Supplementary information. Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus

Size: px
Start display at page:

Download "Supplementary information. Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus"

Transcription

1 Supplementary information Lysine and arginine iosyntheses mediated y a common carrier protein in Sulfolous Takuya Ouchi 1, Takeo Tomita 1, Akira Horie 1, Ayako Yoshida 1, Kento Takahashi 1, Hiromi Nishida 2, Kerstin Lassak 3, Hikari Taka 4, Reiko Mineki 4, Tsutomu Fujimura 4, Saori Kosono 1, Chiharu Nishiyama 5, Ryoji Masui 6, 7, Seiki Kuramitsu 6, 7, Sonja-Verena Alers 3, Tomohisa Kuzuyama 1, and Makoto 1, 7* Nishiyama 1 Biotechnology Research Center, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo , Japan. 2 Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo , Japan. 3 Max Planck Institute for terrestrial Microiology, Karl von Frisch Strasse 10 D Marurg, Germany. 4 Division of Biochemical Analysis, Central Laoratory of Medical Sciences, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo , Japan. 5 Atopy (Allergy) Research Center, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo , Japan. 6 Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka , Japan. 7 RIKEN SPring-8 Center, Kouto, Sayo-cho, Sayo-gun, Hyogo , Japan. Present address: Nihon Unisys, Ltd., Tokyo, Japan. Central Laoratories for Frontier Technology, Kirin Holdings Co., Yokohama, Japan. *To whom correspondence should e addressed: umanis@mail.ecc.u-tokyo.ac.jp

2 SUPPLEMENTARY RESULTS a Optical Density at 600 nm 0.1 Optical Density at 600 nm Time (h) Time (h) Supplementary Figure 1. Effects of various concentrations of lysine on growth. (a) Parental MW001 strain. () Δ0754 strain. Brock s asal salt medium supplemented with 0.2% D-xylose and μg/ml uracil was used as the asal culture medium. Additives are: white diamonds, 0.1 mm lysine plus 0.1 mm arginine; lue diamonds, none; red squares, 0.01 mm lysine; purple crosses, 0.05 mm lysine; light green triangles, 0.1 mm lysine; orange circles, 0.5 mm lysine. Each strain was cultured in triplicate. Bars indicate standard deviations.

3 M.W. (kda) Supplementary Figure 2. Tricine SDS-PAGE (full size). Purified LysW-AAA and LysW- were incuated with or without Saci_0751 in the presence of 1 mm MgSO4, 160 mm KOH, 160 mm NH2OH-HCl, 10 mm ATP, 0 mm HEPES-NaOH, ph8.0, for 1 h at 60 C. Lanes 1 and 6, molecular size marker; lanes 2 and 3, LysW-AAA was used as the sustrate; Lanes 4 and 5, LysW- was used as the sustrate. Lanes 2 and 4, with Saci_0751; Lanes 3 and 5, without Saci_0751.

4 a y 11 y 10 y 9 y 8 y 7 y 6 y 5 y 4 y 3 y 2 y 1 L A E Q V G W E G D E X NH OH y y y y 6 y 10 %Intensity m/z y 11 y 10 y 9 y 8 y 7 y 6 y 5 y 4 y 3 y 2 y 1 L A E Q V G W E G D E X OH y y y y %Intensity m/z c y 11 y 10 y 9 y 8 y 7 y 6 y 5 y 4 y 3 y 2 y 1 L A E Q V G W E G D E E NH OH m/z: y y y y y y y %Intensity m/z d y 11 y 10 y 9 y 8 y 7 y 6 y 5 y 4 y 3 y 2 y 1 L A E Q V G W E G D E E OH y y y y y %Intensity m/z m/z: Supplementary Figure 3. LC-MS/MS of C-terminal tryptic fragments of LysW derivatives. (a) C-terminal tryptic fragments of the and shown in an asterisk in lane 2 in Figure 3. () C-terminal tryptic fragments of the and shown in an asterisk in lane 3 in Figure 3. (c) C-terminal tryptic fragments of the and shown in an asterisk in lane 4 in Figure 3. (d) C-terminal tryptic fragments of the and shown in an asterisk in lane 5 in Figure 3. X denotes AAA residue. 8 m/z: m/z:

5 a Asorance at 280 nm Radius [cm] 1 1 c(s) (S -1 ) c Sedimentation coefficient [S] 0 d Asorance at 280 nm Radius [cm] - c(s) (S -1 ) Sedimentation coefficient [S] Supplementary Figure 4. Analytical ultra centrifugation of StArgX and StLysW. (a) Data plot for StArgX. () Distriution plot of sedimentation coefficent of StArgX. (c) Data plot for StLysW. (d) Distriution plot of sedimentation coefficent of StLysW.

6 a ,532 monomer Intensity x 10 6 Intensity x dimer 63,064 trimer 94,636 tetramer 126, Mass (kda) m/z Supplementary Figure 5. MS analysis of StArgX. (a) Spectrum deconvoluted from mass spectrum for StArgX in ().

7 a StArgX (D-chain) StArgX (C-chain) 90 StArgX (A-chain) AMP -PNP AMP -PNP StArgX (B-chain) TtLysX (D-chain) TtlysX (C-chain) 90 AMP-PNP TtLysX (A-chain) AMP-PNP TtlysX (B-chain) Supplementary Figure 6. Overall structures of StArgX/ and TtLysX/AMP-PNP complex. (a) StArgX/ complex. () TtLysX/AMP-PNP complex. A-, B-, C-, and D-chains of these tetramer are shown as green, cyan, magenta, and yellow figures, respectively. The ound ligands are shown as stick models.

8 a N-terminal gloular domain C9 C29 Zn 2+ C6 H27 N-ter N158 A S159 B E52 E E48 E D53 A R59 A W54 E S56 A R135 A N158 A S159 B E52 E E48 E D53 A R59 A W54 E S56 A R135 A M57 A V55 A G55 E V254 A I9 A W133 A M57 A V55 A G55 E V254 A I9 A W133 A S132 A S132 A E256 A E256 A C-terminal extension E52 D53 W54 G55 C-ter E56 D253 A E56 E S235 A R178A D253 A E56 E S235 A R178A Supplementary Figure 7. Structure of StLysW and the recognition y StArgX. (a) Domain architecture of StLysW. N-terminal gloular domain and C-terminal extension are shown as pink and purple models, respectively. The Zn 2+ ion ound to N-terminal gloular domain and the coordinating residues are shown as a sphere model and stick models, respectively. The residues of strictly conserved C-terminal EDWGE motif are shown as stick models. () Stereo view of interaction etween StArgX and C-terminal extension of StLysW. Another sustrate glutmate molecule, the α-amino group of which is to e ligated with the γ -caroxyl group of 56 residue of StLysW, is also shown y orange stick model. The residues involved in the interactions are shown as stick models and hydrogen onds and electrostatic interactions are shown y dotted lines.

9 a K87A N2 A Mg R192A R178 A 2+ E250A Zn2+ SO42- N252A K87A N2 A R192A Mg R178 A 2+ E250A Zn2+ SO42- E56 E N252A K125 R225 N235 Mg 2+ E281 Mg2+ SO42- R210 K125 R225 N235 E281 Mg2+ SO42- R210 N283 GSH Mg 2+ N283 GSH E56 E d c V3A R192A Y190A A4A G259A GSH E56E F260A GSH E56E A4A G259A V3A R192A Y190A E256A SO42E56E F260A E256A SO42E56E Supplementary Figure 8. Active site of StArgX. (a) Stereoview of the active site structure of StArgX inding StLysW,,, SO42-, and metal ions. Bound Mg2+ and Zn2+ are shown y green and gray sphere models. The Fo-Fc maps of ligands at the active site of StArgX contoured at 3.0 σ are shown as lack mesh. () Stereoview of the active site structure of the pseudo-michaelis complex of glutathione synthetase (GSHase) inding GSH,, SO42-, and metal ions (PDB ID: 1gsa). (c) Superposition of (a) and (). Colors used are the same as in (a) and (). (d) Recognition of ound glutamate y StArgX.

10 Mg 2+ Mg 2+ R178 R178 Zn 2+ Zn 2+ E56 E E56 E Supplementary Figure 9. Structural model of the phosphoryl intermediate in the StArgX reaction. Sustrate glutamate,, Arg178 and the C-terminal residue (phosphorylated) of StLysW are shown. Based on the crystal structure of the StArgX/StLysW complex, a model of reaction intermediate of StArgX was generated. In the determined structure, the γ-caroxyl group of 56 of StLysW was not present at the position suitale for acyltransfer due to charge repulsion against the ound sulfate ion that mimics the γ -phosphate group from ATP. Therefore, the sulfate ion was replaced with the phosphate moiety of acylphosphate intermediate of StLysW and the conformation of the 56 side chain of StLysW was manually adjusted to form the acylphosphate linkage with the phosphate group. In the intermediate state, Arg178 completely conserved among LysX-ArgX proteins may form ionic interactions with the side-chain caroxyl group of 56 and the phosphoryl group of the intermediate.

11 β1 α1 β2 β3 η1 β4 α2 β5 α3 StArgX StArgX MRVVLIVDIVRQEEKLIAKALEENKVQYDIINVAQEPLPFN...KALGRYDVAIIRPVSMYRALYSSAVLEAAGVHTINSSDVINVCGD SaArgX MRVALVVDIVRQEEKLIAKALEKFQLQYDVINVAQEPLPFN...KALGRYDVAIIRPISMYRALYASAVLESAGVHTINSSDTISLCGD StLysX MILGVIYDLLRWEEKNLIQEARKLGHTVIPIYTKDFYYFYNNDSNETLGDLDVVIQRNTSHARAVITSTIFENLSYKTINDSSTLIKCEN SaLysX...MRWEEKDIITEAKKSGFKAIPIFTKDFYSAIGVGENYSELEADVIIQRNTSHARALTTSLIFEGWNYNVVNDATSLFKCGN TtLysX.MLAILYDRIRPDERMLFERAEALGLPYKKVYVPALPMVLG.ERPEALEGVTVALERCVSQSRGLAAARYLTALGIPVVNRPEVIEACGD TtLysX β1 α1 β2 η1 TT β3 η2 β4 α2 β5 α3 α4 β6 α5 β7 β8 α6 η2 β9 StArgX StArgX KILTYSKLYREGIPIPDSIIALSAEAALKAYEQRGFPLIDKPPIGSWGRLVSLIRDVFEGKTIIEHRELMGNSALKAHIVQEYIQYKGRD SaArgX KILTYSKLYREGIPIPDSIIAMSSDAALKAYEQKGFPLIDKPPIGSWGRLVSLIRDIFEGKTIIEHRELMGNSALKVHIVQEYINYKSRD StLysX KLYTLSLLSKHGIRVPKTIVAFSKEKALELANKLSYPVVIKPVEGSWGRMVARAIDEDTLRNFLEYQEYTTLQFRYIYLIQEFVKKPDRD SaLysX KLYTLSLLAKHNIKTPRTIVTFSKDKAVDLAKKIGFPAVIKPIEGSWGRMVAKAVDEDILYSFLEYQEYTTSQFRQIYLVQEFVKKPNRD TtLysX KWATSVALAKAGLPQPKTALATDREEALRLMEAFGYPVVLKPVIGSWGRLLAKVTDRAAAEALLEHKEVLGGFQHQLFYIQEYVEKPGRD TtLysX TT α4 β6 α5 β7 β8 α6 η3 β9 StArgX β10 β11 β12 α7 β13 β14 α8 TT TT TTT StArgX IRCIAIGEELLGCYARNIPPNEWRANVALGGTPSNIEVDEKLKETVVKAVSIVHGEFVSIDILEHPNKGYVVNELNDVPEFKGFMVATNI SaArgX IRCIVIGSELLGCYARNIPSNEWRANIALGGYPSQIEVDHKLKETVLKATSIIGGEFVSIDVMEHQSKNYVINEFNDVPEFKGFMLATNI StLysX IRIFTIGDEAPVGIYRVN.SRNWKTNTALGAKAEPLKIDEELQDLALKVKDIIGGFFLGIDVFEDPERGYIINEVNGVPEYKNTVRVNNF SaLysX IRIFVMGDEAPVGIYRVN.ERNWKTNTALGARALPLKIDDELRDLALKVRDIMGGFFLGIDIFEDPERGYLVNEVNGVPEYKNTVRVNNF TtLysX IRVFVVGERAIAAIYRR..SAHWITNTARGGQAENCPLTEEIARLSVGAAEAVGGGVVAVDLFES.ERGLLVNEVNHTMEFKNSVHTTGV TtLysX β10 TT β11 η4 β12 α7 β13 TT β14 α8 α9 StArgX StArgX NVAQKLVEYIKENYSK SaArgX DVAEELVSYVKNNYLR StLysX NVSEYLIRKIEEWIKK SaLysX NVSSYLLNKLREWIKK TtLysX DIPGEILRYAWEVARG TtLysX α9 Signature motif Supplementary Figure 10. Amino acid sequence alignment of LysX/ArgX family proteins. Structure-ased alignment was performed y ClustalW and ESPript. Areviations are: StArgX, ArgX from S. tokodaii; SaArgX, ArgX from S. acidocaldarius; StLysX, LysX from S. tokodaii; SaLysX, LysX from S. acidocaldarius; TtLysX, LysX from T. thermophilus. Signature motif that determines the sustrate specificity of this protein family is oxed.

12 Signature motif Archaea Bacteria TTS NP Sul Py Pyc NS Chloroflexus sp. Y400fl Chy NS Chloroflexus aurantiacus Caur 0334 NS Chloroflexus aggregans Cagg 3597 NS Herpetosiphon aurantiacus Haur 3306 NS Roseiflexus castenholzii DSM13941 Rcas 3469 NS Roseiflexus sp. RS1 RoseRS 1059 NS Thermoaculum terrenum Tter 0316 NS Thermomicroium roseum trd A0165 NS Sphaeroacter thermophilus Sthe 2943 NS Deinococcus deserti Deide NS Deinococcus radiodurans DR 2194 NS Deinococcus geothermalis Dgeo 1151 NS Truepera radiovictrix Trad 1392 NS Meiothermus ruer Mru 2724 NS Meiothermus silvanus Mesil 0438 NS Thermanaerovirio acidaminovorans Taci 0444 NS Thermus thermophilus HB8 TTHA1907 NS Thermus thermophilus HB27 TTC1543 GL Thermoaculum terrenum Tter 0318 GL Thermomicroium roseum trd 1519 GL Sphaeroacter thermophilus Sthe 0215 NA Candidatus Korarchaeum cryptofilum Kcr 0812 LA Pyrococcus furiosus PF09 NA Pyrococcus ayssi PAB0290 NA Thermococcus kodakarensis TK0278 NA Pyrococcus horikoshii PH1721 NA Pyrococcus furiosus PF1682 NT Nitrosopumilus maritimus Nmar 1295 NT Picrophilus torridus PTO1469 GL Nitrosopumilus maritimus Nmar 1288 AL Natronomonas pharaonis NP5258A AL Halalkalicoccus jeotgali HacjB3 000 AL Halorurum lacusprofundi Hlac 2616 AL Haloarcula marismortui rrnac2679 AL Halomicroium mukohataei Hmuk 0772 AL Haloferax volcanii HVO 0046 AL Natriala magadii Nmag 1761 AL Haloterrigena turkmenica Htur 0328 AL Halorhadus utahensis Huta 1502 AL Haloquadratum walsyi HQ3714A GA Picrophilus torridus PTO1467 NT Ignicoccus hospitalis Igni 0057 NT Ignisphaera aggregans Igag 1752 NT Sulfolous tokodaii ST0192 NT Sulfolous acidocaldarius Saci 0754 NT Metallosphaera sedula Msed 0168 NT Sulfolous solfataricus SSO0159 NT Sulfolous islandicus M M NT Sulfolous islandicus Y.N YN NT Sulfolous islandicus M M NT Sulfolous islandicus L.D.8.5 LD NT Sulfolous islandicus Y.G YG NT Sulfolous islandicus M.16.4 M NT Sulfolous islandicus L.S.2.15 LS NT Aeropyrum pernix APE 1463 NV Thermoproteus neutrophilus Tneu 0259 NV Pyroaculum calidifontis Pcal 1379 NV Pyroaculum islandicum Pisl 1291 NV Pyroaculum arsenaticum Pars 0291 NV Pyroaculum aerophilum PAE1240 NV Caldivirga maquilingensis Cmaq 1298 NV Vulcanisaeta distriuta Vdis 00 GL Vulcanisaeta distriuta Vdis 0196 AI Caldivirga maquilingensis Cmaq 1297 AL Pyroaculum calidifontis Pcal 0115 AL Pyroaculum aerophilum PAE0948 AL Pyroaculum arsenaticum Pars 0145 AL Pyroaculum islandicum Pisl 1185 AL Thermoproteus neutrophilus Tneu 0136 GF Ignicoccus hospitalis Igni 1403 GF Sulfolous tokodaii ST1505 GF Sulfolous acidocaldarius Saci 1621 GF Metallosphaera sedula Msed 11 GF Sulfolous solfataricus SSO0645 GF Sulfolous islandicus L.D.8.5 LD85 16 GF Sulfolous islandicus Y.N YN GF Sulfolous islandicus Y.G YG GF Sulfolous islandicus L.S.2.15 LS GF Sulfolous islandicus M.16.4 M GF Sulfolous islandicus M M GF Sulfolous islandicus M M GI Dickeya dadantii Ech586 Dd GV Serratia proteamaculans Spro 1643 GM Ferrimonas alearica Fal 1405 GF Planctomyces limnophilus Plim 2585 NL Oceanoacillus iheyensis OB59 GM Methanococcus vannielii Mevan 0912 AV Streptomyces griseus SGR 3478 HS Lactoacillus plantarum WCFS1 lp 0484 GF Catenulispora acidiphila Caci 6289 LysX ArgX LysX/ArgX ArgX LysX/ArgX LysX ArgX LysX LysX ArgX ArgX DAP pathway lacking LysW Supplementary Figure % ootstrap consensus tree of 90 argx/lysx-like gene products ased on maximum likelihood analysis (full version).

13 a c kda kda kda kda 1 d e kda kda 1 f Supplementary Figure 12. Purification of proteins involved in lysine and arginine iosynthesis. (a) Saci_0754 (lanes 2-10) and Saci_1621 (lanes 11-19). Lanes 2 and 11, precipitate of cell lysate y centrifugation; lanes 3 and 12, supernatant of cell lysate y centrifugation; lanes 4 and 13, heat-stale franction of lanes 3 and 12; lanes 5 and 14, passing fraction through Ni 2+ -column; lanes 6-9 and 15-18, washing fraction; lanes 10 and 19, eluate y 500 mm imidazole (purified proteins) () Saci_0751. Lane 2, precipitate of cell lysate y centrifugation; lane 3, supernatant of cell lysate y centrifugation; lane 4, heat-stale franction of lane 3; lane 5, passing fraction through Ni 2+ -column; lane 6, washing fraction; lanes 7 and 8, eluate y 0 mm and 500 mm imidazole (purified protein). (c) Saci_0753. (d) TtLysX. (e) St1505 (StArgX). (f) STs023 (StLysW). Pane (c)-(f), gel filtration profiles. Purified fractins are shown y divergent arrows. In every panel, lane 1 contains molecular size markers.

14 Supplementary Tale 1 Data collection and refinement statistics (molecular replacement) StArgX/ TtLysX/AMP-PNP StArgX/StLysW Data collection Space group P1 P P2 1 Cell dimensions a,, c (Å) 63.3, 67.8, , 130.3, , 114.0, 78.6,, ( ) 87.8, 75.3, , 90.0, , 102.4, 90.0 Resolution (Å) 1.87 ( ) * 1.95 ( ) * 1.80 ( ) * R sym or R merge 7.8 (30.1) 7.3 (47.9) 7.3 (58.1) I / I 14.7 (1.8) 24.2 (2.7) 12.3 (2.0) Completeness (%) 95.8 (87.3).7 (.1).7 (100.0) Redundancy 1.3 (1.3) 4.9 (4.4) 1.8 (1.8) Refinement Resolution (Å) No. reflections R work / R free 19.8 / / / 23.5 No. atoms Protein Ligand/ion Water B-factors Protein Ligand/ion Water R.m.s. deviations Bond lengths (Å) Bond angles ( ) Each data set was collected from a single crystal. *Highest-resolution shell is shown in parentheses.

15 Supplementary Tale 2 Interactions etween StArgX and StLysW residue on StLysW atom atom residue on StArgX distance (Å) Gloular domain Asp18 O 1 N Lys O Gly22 O N Val O 2 N Lys O 1 O Asp8 3.2 Arg45 N 2 O 1 Gln O * 2.8 C-terminal extension 48 O 1 N 1 Arg O 2 N O 1 O Ser159 * 2.7 N 2.8 N Asn O N Arg Asp53 O O Ser N Met N Tyr O N Met Trp54 O N 1 Arg N Gly55 N O Val O 1 N 1 Arg N N 2.5 O3 2- SO O 2 N 1 Arg O Ser O3 2- SO O N Asp N Val N O Ser * indicates residues from another suunit.

16 Supplementary Tale 3 Oligonucleotides used in this study Primers Sequence Restriction site 0753-Fw 5 - GGGGTACCCATATGGTACTATTAAAATGT -3 KpnI / NdeI 0753-Rv 5 - GGAATTCTTACTCTCCCAGTCCTC -3 EcoRI 0754-Fw 5 - GGGGTACCCCATGGCATGATAATAGGGGTATCG -3 KpnI / NcoI 0754-Rv 5 - GGAATTCTTATTTCTTAATCCACTC -3 EcoRI 1621-Fw 5 - GGGGTACCCCATGGCATGAGAGTAGCACTTGTC -3 KpnI / NcoI 1621-Rv 5 - GGAATTCTTACCTGAGGTAATTATT -3 EcoRI 0751-Fw 5 - GGGGTACCCCATGGCATGATAGTAGTAAAAAC -3 KpnI / NcoI 0751-Rv 5 - GGAATTCTTATTCAATCACCGTGCC -3 EcoRI TtLysX-Fw 5 - GGGGTACCCATATGCTGGCCATCCTCTAC -3 KpnI / NdeI TtLysX-Rv 5 - GGAATTCTAATCCACGGGCCACCT -3 EcoRI 0753up-Fw 5 - GCTTCATATGGGCAGACGTTGATGATAGTGATATTA -3 NdeI 0753up-Rv 5 - CTCTCCCCAGTCACATTTTAATAGTACCATGATGGATC ds-Fw 5 - ACTATTAAAATGTGACTGGGGAGAGTGATAATAGG ds-Rv 5 - GTGGGCCCCCTAAATTGACTTGTTGTATATTCCTG -3 ApaI 0754up-Fw 5 - GCTTCATATGGGTTAAAACTAATCCTCAAATTCCTA -3 NdeI 0754up-Rv 5 -GATCAATTTCATTTCTCTTCCCATCTCAACAGGTC ds -Fw 5 - GATGGGAAGAGAAATGAAATTGATCCAACTGTATGGA ds-Rv 5 - GTGGGCCCGCAGCCGTCTCATTATCTATC -3 ApaI 1621up-Fw 5 - TCCCCGCGGTAATGTCCAATTCGTAGT -3 SacII 1621up-Rv 5 - CGGGATCCTCATATACCTGCCCCATA -3 BamHI 1621ds-Fw 5 - GGAATTCTTACCTCAGGTAAGCCAA -3 EcoRI 1621ds-Rv 5 - CCGCTCGAGCTACATTTACTTGTCTCA -3 XhoI pyref-fw 5 - CGGGATCCTTTGAGCAGTTCTAGTAC -3 BamHI pyref-ev 5 - GGAATTCGACCGGCTATTTTTTCAC -3 EcoRI GF_NT-Fw 5 - GACGTTCCAGAGTTCAAAAATACTATGTTGGCTACCAATATT -3 GF_NT-Rv 5 - AATATTGGTAGCCAACATAGTATTTTTGAACTCTGGAACGTC -3 Y_I-Fw 5 - AGTGAGCTTCTAGGTTGTATCGCTAGGAATATACCTTCT -3 Y_I-Rv 5 - AGAAGGTATATTCCTAGCGATACAACCTAGAAGCTCACT -3 NT_GF-Fw 5 - GGTGTACCGGAATATAAAGGTTTTGTAAGAGTTAATAATTTC -3 NT_GF-Rv 5 - GAAATTATTAACTCTTACAAAACCTTTATATTCCGGTACACC -3 I_Y-Fw 5 - GATGAGGCACCAGTTGGATATTATAGAGTTAATGAACGT -3 I_Y-Rv 5 -ACGTTCATTAACTCTATAATATCCAACTGGTGCCTCATC -3

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11524 Supplementary discussion Functional analysis of the sugar porter family (SP) signature motifs. As seen in Fig. 5c, single point mutation of the conserved

More information

LIFE AT THE LIMITS - EXTREME ENVIRONMENTS "HOW CAN THEY SURVIVE?"

LIFE AT THE LIMITS - EXTREME ENVIRONMENTS HOW CAN THEY SURVIVE? COMPARATIVE MICROBIAL GENOMICS ANALYSIS LIFE AT THE LIMITS - EXTREME ENVIRONMENTS "HOW CAN THEY SURVIVE?" Group 5 Kanokwan Inban Lakkhana Khanhayuwa Parwin Tantayapirak Introduction 2 Source: http://pathmicro.med.sc.edu/fox/evol.gif

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table S1 Kinetic Analyses of the AMSH-LP mutants AMSH-LP K M (μm) k cat x 10-3 (s -1 ) WT 71.8 ± 6.3 860 ± 65.4 T353A 76.8 ± 11.7 46.3 ± 3.7 F355A 58.9 ± 10.4 5.33 ± 0.30 proximal S358A 75.1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dph2 SeMet (iron-free) # Dph2 (iron-free) Dph2-[4Fe-4S] Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell dimensions a, b, c (Å) 58.26, 82.08, 160.42 58.74, 81.87, 160.01 55.70, 80.53,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table 1: Amplitudes of three current levels. Level 0 (pa) Level 1 (pa) Level 2 (pa) TrkA- TrkH WT 200 K 0.01 ± 0.01 9.5 ± 0.01 18.7 ± 0.03 200 Na * 0.001 ± 0.01 3.9 ± 0.01 12.5 ± 0.03 200

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Results DNA binding property of the SRA domain was examined by an electrophoresis mobility shift assay (EMSA) using synthesized 12-bp oligonucleotide duplexes containing unmodified, hemi-methylated,

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

Supplementary Information. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

Supplementary Information. Structural basis for precursor protein-directed ribosomal peptide macrocyclization Supplementary Information Structural basis for precursor protein-directed ribosomal peptide macrocyclization Kunhua Li 1,3, Heather L. Condurso 1,3, Gengnan Li 1, Yousong Ding 2 and Steven D. Bruner 1*

More information

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine Supplementary figure 1. Comparison of unbound and as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine GM-CSF (slate) with bound GM-CSF in the GIF:GM-CSF complex (GIF: green,

More information

Acta Cryst. (2017). D73, doi: /s

Acta Cryst. (2017). D73, doi: /s Acta Cryst. (2017). D73, doi:10.1107/s2059798317010932 Supporting information Volume 73 (2017) Supporting information for article: Designing better diffracting crystals of biotin carboxyl carrier protein

More information

Diphthamide biosynthesis requires a radical iron-sulfur enzyme. Pennsylvania State University, University Park, Pennsylvania 16802, USA

Diphthamide biosynthesis requires a radical iron-sulfur enzyme. Pennsylvania State University, University Park, Pennsylvania 16802, USA Diphthamide biosynthesis requires a radical iron-sulfur enzyme Yang Zhang, 1,4 Xuling Zhu, 1,4 Andrew T. Torelli, 1 Michael Lee, 2 Boris Dzikovski, 1 Rachel Koralewski, 1 Eileen Wang, 1 Jack Freed, 1 Carsten

More information

Exam I Answer Key: Summer 2006, Semester C

Exam I Answer Key: Summer 2006, Semester C 1. Which of the following tripeptides would migrate most rapidly towards the negative electrode if electrophoresis is carried out at ph 3.0? a. gly-gly-gly b. glu-glu-asp c. lys-glu-lys d. val-asn-lys

More information

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two Supplementary Figure 1. Biopanningg and clone enrichment of Alphabody binders against human IL 23. Positive clones in i phage ELISA with optical density (OD) 3 times higher than background are shown for

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Table of Contents Page Supplementary Table 1. Diffraction data collection statistics 2 Supplementary Table 2. Crystallographic refinement statistics 3 Supplementary Fig. 1. casic1mfc packing in the R3

More information

SUPPLEMENTARY INFORMATION. doi: /nature07461

SUPPLEMENTARY INFORMATION. doi: /nature07461 Figure S1 Electrophysiology. a ph-activation of. Two-electrode voltage clamp recordings of Xenopus oocytes expressing in comparison to waterinjected oocytes. Currents were recorded at 40 mv. The ph of

More information

Supplementary Material and Figures

Supplementary Material and Figures Supplementary Material and Figures Nutrient transport suggests an evolutionary basis for charged archaeal surface layer proteins Po-Nan Li et al. Supplementary Figure S1. Numerical convergence of the simulation.

More information

ENZYME MECHANISMS, PROTEASES, STRUCTURAL BIOLOGY

ENZYME MECHANISMS, PROTEASES, STRUCTURAL BIOLOGY Supplementary Information SUBJECT AREAS: ENZYME MECHANISMS, PROTEASES, STRUCTURAL BIOLOGY Correspondence and requests for materials should be addressed to N.T. (ntanaka@pharm.showa-u.ac.jp) or W.O. (owataru@vos.nagaokaut.ac.jp)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table 1: Data collection, phasing and refinement statistics ChbC/Ta 6 Br 12 Native ChbC Data collection Space group P4 3 2 1 2 P4 3 2 1 2 Cell dimensions a, c (Å) 132.75, 453.57 132.81, 452.95

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Supplementary Figure 1 Protein sequence alignment of Vibrionaceae with either a 40-residue insertion or a 44-residue insertion. Identical residues are indicated by red background.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12045 Supplementary Table 1 Data collection and refinement statistics. Native Pt-SAD X-ray source SSRF BL17U SPring-8 BL41XU Wavelength (Å) 0.97947 1.07171 Space group P2 1 2 1 2 1 P2

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11054 Supplementary Fig. 1 Sequence alignment of Na v Rh with NaChBac, Na v Ab, and eukaryotic Na v and Ca v homologs. Secondary structural elements of Na v Rh are indicated above the

More information

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27 Acta Cryst. (2014). D70, doi:10.1107/s1399004714021695 Supporting information Volume 70 (2014) Supporting information for article: Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase

More information

Bacterial protease uses distinct thermodynamic signatures for substrate recognition

Bacterial protease uses distinct thermodynamic signatures for substrate recognition Bacterial protease uses distinct thermodynamic signatures for substrate recognition Gustavo Arruda Bezerra, Yuko Ohara-Nemoto, Irina Cornaciu, Sofiya Fedosyuk, Guillaume Hoffmann, Adam Round, José A. Márquez,

More information

Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R)

Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R) Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R) Shown in cyan and green are two adjacent tetramers from the crystallographic lattice of COP, forming the only unique inter-tetramer

More information

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2 Table 1. Crystallographic data collection, phasing and refinement statistics Native Hg soaked Mn soaked 1 Mn soaked 2 Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell

More information

FW 1 CDR 1 FW 2 CDR 2

FW 1 CDR 1 FW 2 CDR 2 Supplementary Figure 1 Supplementary Figure 1: Interface of the E9:Fas structure. The two interfaces formed by V H and V L of E9 with Fas are shown in stereo. The Fas receptor is represented as a surface

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Crystallization. a, Crystallization constructs of the ET B receptor are shown, with all of the modifications to the human wild-type the ET B receptor indicated. Residues interacting

More information

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate dehydrogenase from Escherichia coli [ICD, pdb 1PB1, Mesecar, A. D., and Koshland,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11085 Supplementary Tables: Supplementary Table 1. Summary of crystallographic and structure refinement data Structure BRIL-NOP receptor Data collection Number of crystals 23 Space group

More information

Full-length GlpG sequence was generated by PCR from E. coli genomic DNA. (with two sequence variations, D51E/L52V, from the gene bank entry aac28166),

Full-length GlpG sequence was generated by PCR from E. coli genomic DNA. (with two sequence variations, D51E/L52V, from the gene bank entry aac28166), Supplementary Methods Protein expression and purification Full-length GlpG sequence was generated by PCR from E. coli genomic DNA (with two sequence variations, D51E/L52V, from the gene bank entry aac28166),

More information

Nature Structural & Molecular Biology doi: /nsmb Supplementary Figure 1. CRBN binding assay with thalidomide enantiomers.

Nature Structural & Molecular Biology doi: /nsmb Supplementary Figure 1. CRBN binding assay with thalidomide enantiomers. Supplementary Figure 1 CRBN binding assay with thalidomide enantiomers. (a) Competitive elution assay using thalidomide-immobilized beads coupled with racemic thalidomide. Beads were washed three times

More information

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases Supplementary Information The protease GtgE from Salmonella exclusively targets inactive Rab GTPases Table of Contents Supplementary Figures... 2 Supplementary Figure 1... 2 Supplementary Figure 2... 3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary materials Figure S1 Fusion protein of Sulfolobus solfataricus SRP54 and a signal peptide. a, Expression vector for the fusion protein. The signal peptide of yeast dipeptidyl aminopeptidase

More information

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti Table S1. E. coli plasmids Plasmid Relevant features Source pdg680 T. reesei XynII AA 2-190 with C-terminal His 6 tag optimized for E. coli expression in pjexpress401 Wan et al. (in press) psbn44d psbn44h

More information

Supplementary information

Supplementary information Supplementary information The structural basis of modularity in ECF-type ABC transporters Guus B. Erkens 1,2, Ronnie P-A. Berntsson 1,2, Faizah Fulyani 1,2, Maria Majsnerowska 1,2, Andreja Vujičić-Žagar

More information

Whole-genome based Archaea phylogeny and taxonomy: A composition vector approach

Whole-genome based Archaea phylogeny and taxonomy: A composition vector approach Article SPECIAL TOPIC Bioinformatics August 2010 Vol.55 No.22: 2323 2328 doi: 10.1007/s11434-010-3008-8 Whole-genome based Archaea phylogeny and taxonomy: A composition vector approach SUN JianDong 1*,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLMTARY IFORMATIO a doi:10.108/nature10402 b 100 nm 100 nm c SAXS Model d ulers assigned to reference- Back-projected free class averages class averages Refinement against single particles Reconstructed

More information

A pentose bisphosphate pathway for nucleoside degradation in Archaea. Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto , Japan.

A pentose bisphosphate pathway for nucleoside degradation in Archaea. Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto , Japan. SUPPLEMENTARY INFORMATION A pentose bisphosphate pathway for nucleoside degradation in Archaea Riku Aono 1,, Takaaki Sato 1,, Tadayuki Imanaka, and Haruyuki Atomi 1, * 7 8 9 10 11 1 Department of Synthetic

More information

Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b).

Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b). Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b). Crystal contacts at B-C loop are magnified and stereo view of A-weighted

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Data collection Supplementary Table 1 Statistics of data collection, phasing and refinement Native Se-MAD Space group P2 1 2 1 2 1 P2 1 2 1 2 1 Cell dimensions a, b, c (Å) 50.4, 94.2, 115.4 49.8, 94.2,

More information

THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN

THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN HSP90 AND BOTH SCF E3 UBIQUITIN LIGASES AND KINETOCHORES Oliver Willhoft, Richard Kerr, Dipali Patel, Wenjuan Zhang, Caezar Al-Jassar, Tina

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION www.nature.com/nature 1 Figure S1 Sequence alignment. a Structure based alignment of the plgic of E. chrysanthemi (ELIC), the acetylcholine binding protein from the snail Lymnea stagnalis (AchBP, PDB code

More information

SUPPLEMENTARY FIGURES. Figure S1

SUPPLEMENTARY FIGURES. Figure S1 SUPPLEMENTARY FIGURES Figure S1 The substrate for DH domain (2R,3R,4R,6R,7S,8S,9R)-3,7,9-trihydroxy-5-oxo-2,4,6,8 tetramethylundecanoate) was docked as two separate fragments shown in magenta and blue

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Identification of the ScDcp2 minimal region interacting with both ScDcp1 and the ScEdc3 LSm domain. Pull-down experiment of untagged ScEdc3 LSm with various ScDcp1-Dcp2-His 6 fragments.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis Sergio de Cima, Luis M. Polo, Carmen Díez-Fernández, Ana I. Martínez, Javier

More information

Structural characterization of NiV N 0 P in solution and in crystal.

Structural characterization of NiV N 0 P in solution and in crystal. Supplementary Figure 1 Structural characterization of NiV N 0 P in solution and in crystal. (a) SAXS analysis of the N 32-383 0 -P 50 complex. The Guinier plot for complex concentrations of 0.55, 1.1,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.108/nature11899 Supplementar Table 1. Data collection and refinement statistics (+TPMP, native) (-TPMP, native) (+TPMP, recombinant) (MgCl ) (MgSO ) Data collection Space group C P 1 C P 1 1 P 1

More information

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits AhpC and AhpF from Escherichia coli Phat Vinh Dip 1,#, Neelagandan Kamariah 2,#, Malathy Sony Subramanian Manimekalai

More information

Supplementary Figure 1. Biochemical and sequence alignment analyses the

Supplementary Figure 1. Biochemical and sequence alignment analyses the Supplementary Figure 1. Biochemical and sequence alignment analyses the interaction of OPTN and TBK1. (a) Analytical gel filtration chromatography analysis of the interaction between TBK1 CTD and OPTN(1-119).

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. 1 Influences of crystal lattice contacts on Pol η structures. a. The dominant lattice contact between two hpol η molecules (silver and gold) in the type 1 crystals. b. A close-up view of the hydrophobic

More information

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. PDZK1 constru cts Amino acids MW [kda] KD [μm] PEPT2-CT- FITC KD [μm] NHE3-CT- FITC KD [μm] PDZK1-CT-

More information

The structure of a nucleolytic ribozyme that employs a catalytic metal ion. Yijin Liu, Timothy J. Wilson and David M.J. Lilley

The structure of a nucleolytic ribozyme that employs a catalytic metal ion. Yijin Liu, Timothy J. Wilson and David M.J. Lilley SUPPLEMENTARY INFORMATION The structure of a nucleolytic ribozyme that employs a catalytic metal ion Yijin Liu, Timothy J. Wilson and David M.J. Lilley Cancer Research UK Nucleic Acid Structure Research

More information

Supplementary Information. Viral immunoevasin targeting of a Natural Killer cell receptor family

Supplementary Information. Viral immunoevasin targeting of a Natural Killer cell receptor family Supplementary Information Viral immunoevasin targeting of a Natural Killer cell receptor family Richard Berry 1, Natasha Ng 1, Philippa M. Saunders 2, Julian P. Vivian 1, Jie Lin 2, Felix A. Deuss 1, Alexandra

More information

Supplemental Data SUPPLEMENTAL FIGURES

Supplemental Data SUPPLEMENTAL FIGURES Supplemental Data CRYSTAL STRUCTURE OF THE MG.ADP-INHIBITED STATE OF THE YEAST F 1 C 10 ATP SYNTHASE Alain Dautant*, Jean Velours and Marie-France Giraud* From Université Bordeaux 2, CNRS; Institut de

More information

Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon

Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon Wentao Chen,, Leopold Kong, Stephen Connelly, Julia M. Dendle,, Yu Liu,, Ian A. Wilson,#, Evan T. Powers, *, Jeffery

More information

Supplemental Information. Molecular Basis of Spectral Diversity. in Near-Infrared Phytochrome-Based. Fluorescent Proteins

Supplemental Information. Molecular Basis of Spectral Diversity. in Near-Infrared Phytochrome-Based. Fluorescent Proteins Chemistry & Biology, Volume 22 Supplemental Information Molecular Basis of Spectral Diversity in Near-Infrared Phytochrome-Based Fluorescent Proteins Daria M. Shcherbakova, Mikhail Baloban, Sergei Pletnev,

More information

*Corresponding Author *K. F.: *T. H.:

*Corresponding Author *K. F.:   *T. H.: Theoretical Analysis of Activity Cliffs among Benzofuranone Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson-Boltzmann Surface Area (FMO+MM-PBSA) Approach

More information

Cryo-EM data collection, refinement and validation statistics

Cryo-EM data collection, refinement and validation statistics 1 Table S1 Cryo-EM data collection, refinement and validation statistics Data collection and processing CPSF-160 WDR33 (EMDB-7114) (PDB 6BM0) CPSF-160 WDR33 (EMDB-7113) (PDB 6BLY) CPSF-160 WDR33 CPSF-30

More information

Supplementary Information

Supplementary Information Supplementary Information The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis Marta C. Marques a, Cristina Tapia b, Oscar Gutiérrez-Sanz b, Ana Raquel Ramos a, Kimberly L.

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains Hyoun Sook Kim

More information

Supplementary Information

Supplementary Information Supplementary Information Structural analysis of leader peptide binding enables leaderfree cyanobactin processing Jesko Koehnke 1,2, Greg Mann 1,2, Andrew F Bent 1,2, Hannes Ludewig 1, Sally Shirran 1,

More information

SI Text S1 Solution Scattering Data Collection and Analysis. SI references

SI Text S1 Solution Scattering Data Collection and Analysis. SI references SI Text S1 Solution Scattering Data Collection and Analysis. The X-ray photon energy was set to 8 kev. The PILATUS hybrid pixel array detector (RIGAKU) was positioned at a distance of 606 mm from the sample.

More information

Supplementary Figures

Supplementary Figures 1 Supplementary Figures Supplementary Figure 1 Type I FGFR1 inhibitors (a) Chemical structures of a pyrazolylaminopyrimidine inhibitor (henceforth referred to as PAPI; PDB-code of the FGFR1-PAPI complex:

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Zn 2+ -binding sites in USP18. (a) The two molecules of USP18 present in the asymmetric unit are shown. Chain A is shown in blue, chain B in green. Bound Zn 2+ ions are shown as

More information

Structure Investigation of Fam20C, a Golgi Casein Kinase

Structure Investigation of Fam20C, a Golgi Casein Kinase Structure Investigation of Fam20C, a Golgi Casein Kinase Sharon Grubner National Taiwan University, Dr. Jung-Hsin Lin University of California San Diego, Dr. Rommie Amaro Abstract This research project

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition JBC Papers in Press. Published on November 1, 2000 as Manuscript M006502200 Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions Implicated in Dimerization and Autoinhibition 1 Copyright

More information

Supplementary Information Intrinsic Localized Modes in Proteins

Supplementary Information Intrinsic Localized Modes in Proteins Supplementary Information Intrinsic Localized Modes in Proteins Adrien Nicolaï 1,, Patrice Delarue and Patrick Senet, 1 Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10458 Active Site Remodeling in the Bifunctional Fructose-1,6- bisphosphate aldolase/phosphatase Juan Du, Rafael F. Say, Wei Lü, Georg Fuchs & Oliver Einsle SUPPLEMENTARY FIGURES Figure

More information

IgE binds asymmetrically to its B cell receptor CD23

IgE binds asymmetrically to its B cell receptor CD23 Supplementary Information IgE binds asymmetrically to its B cell receptor CD23 Balvinder Dhaliwal 1*, Marie O. Y. Pang 2, Anthony H. Keeble 2,3, Louisa K. James 2,4, Hannah J. Gould 2, James M. McDonnell

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10955 Supplementary Figures Supplementary Figure 1. Electron-density maps and crystallographic dimer structures of the motor domain. (a f) Stereo views of the final electron-density maps

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/5/243/ra68/dc1 Supplementary Materials for Superbinder SH2 Domains Act as Antagonists of Cell Signaling Tomonori Kaneko, Haiming Huang, Xuan Cao, Xing Li, Chengjun

More information

Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information

Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information Grzegorz Nawrocki and Marek Cieplak Institute of Physics, Polish Academy of Sciences,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 06:13 pm GMT PDB ID : 5G5C Title : Structure of the Pyrococcus furiosus Esterase Pf2001 with space group C2221 Authors : Varejao, N.; Reverter,

More information

Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a

Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a series of tmfret-pairs comprised of single cysteine mutants

More information

Supplementary Information

Supplementary Information Supplementary Information An engineered protein antagonist of K-Ras/B-Raf interaction Monique J. Kauke, 1,2 Michael W. Traxlmayr 1,2, Jillian A. Parker 3, Jonathan D. Kiefer 4, Ryan Knihtila 3, John McGee

More information

Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France

Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France Supplementary Information to Lysine relay mechanism coordinates intermediate transfer in vitamin B6 biosynthesis Matthew J. Rodrigues 1,2, Volker Windeisen 1,3, Yang Zhang 4, Gabriela Guédez 3, Stefan

More information

SUPPLEMENTARY INFORMATION. Structural basis of laminin binding to the LARGE glycans on dystroglycan

SUPPLEMENTARY INFORMATION. Structural basis of laminin binding to the LARGE glycans on dystroglycan SUPPLEMENTARY INFORMATION Structural asis of laminin inding to the LARGE glycans on dystroglycan David C. Briggs 1, Takako Yoshida-Moriguchi 2, Tianqing Zheng 2, David Venzke 2, Mary Anderson 2, Andrea

More information

Rho1 binding site PtdIns(4,5)P2 binding site Both sites

Rho1 binding site PtdIns(4,5)P2 binding site Both sites localization Mutation site DMSO LatB WT F77A I115A I131A K134A Rho1 binding site PtdIns(4,5)P2 binding site Both sites E186A E199A N201A R84A-E186A-E199A L131A-K136A-E186A L131A-E186A-E199A K136A-E186A-E199A

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 5 N 4 8 20 22 24 2 28 4 8 20 22 24 2 28 a b 0 9 8 7 H c (kda) 95 0 57 4 28 2 5.5 Precipitate before NMR expt. Supernatant before NMR expt. Precipitate after hrs NMR expt. Supernatant after hrs NMR expt.

More information

Supporting Information

Supporting Information Supporting Information Ottmann et al. 10.1073/pnas.0907587106 Fig. S1. Primary structure alignment of SBT3 with C5 peptidase from Streptococcus pyogenes. The Matchmaker tool in UCSF Chimera (http:// www.cgl.ucsf.edu/chimera)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1737 Supplementary Table 1 variant Description FSEC - 2B12 a FSEC - 6A1 a K d (leucine) c Leucine uptake e K (wild-type like) K (Y18F) K (TS) K (TSY) K288A mutant, lipid facing side chain

More information

Structural insights into energy regulation of light-harvesting complex from spinach CP29

Structural insights into energy regulation of light-harvesting complex from spinach CP29 SUPPLEMENTARY INFORMATION Structural insights into energy regulation of light-harvesting complex from spinach CP29 Xiaowei Pan 1, Mei Li 1, Tao Wan 1,2, Longfei Wang 1,2, Chenjun Jia 1,2, Zhiqiang Hou

More information

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site Experimental and Computational Mutagenesis to Investigate the Positioning of a General Base within an Enzyme Active Site Jason P. Schwans, Philip Hanoian, Benjamin J. Lengerich, Fanny Sunden, Ana Gonzalez

More information

The structure of a nucleolytic ribozyme that employs a catalytic metal ion Liu, Yijin; Wilson, Timothy; Lilley, David

The structure of a nucleolytic ribozyme that employs a catalytic metal ion Liu, Yijin; Wilson, Timothy; Lilley, David University of Dundee The structure of a nucleolytic ribozyme that employs a catalytic metal ion Liu, Yijin; Wilson, Timothy; Lilley, David Published in: Nature Chemical Biology DOI: 10.1038/nchembio.2333

More information

Structural basis of PROTAC cooperative recognition for selective protein degradation

Structural basis of PROTAC cooperative recognition for selective protein degradation SUPPLEMENTARY INFORMATION Structural basis of PROTAC cooperative recognition for selective protein degradation Morgan S. Gadd 1, Andrea Testa 1, Xavier Lucas 1, Kwok-Ho Chan, Wenzhang Chen, Douglas J.

More information

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013 Hydration of protein-rna recognition sites Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India 1 st November, 2013 Central Dogma of life DNA

More information

Supplementary Figure 1. Stability constants of metal monohydroxides. The log K values are summarized according to the atomic number of each element

Supplementary Figure 1. Stability constants of metal monohydroxides. The log K values are summarized according to the atomic number of each element Supplementary Figure 1. Stability constants of metal monohydroxides. The log K values are summarized according to the atomic number of each element as determined in a previous study 1. The log K value

More information

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain.

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain. Biochemistry Quiz Review 1I A general note: Short answer questions are just that, short. Writing a paragraph filled with every term you can remember from class won t improve your answer just answer clearly,

More information

Supporting Information

Supporting Information Supporting Information Naganuma et al. 10.1073/pnas.0901572106 SI Text The Recognition of Ala-SA. Ala-SA is a nonhydrolyzable analog of alanyl-adenylate and is a potent inhibitor of AlaRS (1). The recognition

More information

BCH 4053 Exam I Review Spring 2017

BCH 4053 Exam I Review Spring 2017 BCH 4053 SI - Spring 2017 Reed BCH 4053 Exam I Review Spring 2017 Chapter 1 1. Calculate G for the reaction A + A P + Q. Assume the following equilibrium concentrations: [A] = 20mM, [Q] = [P] = 40fM. Assume

More information

Acta Crystallographica Section D

Acta Crystallographica Section D Supporting information Acta Crystallographica Section D Volume 70 (2014) Supporting information for article: Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1: The HpUreI crystal used for collection of native diffraction data. The crystal belongs to spacegroup P4 2 2 1 2 and has an approximate maximal dimension of 0.25 mm. Supplementary

More information

CHMI 2227 EL. Biochemistry I. Test January Prof : Eric R. Gauthier, Ph.D.

CHMI 2227 EL. Biochemistry I. Test January Prof : Eric R. Gauthier, Ph.D. CHMI 2227 EL Biochemistry I Test 1 26 January 2007 Prof : Eric R. Gauthier, Ph.D. Guidelines: 1) Duration: 55 min 2) 14 questions, on 7 pages. For 70 marks (5 marks per question). Worth 15 % of the final

More information

Structure and RNA-binding properties. of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex

Structure and RNA-binding properties. of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex Structure and RNA-binding properties of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex Varun Bhaskar 1, Vladimir Roudko 2,3, Jerome Basquin 1, Kundan Sharma 4, Henning Urlaub 4, Bertrand Seraphin

More information

High-resolution crystal structure of ERAP1 with bound phosphinic transition-state analogue inhibitor

High-resolution crystal structure of ERAP1 with bound phosphinic transition-state analogue inhibitor High-resolution crystal structure of ERAP1 with bound phosphinic transition-state analogue inhibitor Petros Giastas 1, Margarete Neu 2, Paul Rowland 2, and Efstratios Stratikos 1 1 National Center for

More information

Supplement information

Supplement information Electronic Supplementary Material (ESI) for Physil Chemistry Chemil Physics. This journal is the Owner Societies 216 Supplement information Fullerenol C 6 (OH) 16 prevents amyloid fibrillization of Aβ

More information

Lecture 15: Realities of Genome Assembly Protein Sequencing

Lecture 15: Realities of Genome Assembly Protein Sequencing Lecture 15: Realities of Genome Assembly Protein Sequencing Study Chapter 8.10-8.15 1 Euler s Theorems A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing

More information

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2009 NMR study of complexes between low molecular mass inhibitors and the West Nile

More information

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 215 Structural and mechanistic insight into the substrate binding from the conformational

More information