-Kind MOSFET SPICE

More information

MITLL Low-Power FDSOI CMOS Process

MITLL Low-Power FDSOI CMOS Process MITLL Low-Power FDSOI CMOS Process Device Models Revision 2006:2 (September 2006) 2006 by MIT Lincoln Laboratory. All rights reserved. This work was sponsored by the United States Air Force under Air Force

More information

Generation and classification of Kerwin Huelsman Newcomb circuits using the DVCC

Generation and classification of Kerwin Huelsman Newcomb circuits using the DVCC INTENATIONAL JOUNAL OF CICUIT THEOY AND APPLICATIONS Int. J. Circ. Theor. Appl. 2009; 37:835 855 Published online 20 June 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 0.002/cta.503 Generation

More information

Stochastic Simulation Tool for VLSI

Stochastic Simulation Tool for VLSI Stochastic Simulation Tool for VLSI Mid-Project Report, Fall 2016 -Full Report- By Luis E. Martinez Sergio Graniello Department of Electrical and Computer Engineering Colorado State University Fort Collins,

More information

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model EE115C Winter 2017 Digital Electronic Circuits Lecture 2: MOS Transistor: IV Model Levels of Modeling Analytical CAD analytical Switch-level sim Transistor-level sim complexity Different complexity, accuracy,

More information

Chapter 5 g m /I D -Based Design

Chapter 5 g m /I D -Based Design Chapter 5 g m /I D -Based Design Ross Walker ECE/CS 5720/6720 Fall 2017 University of Utah Partly adapted from Stanford s analog circuit design sequence Reading: See References at the end of this chapter

More information

CHAPTER 3 - CMOS MODELS

CHAPTER 3 - CMOS MODELS Lecture 04 Chapter 3 Introduction (4/15/02) Page 3.0-1 CHAPTER 3 - CMOS MODELS Chapter Outline 3.1 MOS Structure and Operation 3.2 Large signal MOS models suitable for hand calculations 3.3 Extensions

More information

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 ECEN474/704: (Analog) VLSI Circuit Design Spring 2018 Lecture 4: MOS ransistor Modeling Sam Palermo Analog & Mixed-Signal Center exas A&M University Agenda MOS ransistor Modeling MOS Spice Models MOS High-Order

More information

Reference. [1] Michael S. Adler, King W. Owyang, B. Jayant Baliga, Richard A. Kokosa,

Reference. [1] Michael S. Adler, King W. Owyang, B. Jayant Baliga, Richard A. Kokosa, Reference [1] Michael S. Adler, King W. Owyang, B. Jayant Baliga, Richard A. Kokosa, The Evolution of Power Device Technology, IEEE Trans. Electron Devices, vol. ED-31, NO. 11, November 1984 [2] B. J.

More information

UNIVERSITY OF SOUTHERN CALIFORNIA. FALL EE Comparisons Between Ripple-Carry Adder and Carry-Look-Ahead Adder

UNIVERSITY OF SOUTHERN CALIFORNIA. FALL EE Comparisons Between Ripple-Carry Adder and Carry-Look-Ahead Adder UNIVERSITY OF SOUTHERN CALIFORNIA. FALL 2015. 20153 EE 277 31099 1 Comparisons Between Ripple-Carry Adder and Carry-Look-Ahead Adder Comparing Propagation Delays and Power Dissipation on CMOS-simulated

More information

USC-ISI. The MOSIS Service. BSIM3v3.1 Model. Parameters Extraction and Optimization. October 2000

USC-ISI. The MOSIS Service. BSIM3v3.1 Model. Parameters Extraction and Optimization. October 2000 USC-ISI The MOSIS Service BSIM3v3.1 Model Parameters Extraction and Optimization October 000 Henok Abebe ance C.Tyree Table of Contents 1. Introduction and Motivation: -----------------------------------------------1.

More information

Lab 1 Getting Started with EDA Tools

Lab 1 Getting Started with EDA Tools Lab Getting Started with EDA Tools E3-238: Analog LSI Circuits INTRODUCTION The objective of this lab is to familiarize you with the Cadence irtuoso design environment. The irtuoso environment provides

More information

Transfer Gate and Dynamic Logic Dr. Lynn Fuller Webpage:

Transfer Gate and Dynamic Logic Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Transfer Gate and Dynamic Logic Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

MOS Amplifiers Dr. Lynn Fuller Webpage:

MOS Amplifiers Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email: Lynn.Fuller@rit.edu Department

More information

Chapter 5: BSIM3v3 Characterization

Chapter 5: BSIM3v3 Characterization 5: BSIM3v3 Characterization The BSIM3 model (BSIM = Berkeley Short channel Insulated gate field effect transistor Model) was published by the University of California at Berkeley in July 1993. BSIM3 is

More information

High Speed Logic Circuits Dr. Lynn Fuller Webpage:

High Speed Logic Circuits Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Circuits Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585) 475-2035 Fax (585) 475-5041 Email:

More information

ESE 570 MOS TRANSISTOR THEORY Part 2

ESE 570 MOS TRANSISTOR THEORY Part 2 ESE 570 MOS TRANSISTOR THEORY Part 2 GCA (gradual channel approximation) MOS Transistor Model Strong Inversion Operation CMOS = NMOS + PMOS 2 TwoTerminal MOS Capacitor > nmos Transistor VGS

More information

Combinatorial and Sequential CMOS Circuits Dr. Lynn Fuller Webpage:

Combinatorial and Sequential CMOS Circuits Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Combinatorial and Sequential CMOS Circuits Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (585)

More information

BSIM4.6.4 MOSFET Model

BSIM4.6.4 MOSFET Model BSIM4.6.4 MOSFET Model -User s Manual Tanvir Hasan Morshed, Wenwei (Morgan) Yang, Mohan V. Dunga, Xuemei (Jane) Xi, Jin He, Weidong Liu, Kanyu, M. Cao, Xiaodong Jin, Jeff J. Ou, Mansun Chan, Ali M. Niknejad,

More information

BSIM4v4.7 MOSFET Model

BSIM4v4.7 MOSFET Model BSIM4v4.7 MOSFET Model -User s Manual Tanvir Hasan Morshed, Darsen D. Lu, Wenwei (Morgan) Yang, Mohan V. Dunga, Xuemei (Jane) Xi, Jin He, Weidong Liu, Kanyu, M. Cao, Xiaodong Jin, Jeff J. Ou, Mansun Chan,

More information

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

! MOS Capacitances.  Extrinsic.  Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February, 07 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance Model!

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 6: January 30, 2018 MOS Operating Regions, pt. 2 Lecture Outline! Operating Regions (review) " Subthreshold " Resistive " Saturation! Intro.

More information

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number EE610: CMOS Analog Circuits L: MOS Models- (1 st Aug. 013) B. Mazhari Dept. of EE, IIT Kanpur 3 NMOS Models MOS MODEL Above Threshold Subthreshold ( GS > TN ) ( GS < TN ) Saturation ti Ti Triode ( DS >

More information

BSIM3v3 Manual. (Final Version) Department of Electrical Engineering and Computer Sciences. University of California, Berkeley, CA 94720

BSIM3v3 Manual. (Final Version) Department of Electrical Engineering and Computer Sciences. University of California, Berkeley, CA 94720 BSIM3v3 Manual (Final Version) Yuhua Cheng, Mansun Chan, Kelvin Hui, Min-chie Jeng, Zhihong Liu, Jianhui Huang, Kai Chen, James Chen, Robert Tu, Ping K. Ko, Chenming Hu Department of Electrical Engineering

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences PROBLEM SET #3 (SOLUTION)

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences PROBLEM SET #3 (SOLUTION) UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences R. W. Brodersen EECS 140 Fall 2004 PROBLEM SET #3 (SOLUTION) 3) In the above circuit, use V DD

More information

PFD-CP Phase Locked Loop Design

PFD-CP Phase Locked Loop Design FD-C hase Lcked Lp Design Fuding Ge Cpyright by Fuding Ge 00 All Right Reserved Fuding Ge: LL Design All Right Reserved Cntents Chapter ntrductin. Transfer functin between the utput phase Φ and the input

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 7: February 4, 2016 MOS SPICE Models, MOS Parasitic Details Lecture Outline! MOS Capacitances " Extrinsic " Intrinsic! Lumped Capacitance

More information

N Channel MOSFET level 3

N Channel MOSFET level 3 N Channel MOSFET level 3 mosn3 NSource NBulk NSource NBulk NSource NBulk NSource (a) (b) (c) (d) NBulk Figure 1: MOSFET Types Form: mosn3: instance name n 1 n n 3 n n 1 is the drain node, n is the gate

More information

MOSFET Internal Capacitance Dr. Lynn Fuller Webpage:

MOSFET Internal Capacitance Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 14623-5604 Email: Lynn.Fuller@rit.edu Department

More information

LEVEL 61 RPI a-si TFT Model

LEVEL 61 RPI a-si TFT Model LEVEL 61 RPI a-si TFT Model Star-Hspice LEVEL 61 is an AIM-SPICE MOS15 amorphous silicon (a-si) thin-film transistor (TFT) model. Model Features AIM-SPICE MOS15 a-si TFT model features include: Modified

More information

BSIM4.6.0 MOSFET Model

BSIM4.6.0 MOSFET Model BSIM4.6.0 MOSFET Model - User s Manual Mohan. Dunga, Xuemei (Jane) Xi, Jin He, Weidong Liu, Kanyu M. Cao, Xiaodong Jin, Jeff J. Ou, Mansun Chan, Ali M. Niknejad, Chenming Hu Department of Electrical Engineering

More information

BSIM4.3.0 MOSFET Model

BSIM4.3.0 MOSFET Model BSIM4.3.0 MOSFET Model - User s Manual Xuemei (Jane) Xi, Mohan Dunga, Jin He, Weidong Liu, Kanyu M. Cao, Xiaodong Jin, Jeff J. Ou, Mansun Chan, Ali M. Niknejad, Chenming Hu Project Director: Professor

More information

Characterization and modeling of RF-MOSFETs in the millimeter-wave frequency domain. Sadayuki Yoshitomi, Fumie Fujii

Characterization and modeling of RF-MOSFETs in the millimeter-wave frequency domain. Sadayuki Yoshitomi, Fumie Fujii MOS-AK //03 Characterization and modeling of RF-MOSFETs in the millimeter-wave frequency domain Sadayuki Yoshitomi, Fumie Fujii Semiconductor & Storage Products Company Toshiba Corporation Copyright 03,

More information

Technology file available in the CD-Rom length. Table 1-xxx: correspondence between technology and the value of lambda in µm

Technology file available in the CD-Rom length. Table 1-xxx: correspondence between technology and the value of lambda in µm A Design Rules This section gives information about the design rules used by Microwind2. You will find all the design rule values common to all CMOS processes. All that rules, as well as process parameters

More information

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA University of Pennsylvania Department of Electrical Engineering ESE 570 Midterm Exam March 4, 03 FORMULAS AND DATA. PHYSICAL CONSTANTS: n i = intrinsic concentration undoped) silicon =.45 x 0 0 cm -3 @

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

ASM-HEMT Model for GaN RF and Power Electronic Applications: Overview and Extraction

ASM-HEMT Model for GaN RF and Power Electronic Applications: Overview and Extraction ASM-HEMT Model for GaN RF and Power Electronic Applications: Overview and Extraction June 27, 2016 Sheikh Aamir Ahsan Sudip Ghosh Yogesh Singh Chauhan IIT Kanpur Sourabh Khandelwal UC Berkeley MA Long

More information

EKV MOS Transistor Modelling & RF Application

EKV MOS Transistor Modelling & RF Application HP-RF MOS Modelling Workshop, Munich, February 15-16, 1999 EKV MOS Transistor Modelling & RF Application Matthias Bucher, Wladek Grabinski Electronics Laboratory (LEG) Swiss Federal Institute of Technology,

More information

Modeling and Parameter Extraction Technique for Uni-Directional HV MOS Devices

Modeling and Parameter Extraction Technique for Uni-Directional HV MOS Devices 412 PAPER Special Section of Selected Papers from the 12th Workshop on Circuits and Systems in Karuizawa Modeling and Parameter Extraction Technique for Uni-Directional HV MOS Devices Takao MYONO, Member,

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

Algebraic properties of multiple-valued modulo systems and their applications to current-m CMOS circuits

Algebraic properties of multiple-valued modulo systems and their applications to current-m CMOS circuits }. 1). TECHNCAL NOTE Algebraic properties of multiple-valued modulo systems and their applications to current-m CMOS circuits L.Wang X. Chen A.E.A. Almaini ndexing terms: Pseudoprime, Modulo correlativity,

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

CMOS Analog Circuits

CMOS Analog Circuits CMOS Analog Circuits L6: Common Source Amplifier-1 (.8.13) B. Mazhari Dept. of EE, IIT Kanpur 19 Problem statement : Design an amplifier which has the following characteristics: + CC O in R L - CC A 100

More information

BSIM3v3.2.2 MOSFET Model

BSIM3v3.2.2 MOSFET Model BSIM3v3.. MOSFET Model Users Manual Weidong Liu, Xiaodong Jin, James Chen, Min-Chie Jeng, Zhihong Liu, Yuhua Cheng, Kai Chen, Mansun Chan, Kelvin Hui, Jianhui Huang, Robert Tu, Ping K. Ko and Chenming

More information

CHAPTER 3 - CMOS MODELS

CHAPTER 3 - CMOS MODELS CMOS Analog Circuit Design Page 3.-1 CHAPTER 3 - CMOS MODELS Chapter Outline 3.1 MOS Structure and Operation 3.2 Large signal MOS models suitable for hand calculations 3.3 Extensions of the large signal

More information

EE 560 MOS TRANSISTOR THEORY

EE 560 MOS TRANSISTOR THEORY 1 EE 560 MOS TRANSISTOR THEORY PART 1 TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM:

More information

The simulated two volt performance of CMOS circuits with submicron transistors

The simulated two volt performance of CMOS circuits with submicron transistors Lehigh University Lehigh Preserve Theses and Dissertations 1992 The simulated two volt performance of CMOS circuits with submicron transistors Christopher John Younger Lehigh University Follow this and

More information

S No. Questions Bloom s Taxonomy Level UNIT-I

S No. Questions Bloom s Taxonomy Level UNIT-I GROUP-A (SHORT ANSWER QUESTIONS) S No. Questions Bloom s UNIT-I 1 Define oxidation & Classify different types of oxidation Remember 1 2 Explain about Ion implantation Understand 1 3 Describe lithography

More information

Simulation of the Temperature Influence in IC-EMC

Simulation of the Temperature Influence in IC-EMC Simulation of the Temperature Influence in IC-EMC E. Sicard INSA-GEI, 135 Av de Rangueil 31077 Toulouse France Contact : etienne.sicard@insa-toulouse.fr web site : www.ic-emc.org Abstract: We investigate

More information

ELECTRONICS RESEARCH LABORATORY. College of Engineering University of California, Berkeley, CA Users' Manual. BSIM3v3.

ELECTRONICS RESEARCH LABORATORY. College of Engineering University of California, Berkeley, CA Users' Manual. BSIM3v3. BSIM3v3.2 MOSFET MODEL Users' Manual Weidong Liu, Xiaodong Jin, James Chen, Min-Chie Jeng, Zhihong Liu, Yuhua Cheng, Kai Chen, Mansun Chan, Kelvin Hui, Jianhui Huang, Robert Tu, Ping K. KO and Chenming

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania 1 EE 560 MOS TRANSISTOR THEORY PART nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION

More information

Lecture 18. Common Source Stage

Lecture 18. Common Source Stage ecture 8 OUTINE Basic MOSFET amplifier MOSFET biasing MOSFET current sources Common source amplifier eading: Chap. 7. 7.7. EE05 Spring 008 ecture 8, Slide Prof. Wu, UC Berkeley Common Source Stage λ =

More information

The Physical Structure (NMOS)

The Physical Structure (NMOS) The Physical Structure (NMOS) Al SiO2 Field Oxide Gate oxide S n+ Polysilicon Gate Al SiO2 SiO2 D n+ L channel P Substrate Field Oxide contact Metal (S) n+ (G) L W n+ (D) Poly 1 Transistor Resistance Two

More information

PSpice components for CAD

PSpice components for CAD PSpice components for CAD POLITEHNICA University of Bucharest, UPB-CETTI, Spl. Independentei 313, 060042-Bucharest, Romania, Phone: +40 21 3169633, Fax: +40 21 3169634, email: norocel.codreanu@cetti.ro

More information

MOS Transistors Models

MOS Transistors Models MOS Transistors Models Andreas G. Andreou Pedro Julian Electrical and Computer Engineering Johns Hopkins University http://andreoulab.net The MOS transistor Levels of Abstraction- Model Equations If V

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

-Z ONGRE::IONAL ACTION ON FY 1987 SUPPLEMENTAL 1/1

-Z ONGRE::IONAL ACTION ON FY 1987 SUPPLEMENTAL 1/1 -Z-433 6 --OGRE::OA ATO O FY 987 SUPPEMETA / APPR)PRATO RfQUEST PAY AD PROGRAM(U) DE ARTMET OF DEES AS O' D 9J8,:A:SF ED DEFS! WA-H ODM U 7 / A 25 MRGOPf RESOUTO TEST HART / / AD-A 83 96 (~Go w - %A uj

More information

Pluging in values for the parameters from table 6.1 we obtain switching resistance,

Pluging in values for the parameters from table 6.1 we obtain switching resistance, Problem 10.1 By Vehid Suljic Using the parameters in Table 6.1 compare the hand-calculated effective digital switching resistance using Eq. (10.6) to the empirically derived values given in table 10.1.

More information

EE 505. Lecture 11. Offset Voltages DAC Design

EE 505. Lecture 11. Offset Voltages DAC Design EE 505 Lecture 11 Offset Voltages DC Design Offset Voltages ll DCs have comparators and many DCs and DCs have operational amplifiers The offset voltages of both amplifiers and comparators are random variables

More information

ELECTRONICS RESEARCH LABORATORY

ELECTRONICS RESEARCH LABORATORY BSIM3v3.2.1 MOSFET MODEL USERS? MANUAL Weidong Liu, Xiaodong Jin, James Chen, Min-Chie Jeng, Zhihong Liu, Yuhua Cheng, Kai Chen, Mansun Chan, Kelvin Hui, Jianhui Huang, Robert Tu, Ping K. KO and Chenming

More information

CHAPTER 3 MODELS FOR CMOS COMPONENTS

CHAPTER 3 MODELS FOR CMOS COMPONENTS Chapter 3 Introduction (12/2/6) Page 3.-1 CHAPTER 3 MODELS FOR CMOS COMPONENTS INTRODUCTION Chapter Outline 3.1 Large Signal Transistor Models 3.2 Process, Voltage, and Temperature Variations 3.3 Small

More information

Integrated Circuits & Systems

Integrated Circuits & Systems Federal University of Santa Catarina Center for Technology Computer Science & Electronics Engineering Integrated Circuits & Systems INE 5442 Lecture 13 The CMOS Inverter: dynamic behavior (delay) guntzel@inf.ufsc.br

More information

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3 ECE 523/42 - Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o

More information

MIDTERM EXAM [[ Dec IS 110 min

MIDTERM EXAM [[ Dec IS 110 min izmir UNVERSTY OF ECONOMCS Department of Electronics and Communication Engineering EEE 331 Analog Electronics Fall 2015/2016 SOLL(r Ol.J$ MDTERM EXAM [[ Dec 26. 20S 110 min NSTRUCTONS W W.ll til W Read

More information

PRESIDENCY UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING EE 310: VLSI System Laboratory. Contents

PRESIDENCY UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING EE 310: VLSI System Laboratory. Contents PRESIDENCY UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING EE 310: VLSI System Laboratory Contents Experiment No Name of The Experiments. Page Experiment-1 INTRODUCTION TO CIRCUIT SIMULATION

More information

How to construct international inputoutput

How to construct international inputoutput How to construct international inputoutput tables (with the smallest effort) Satoshi Inomata Institute of Developing Economies JETRO OVERVIEW (1) Basic picture of an international input-output table (IIOT)

More information

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow EE 330 Lecture 16 MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow Review from Last Time Operation Regions by Applications Id I D 300 250 200 150

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Topic 4 Formula. Introduction: V = IR Write down the formula being used. V = (5)(10) Substitute I with 5 and R with 10

Topic 4 Formula. Introduction: V = IR Write down the formula being used. V = (5)(10) Substitute I with 5 and R with 10 Topic 4 Formula Introduction: In many situations in science and business we use formulas. these formula are essentially just an algebraic expression where the variables used have very specific meanings.

More information

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR EE 23 Lecture 3 THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR Quiz 3 Determine I X. Assume W=u, L=2u, V T =V, uc OX = - 4 A/V 2, λ= And the number is? 3 8 5 2? 6 4 9 7 Quiz 3

More information

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow EE 330 Lecture 16 MOSFET Modeling CMOS Process Flow Model Extensions 300 Id 250 200 150 100 50 300 0 0 1 2 3 4 5 Vds Existing Model 250 200 Id 150 100 50 Slope is not 0 0 0 1 2 3 4 Actual Device Vds Model

More information

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing II III IV V VI B N Al Si P S Zn Ga Ge As Se d In Sn Sb Te Silicon (Si) the dominating material in I manufacturing ompound semiconductors III - V group: GaAs GaN GaSb GaP InAs InP InSb... The Energy Band

More information

PRACTICE PROBLEMS FOR CMOS ANALOG CIRCUIT DESIGN, 2 ND EDITION

PRACTICE PROBLEMS FOR CMOS ANALOG CIRCUIT DESIGN, 2 ND EDITION Practice Problems (5/27/07) Page PRACTICE PROBLEMS FOR CMOS ANALOG CIRCUIT DESIGN, 2 ND EDITION TECHNOLOGY Problem (044430E3P5) The following questions pertain to a standard npn BJT process. a.) Give the

More information

RING OSCILLATOR FREQUENCY BASED CV and VARIABILITY CHARACTERIZATION

RING OSCILLATOR FREQUENCY BASED CV and VARIABILITY CHARACTERIZATION Master Thesis Nr. 99 RING OSCILLATOR FREQUENCY BASED CV and VARIABILITY CHARACTERIZATION Jacob Reyes Institute of Electronics Graz University of Technology Head of Institute: O. Univ.-Prof. Dipl.-Ing.

More information

Charge-Storage Elements: Base-Charging Capacitance C b

Charge-Storage Elements: Base-Charging Capacitance C b Charge-Storage Elements: Base-Charging Capacitance C b * Minority electrons are stored in the base -- this charge q NB is a function of the base-emitter voltage * base is still neutral... majority carriers

More information

l [ L&U DOK. SENTER Denne rapport tilhører Returneres etter bruk Dokument: Arkiv: Arkivstykke/Ref: ARKAS OO.S Merknad: CP0205V Plassering:

l [ L&U DOK. SENTER Denne rapport tilhører Returneres etter bruk Dokument: Arkiv: Arkivstykke/Ref: ARKAS OO.S Merknad: CP0205V Plassering: I Denne rapport thører L&U DOK. SENTER Returneres etter bruk UTLÅN FRA FJERNARKIVET. UTLÅN ID: 02-0752 MASKINVN 4, FORUS - ADRESSE ST-MA LANETAKER ER ANSVARLIG FOR RETUR AV DETTE DOKUMENTET. VENNLIGST

More information

Chapter 2 Active RC Filters Using Opamps

Chapter 2 Active RC Filters Using Opamps Chapter 2 Active C Filters Using Opamps In this chapter, we consider the design aspects of active resistorcapacitor (C) filters using operational amplifiers (opamps). This topic has been covered extensively

More information

A Novel Grounded Inductor Realization Using a Minimum Number of Active and Passive Components

A Novel Grounded Inductor Realization Using a Minimum Number of Active and Passive Components A Novel Grounded nductor Realiation Usg a Mimum Number of Active and Passive Comonents Erkan uce, Shahram Maei, and Oguhan Cicekoglu n this stud, we resent a new toolog for realig a grounded ductor emlog

More information

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling? LECTURE 3 MOSFETS II Lecture 3 Goals* * Understand constant field and constant voltage scaling and their effects. Understand small geometry effects for MOS transistors and their implications modeling and

More information

EE247 Analog-Digital Interface Integrated Circuits

EE247 Analog-Digital Interface Integrated Circuits EE247 Analog-Digital Interface Integrated Circuits Fall 200 Name: Zhaoyi Kang SID: 22074 ******************************************************************************* EE247 Analog-Digital Interface Integrated

More information

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Text sec 1.2 pp. 28-32; sec 3.2 pp. 128-129 Current source Ideal goal Small signal model: Open

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

****** bjt model parameters tnom= temp= *****

****** bjt model parameters tnom= temp= ***** ****** HSPICE H 2013.03 64 BIT (Feb 27 2013) RHEL64 ****** Copyright (C) 2013 Synopsys, Inc. All Rights Reserved. Unpublished rights reserved under US copyright laws. This program is protected by law and

More information

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region EE105 Fall 014 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 NMOS Transistor Capacitances: Saturation Region Drain no longer connected to channel

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

^ 4 ^1)<$^ :^t -*^> us: i. ^ v. é-^ f.. ^=2. \ t- "tì. _c^_. !r*^ o r , -UT -B6 T2T. - =s.- ; O- ci. \j-

^ 4 ^1)<$^ :^t -*^> us: i. ^ v. é-^ f.. ^=2. \ t- tì. _c^_. !r*^ o r , -UT -B6 T2T. - =s.- ; O- ci. \j- Q «L j T2T "S = $ W wwwplemlzz cm Lez Pe 4692! "ì c O c 9T UT =2 4 u & S4 4 é B6 j H Fcebk Pl Emlzz egme Yuubegplemlzz Skpe plemlzz 7 424 O S& wwwplemlzz cm Lez Pe 4692 M O ~ x g È «p 2 c & b U L " & K

More information

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB

Power Consumption in CMOS CONCORDIA VLSI DESIGN LAB Power Consumption in CMOS 1 Power Dissipation in CMOS Two Components contribute to the power dissipation:» Static Power Dissipation Leakage current Sub-threshold current» Dynamic Power Dissipation Short

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information