SI Text S1 Solution Scattering Data Collection and Analysis. SI references

Size: px
Start display at page:

Download "SI Text S1 Solution Scattering Data Collection and Analysis. SI references"

Transcription

1 SI Text S1 Solution Scattering Data Collection and Analysis. The X-ray photon energy was set to 8 kev. The PILATUS hybrid pixel array detector (RIGAKU) was positioned at a distance of 606 mm from the sample. ΔTGEE heme rho-1 purified with the size-exclusion chromatography as described in Methods was concentrated up to 10 mg/ml. Scattering profile simulations from the crystal structure were carried out using CRYSOL (1). Ab initio dummy model was constructed with DAMMIN (2). SI references 1. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL - a Program to Evaluate X- ray Solution Scattering of Biological Macromolecules from Atomic Coordinates. J. Appl. Crystallogr. 28: Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76:

2 Fig. S1 Confirmation of the generation of biliverdin-iron chelate during the single turnover reaction of heme-rho-1 supported with NADPH ΔTGEE system. The spectrum was recorded 70 min after the addition of desferrioxamine (final conc. 2 mm) into the reaction mixture at 220 min after the addition of NADPH at 25 C (Fig. 1B). Characteristic peak of biliverdin around 670 nm was observed.

3 (A) (B) ΔTGEE rho-1 (C) Fig. S2 Characterization of the co-eluted fraction shown in Fig. 3. (A) Absorption spectrum and (B) SDS/PAGE stained with Coomassie Brilliant Blue of the fraction (47.5 ml fraction in Fig. 3) co-eluted from the size-exclusion column onto which a mixture of ΔTGEE and heme rho-1 was applied. The absorption peak at 405 nm and the shoulder around nm represent heme rho-1 complex and ΔTGEE, respectively. (C) Elution profile of a mixture of ΔTGEE and apo rho-1 from size exclusion column. First and second peaks were eluted at 50.9 ml and 58.6 ml, respectively. The experimental conditions were the same as described in the legend for Fig. 3.

4 (A) (B) (C) (D) Fig. S3 Electron density of ΔTGEE heme rho-1 complex. (A) Cα trace of two independent ΔTGEE heme rho-1 complexes was superimposed on the electron density contoured by 1.0 σ. FMN and FAD domains, and rho-1 were colored yellow, orange, and magenta, respectively. Electron density and Cα trace were shown as a stereo diagram. (B) Close-up view of heme and FMN. Omit map of heme, FMN, FAD, and NADP + contoured by 3.0 σ (green) was also superimposed on the electron density (gray) and Cα trace. (C) Close-up view of FAD and NADP +. (D) Difference anomalous Fourier map calculated with the data obtained using 1.5 Å wavelength X-ray. Difference anomalous map (white) contoured by 4.5 σ was superimposed onto the ribbon model of the complex. Magenta and yellow chains showed ΔTGEE, whereas green and blue chains showed heme rho-1. Anomalous peaks were observed at the heme irons.

5 (A) (B). Fig. S4 Comparison of the crystal structure and SAXS result. (A) Experimental X-ray scattering curve from ΔTGEE heme rho-1 complex (solid line) and theoretical curve estimated from the crystal structure (dotted line). Radius of gyration from Guinier approximation was 3.05 nm, which is similar to that obtained from the crystal structure (2.92 nm). (B) Superimposition of the ribbon model of ΔTGEE heme rho-1 complex onto the ab initio dummy atom model obtained from SAXS result.

6 Fig. S5 Superimposition of ΔTGEE heme rho-1 onto ΔTGEE (PDB ID: 3ES9). ΔTGEE and rho-1 in ΔTGEE heme rho-1 was colored as yellow and pink, respectively. The least extended form of ΔTGEE (Mol A) was colored green. Other extended forms, Mols B and C, were shown in cyan and magenta, respectively. Only the co-factors of ΔTGEE in ΔTGEE heme rho-1 complex were shown for clarity. All FAD domains were fitting well, whereas FMN domain in each ΔTGEE showed different arrangements.

7 Fig. S6 Introduction of Cys mutations for formation of intermolecular disulfide bonds between CPR and rho-1. FMN and FAD domains and rho-1 were colored with yellow, orange, and pink, respectively. Mutated sites were shown as cyan stick models. FMN, FAD and heme were shown as blue stick models.

8 Fig. S7 Western blot analysis of artificial disulfide bond formation between CPR and heme rho-1 with anti-cpr or anti-rho-1 antibodies. SDS/PAGE was performed without 2-mercaptoethanol.

9 Fig. S8 Superimposition of ΔTGEE heme rho-1 onto the FMN and heme domains of cytochrome P450 BM3 (PDB ID: 1BVY). Superimposition was done so as to minimize the root-mean-square difference of FMN molecule. ΔTGEE heme rho-1 was colored as in Fig. 4. Ribbon model of FMN and heme domains of cytochrome P450 BM3 were yellow-green and red, respectively. FMN and heme in cytochrome P450 BM3 were shown as cyan stick models.

10 Table S1 Data collection and refinement statistics ΔTGEE heme rho-1 complex Data collection Space group P6 1 Cell dimensions (Å) a = b = 290.3, c = 83.6 Resolution (Å) ( ) * a R sy m (0.888) I / σi 6.2 (2.8) Completeness (%) 99.9(100) Redundancy 12.0 (10.3) Refinement Resolution (Å) No. reflections R work / R b free 0.22 / 0.26 No. atoms Protein Ligand 316 B-factors Protein Ligand R.m.s. deviations Bond lengths (Å) Bond angles ( ) *Values in parentheses are for highest-resolution shell. a R sym = Σ hkl Σ i I i (hkl) - <I(hkl)> / Σ hkl Σ i I i (hkl), <I(hkl)> is the mean intensity for multiple recorded reflections. b R work = Σ F obs (hkl) - F calc (hkl) / Σ F obs (hkl). R free is the R cryst calculated for the five percent of the dataset not included in the refinement.

11 Table S2. Oligonucleotide sequences to produce ΔTGEE and Cys-introduced mutants of CPR and rho-1. ΔTGEE-f GGCTTCTACCCCAAAGAACTC ΔTGEE-r TCGAGCATTCGCCAGTATGAG T88C-CPR-f CAGTGTGGAACCGCTGAGGAG T88C-CPR-r GGAGCCATAGAATACGATAATG Q517C-CPR-f TCTTGTTTCCGCTTGCCTTTCAAG Q517C-CPR-r TTTGCGCACGAACATGGGTAC V146C-HO-f CAGTGCCTGAAGAAGATTGCGC V146C-HO-r ACCCCCTGAGAGGTCACC K177C-HO-f ACCTGTTTCAAACAGCTCTATCGTG K177C-HO-r GGGGTTGTCGATGCTCGG The sites for Cys-introduced mutations were underlined.

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION www.nature.com/nature 1 Figure S1 Sequence alignment. a Structure based alignment of the plgic of E. chrysanthemi (ELIC), the acetylcholine binding protein from the snail Lymnea stagnalis (AchBP, PDB code

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11054 Supplementary Fig. 1 Sequence alignment of Na v Rh with NaChBac, Na v Ab, and eukaryotic Na v and Ca v homologs. Secondary structural elements of Na v Rh are indicated above the

More information

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition JBC Papers in Press. Published on November 1, 2000 as Manuscript M006502200 Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions Implicated in Dimerization and Autoinhibition 1 Copyright

More information

Supplementary Figure 1. Biochemical and sequence alignment analyses the

Supplementary Figure 1. Biochemical and sequence alignment analyses the Supplementary Figure 1. Biochemical and sequence alignment analyses the interaction of OPTN and TBK1. (a) Analytical gel filtration chromatography analysis of the interaction between TBK1 CTD and OPTN(1-119).

More information

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. PDZK1 constru cts Amino acids MW [kda] KD [μm] PEPT2-CT- FITC KD [μm] NHE3-CT- FITC KD [μm] PDZK1-CT-

More information

SUPPLEMENTARY INFORMATION. doi: /nature07461

SUPPLEMENTARY INFORMATION. doi: /nature07461 Figure S1 Electrophysiology. a ph-activation of. Two-electrode voltage clamp recordings of Xenopus oocytes expressing in comparison to waterinjected oocytes. Currents were recorded at 40 mv. The ph of

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Identification of the ScDcp2 minimal region interacting with both ScDcp1 and the ScEdc3 LSm domain. Pull-down experiment of untagged ScEdc3 LSm with various ScDcp1-Dcp2-His 6 fragments.

More information

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands This document was presented at PPXRD - Pharmaceutical Powder X-ray

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11539 Supplementary Figure 1 Schematic representation of plant (A) and mammalian (B) P 2B -ATPase domain organization. Actuator (A-), nucleotide binding (N-),

More information

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti Table S1. E. coli plasmids Plasmid Relevant features Source pdg680 T. reesei XynII AA 2-190 with C-terminal His 6 tag optimized for E. coli expression in pjexpress401 Wan et al. (in press) psbn44d psbn44h

More information

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits AhpC and AhpF from Escherichia coli Phat Vinh Dip 1,#, Neelagandan Kamariah 2,#, Malathy Sony Subramanian Manimekalai

More information

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2 Table 1. Crystallographic data collection, phasing and refinement statistics Native Hg soaked Mn soaked 1 Mn soaked 2 Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell

More information

SOCS3 binds specific receptor JAK complexes to control cytokine signaling by direct kinase inhibition SUPPLEMENTARY INFORMATION

SOCS3 binds specific receptor JAK complexes to control cytokine signaling by direct kinase inhibition SUPPLEMENTARY INFORMATION SOCS3 binds specific receptor JAK complexes to control cytokine signaling by direct kinase inhibition Nadia J. Kershaw 1,2, James M. Murphy 1,2, Nicholas P.D. Liau 1,2, Leila N. Varghese 1,2, Artem Laktyushin

More information

Crystal lattice Real Space. Reflections Reciprocal Space. I. Solving Phases II. Model Building for CHEM 645. Purified Protein. Build model.

Crystal lattice Real Space. Reflections Reciprocal Space. I. Solving Phases II. Model Building for CHEM 645. Purified Protein. Build model. I. Solving Phases II. Model Building for CHEM 645 Purified Protein Solve Phase Build model and refine Crystal lattice Real Space Reflections Reciprocal Space ρ (x, y, z) pronounced rho F hkl 2 I F (h,

More information

IgE binds asymmetrically to its B cell receptor CD23

IgE binds asymmetrically to its B cell receptor CD23 Supplementary Information IgE binds asymmetrically to its B cell receptor CD23 Balvinder Dhaliwal 1*, Marie O. Y. Pang 2, Anthony H. Keeble 2,3, Louisa K. James 2,4, Hannah J. Gould 2, James M. McDonnell

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Results DNA binding property of the SRA domain was examined by an electrophoresis mobility shift assay (EMSA) using synthesized 12-bp oligonucleotide duplexes containing unmodified, hemi-methylated,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table 1: Amplitudes of three current levels. Level 0 (pa) Level 1 (pa) Level 2 (pa) TrkA- TrkH WT 200 K 0.01 ± 0.01 9.5 ± 0.01 18.7 ± 0.03 200 Na * 0.001 ± 0.01 3.9 ± 0.01 12.5 ± 0.03 200

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary materials Figure S1 Fusion protein of Sulfolobus solfataricus SRP54 and a signal peptide. a, Expression vector for the fusion protein. The signal peptide of yeast dipeptidyl aminopeptidase

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11524 Supplementary discussion Functional analysis of the sugar porter family (SP) signature motifs. As seen in Fig. 5c, single point mutation of the conserved

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table S1 Kinetic Analyses of the AMSH-LP mutants AMSH-LP K M (μm) k cat x 10-3 (s -1 ) WT 71.8 ± 6.3 860 ± 65.4 T353A 76.8 ± 11.7 46.3 ± 3.7 F355A 58.9 ± 10.4 5.33 ± 0.30 proximal S358A 75.1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dph2 SeMet (iron-free) # Dph2 (iron-free) Dph2-[4Fe-4S] Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell dimensions a, b, c (Å) 58.26, 82.08, 160.42 58.74, 81.87, 160.01 55.70, 80.53,

More information

Supplementary Information

Supplementary Information Supplementary Information The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis Marta C. Marques a, Cristina Tapia b, Oscar Gutiérrez-Sanz b, Ana Raquel Ramos a, Kimberly L.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11744 Supplementary Table 1. Crystallographic data collection and refinement statistics. Wild-type Se-Met-BcsA-B SmCl 3 -soaked EMTS-soaked Data collection Space

More information

ID14-EH3. Adam Round

ID14-EH3. Adam Round Bio-SAXS @ ID14-EH3 Adam Round Contents What can be obtained from Bio-SAXS Measurable parameters Modelling strategies How to collect data at Bio-SAXS Procedure Data collection tests Data Verification and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. 1 Influences of crystal lattice contacts on Pol η structures. a. The dominant lattice contact between two hpol η molecules (silver and gold) in the type 1 crystals. b. A close-up view of the hydrophobic

More information

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases Supplementary Information The protease GtgE from Salmonella exclusively targets inactive Rab GTPases Table of Contents Supplementary Figures... 2 Supplementary Figure 1... 2 Supplementary Figure 2... 3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Table of Contents Page Supplementary Table 1. Diffraction data collection statistics 2 Supplementary Table 2. Crystallographic refinement statistics 3 Supplementary Fig. 1. casic1mfc packing in the R3

More information

Acta Cryst. (2017). D73, doi: /s

Acta Cryst. (2017). D73, doi: /s Acta Cryst. (2017). D73, doi:10.1107/s2059798317010932 Supporting information Volume 73 (2017) Supporting information for article: Designing better diffracting crystals of biotin carboxyl carrier protein

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

Expanded View Figures

Expanded View Figures The EMBO Journal Structure of a Dm peptide bound to the OT module Tobias Raisch et al Expanded View Figures A Hs Dm 262 297 685 8 HEAT HEAT MIF4G 9BD 1SHD 761 91 193 169 1152 1317 16 1376 1467 HEAT HEAT

More information

Purification, SDS-PAGE and cryo-em characterization of the MCM hexamer and Cdt1 MCM heptamer samples.

Purification, SDS-PAGE and cryo-em characterization of the MCM hexamer and Cdt1 MCM heptamer samples. Supplementary Figure 1 Purification, SDS-PAGE and cryo-em characterization of the MCM hexamer and Cdt1 MCM heptamer samples. (a-b) SDS-PAGE analysis of the hexamer and heptamer samples. The eluted hexamer

More information

Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon

Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon Wentao Chen,, Leopold Kong, Stephen Connelly, Julia M. Dendle,, Yu Liu,, Ian A. Wilson,#, Evan T. Powers, *, Jeffery

More information

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Jun Yi* and George B. Richter- Addo* Department of Chemistry

More information

Supplemental Information. Structural and Mechanistic Paradigm. of Leptin Receptor Activation Revealed

Supplemental Information. Structural and Mechanistic Paradigm. of Leptin Receptor Activation Revealed Structure, Volume 22 Supplemental Information Structural and Mechanistic Paradigm of Leptin Receptor Activation Revealed by Complexes with Wild-Type and Antagonist Leptins Kedar Moharana, Lennart Zabeau,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Data collection Supplementary Table 1 Statistics of data collection, phasing and refinement Native Se-MAD Space group P2 1 2 1 2 1 P2 1 2 1 2 1 Cell dimensions a, b, c (Å) 50.4, 94.2, 115.4 49.8, 94.2,

More information

Modelling against small angle scattering data. Al Kikhney EMBL Hamburg, Germany

Modelling against small angle scattering data. Al Kikhney EMBL Hamburg, Germany Modelling against small angle scattering data Al Kikhney EMBL Hamburg, Germany Validation of atomic models CRYSOL Rigid body modelling SASREF BUNCH CORAL Oligomeric mixtures OLIGOMER Flexible systems EOM

More information

Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013

Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013 Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013 Structural Biology Shape Dynamic Light Scattering Electron Microscopy Small Angle X-ray Scattering Cryo-Electron Microscopy Wide Angle X- ray

More information

Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi

Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi 1 Wikipedia Small-angle X-ray scattering (SAXS) is a small-angle scattering (SAS) technique where the elastic scattering of X-rays (wavelength

More information

Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R)

Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R) Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R) Shown in cyan and green are two adjacent tetramers from the crystallographic lattice of COP, forming the only unique inter-tetramer

More information

Diphthamide biosynthesis requires a radical iron-sulfur enzyme. Pennsylvania State University, University Park, Pennsylvania 16802, USA

Diphthamide biosynthesis requires a radical iron-sulfur enzyme. Pennsylvania State University, University Park, Pennsylvania 16802, USA Diphthamide biosynthesis requires a radical iron-sulfur enzyme Yang Zhang, 1,4 Xuling Zhu, 1,4 Andrew T. Torelli, 1 Michael Lee, 2 Boris Dzikovski, 1 Rachel Koralewski, 1 Eileen Wang, 1 Jack Freed, 1 Carsten

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Crystallization. a, Crystallization constructs of the ET B receptor are shown, with all of the modifications to the human wild-type the ET B receptor indicated. Residues interacting

More information

Supporting Information. UV-induced ligand exchange in MHC class I protein crystals

Supporting Information. UV-induced ligand exchange in MHC class I protein crystals Supporting Information for the article entitled UV-induced ligand exchange in MHC class I protein crystals by Patrick H.N. Celie 1, Mireille Toebes 2, Boris Rodenko 3, Huib Ovaa 3, Anastassis Perrakis

More information

CH 3 CH 2 OH +H 2 O CHO. 2e + 2H + + O 2 H 2 O +HCOOH

CH 3 CH 2 OH +H 2 O CHO. 2e + 2H + + O 2 H 2 O +HCOOH 2 4 H CH 3 2e + 2H + + 2 H 2 2 H CH 2 H 2e + 2H + + 2 H 2 2 H +H 2 CH 2e + 2H + + 2 H 2 2 H +HCH Supplemental Figure S. The three-step 4DM reaction, each step requires two reducing equivalents from ADPH

More information

Supplemental Data SUPPLEMENTAL FIGURES

Supplemental Data SUPPLEMENTAL FIGURES Supplemental Data CRYSTAL STRUCTURE OF THE MG.ADP-INHIBITED STATE OF THE YEAST F 1 C 10 ATP SYNTHASE Alain Dautant*, Jean Velours and Marie-France Giraud* From Université Bordeaux 2, CNRS; Institut de

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.108/nature11899 Supplementar Table 1. Data collection and refinement statistics (+TPMP, native) (-TPMP, native) (+TPMP, recombinant) (MgCl ) (MgSO ) Data collection Space group C P 1 C P 1 1 P 1

More information

Dr. Yonca Yuzugullu PERG (Protein Engineering Research Group)

Dr. Yonca Yuzugullu PERG (Protein Engineering Research Group) Dr. Yonca Yuzugullu PERG (Protein Engineering Research Group) BSc, 1997 Ankara University, Turkey PhD, 2010 Middle East Technical University, Turkey Lecturer in Department of Biology Kocaeli University,

More information

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site Experimental and Computational Mutagenesis to Investigate the Positioning of a General Base within an Enzyme Active Site Jason P. Schwans, Philip Hanoian, Benjamin J. Lengerich, Fanny Sunden, Ana Gonzalez

More information

Acta Crystallographica Section F

Acta Crystallographica Section F Supporting information Acta Crystallographica Section F Volume 70 (2014) Supporting information for article: Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallised

More information

THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN

THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN HSP90 AND BOTH SCF E3 UBIQUITIN LIGASES AND KINETOCHORES Oliver Willhoft, Richard Kerr, Dipali Patel, Wenjuan Zhang, Caezar Al-Jassar, Tina

More information

Acta Crystallographica Section D

Acta Crystallographica Section D Supporting information Acta Crystallographica Section D Volume 70 (2014) Supporting information for article: Structural characterization of the virulence factor Nuclease A from Streptococcus agalactiae

More information

X-ray Crystallography. Kalyan Das

X-ray Crystallography. Kalyan Das X-ray Crystallography Kalyan Das Electromagnetic Spectrum NMR 10 um - 10 mm 700 to 10 4 nm 400 to 700 nm 10 to 400 nm 10-1 to 10 nm 10-4 to 10-1 nm X-ray radiation was discovered by Roentgen in 1895. X-rays

More information

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine Supplementary figure 1. Comparison of unbound and as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine GM-CSF (slate) with bound GM-CSF in the GIF:GM-CSF complex (GIF: green,

More information

Structural characterization of NiV N 0 P in solution and in crystal.

Structural characterization of NiV N 0 P in solution and in crystal. Supplementary Figure 1 Structural characterization of NiV N 0 P in solution and in crystal. (a) SAXS analysis of the N 32-383 0 -P 50 complex. The Guinier plot for complex concentrations of 0.55, 1.1,

More information

Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme

Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme Volume 1 (2014) Supporting information for article: Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme Mirella Vivoli, Emily Ayres, Edward Beaumont, Michail N. Isupov and Nicholas

More information

Supplementary materials. Crystal structure of the carboxyltransferase domain. of acetyl coenzyme A carboxylase. Department of Biological Sciences

Supplementary materials. Crystal structure of the carboxyltransferase domain. of acetyl coenzyme A carboxylase. Department of Biological Sciences Supplementary materials Crystal structure of the carboxyltransferase domain of acetyl coenzyme A carboxylase Hailong Zhang, Zhiru Yang, 1 Yang Shen, 1 Liang Tong Department of Biological Sciences Columbia

More information

Electron Density at various resolutions, and fitting a model as accurately as possible.

Electron Density at various resolutions, and fitting a model as accurately as possible. Section 9, Electron Density Maps 900 Electron Density at various resolutions, and fitting a model as accurately as possible. ρ xyz = (Vol) -1 h k l m hkl F hkl e iφ hkl e-i2π( hx + ky + lz ) Amplitude

More information

Supporting Information

Supporting Information Supporting Information Ottmann et al. 10.1073/pnas.0907587106 Fig. S1. Primary structure alignment of SBT3 with C5 peptidase from Streptococcus pyogenes. The Matchmaker tool in UCSF Chimera (http:// www.cgl.ucsf.edu/chimera)

More information

Anomalous dispersion

Anomalous dispersion Selenomethionine MAD Selenomethionine is the amino acid methionine with the Sulfur replaced by a Selenium. Selenium is a heavy atom that also has the propery of "anomalous scatter" at some wavelengths,

More information

Protein crystallography. Garry Taylor

Protein crystallography. Garry Taylor Protein crystallography Garry Taylor X-ray Crystallography - the Basics Grow crystals Collect X-ray data Determine phases Calculate ρ-map Interpret map Refine coordinates Do the biology. Nitrogen at -180

More information

Supporting Information

Supporting Information Supporting Information Oxaliplatin binding to human copper chaperone Atox1 and protein dimerization Benny D. Belviso, 1 Angela Galliani, 2 Alessia Lasorsa, 2 Valentina Mirabelli, 1,3 Rocco Caliandro, 1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis Sergio de Cima, Luis M. Polo, Carmen Díez-Fernández, Ana I. Martínez, Javier

More information

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Definition and assessment of ciap1 constructs.

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Definition and assessment of ciap1 constructs. Supplementary Figure 1 Definition and assessment of ciap1 constructs. (a) ciap1 constructs used in this study are shown as primary structure schematics with domains colored as in the main text. Mutations

More information

type GroEL-GroES complex. Crystals were grown in buffer D (100 mm HEPES, ph 7.5,

type GroEL-GroES complex. Crystals were grown in buffer D (100 mm HEPES, ph 7.5, Supplementary Material Supplementary Materials and Methods Structure Determination of SR1-GroES-ADP AlF x SR1-GroES-ADP AlF x was purified as described in Materials and Methods for the wild type GroEL-GroES

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11085 Supplementary Tables: Supplementary Table 1. Summary of crystallographic and structure refinement data Structure BRIL-NOP receptor Data collection Number of crystals 23 Space group

More information

for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet

for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet SUPPLEMENTARY INFORMATION TO Structural basis for enzymatic excision of N -methyladenine and N 3 -methylcytosine from DNA Ingar Leiros,5, Marivi P. Nabong 2,3,5, Kristin Grøsvik 3, Jeanette Ringvoll 2,

More information

Structural basis of PROTAC cooperative recognition for selective protein degradation

Structural basis of PROTAC cooperative recognition for selective protein degradation SUPPLEMENTARY INFORMATION Structural basis of PROTAC cooperative recognition for selective protein degradation Morgan S. Gadd 1, Andrea Testa 1, Xavier Lucas 1, Kwok-Ho Chan, Wenzhang Chen, Douglas J.

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/5/243/ra68/dc1 Supplementary Materials for Superbinder SH2 Domains Act as Antagonists of Cell Signaling Tomonori Kaneko, Haiming Huang, Xuan Cao, Xing Li, Chengjun

More information

The structure of vanadium nitrogenase reveals an unusual bridging ligand

The structure of vanadium nitrogenase reveals an unusual bridging ligand SUPPLEMENTARY INFORMATION The structure of vanadium nitrogenase reveals an unusual bridging ligand Daniel Sippel and Oliver Einsle Lehrstuhl Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität

More information

Rational Design of Thermodynamic and Kinetic Binding Profiles by. Optimizing Surface Water Networks Coating Protein Bound Ligands

Rational Design of Thermodynamic and Kinetic Binding Profiles by. Optimizing Surface Water Networks Coating Protein Bound Ligands SUPPORTING INFORMATION Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein Bound Ligands Stefan G. Krimmer,, Jonathan Cramer,, Michael Betz,

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Supplementary Figure 1 Protein sequence alignment of Vibrionaceae with either a 40-residue insertion or a 44-residue insertion. Identical residues are indicated by red background.

More information

Supplementary Information

Supplementary Information Supplementary Information An engineered protein antagonist of K-Ras/B-Raf interaction Monique J. Kauke, 1,2 Michael W. Traxlmayr 1,2, Jillian A. Parker 3, Jonathan D. Kiefer 4, Ryan Knihtila 3, John McGee

More information

Small-Angle Scattering Atomic Structure Based Modeling

Small-Angle Scattering Atomic Structure Based Modeling Small-Angle Scattering Atomic Structure Based Modeling Alejandro Panjkovich EMBL Hamburg 07.12.2017 A. Panjkovich (EMBL) BioSAS atomic modeling 07.12.2017 1 / 49 From the forest to the particle accelerator

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1737 Supplementary Table 1 variant Description FSEC - 2B12 a FSEC - 6A1 a K d (leucine) c Leucine uptake e K (wild-type like) K (Y18F) K (TS) K (TSY) K288A mutant, lipid facing side chain

More information

Supplemental Information. Molecular Basis of Spectral Diversity. in Near-Infrared Phytochrome-Based. Fluorescent Proteins

Supplemental Information. Molecular Basis of Spectral Diversity. in Near-Infrared Phytochrome-Based. Fluorescent Proteins Chemistry & Biology, Volume 22 Supplemental Information Molecular Basis of Spectral Diversity in Near-Infrared Phytochrome-Based Fluorescent Proteins Daria M. Shcherbakova, Mikhail Baloban, Sergei Pletnev,

More information

Supplementary Figures

Supplementary Figures 1 Supplementary Figures Supplementary Figure 1 Type I FGFR1 inhibitors (a) Chemical structures of a pyrazolylaminopyrimidine inhibitor (henceforth referred to as PAPI; PDB-code of the FGFR1-PAPI complex:

More information

Photosystem I in Arabidopsis Thaliana

Photosystem I in Arabidopsis Thaliana Photosystem I in Arabidopsis Thaliana Part A. Photosystem I in Arabidopsis Thaliana Arabidopsis thaliana is a small flowering plant related to the cabbage and mustard plants. Like all plants, Arabidopsis

More information

Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ. 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan

Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ. 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan SUPPORTING INFORMATION Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ Mu-Sen Liu, 1,3 Hsin-Yue Tsai, 1,# Xiao-Xia Liu, 1,# Meng-Chiao Ho, 1,3 Wen-Jin Wu, 1,* and Ming-Daw Tsai 1,2,3,*

More information

Cryo-EM data collection, refinement and validation statistics

Cryo-EM data collection, refinement and validation statistics 1 Table S1 Cryo-EM data collection, refinement and validation statistics Data collection and processing CPSF-160 WDR33 (EMDB-7114) (PDB 6BM0) CPSF-160 WDR33 (EMDB-7113) (PDB 6BLY) CPSF-160 WDR33 CPSF-30

More information

Supporting Information. Synthesis of Aspartame by Thermolysin : An X-ray Structural Study

Supporting Information. Synthesis of Aspartame by Thermolysin : An X-ray Structural Study Supporting Information Synthesis of Aspartame by Thermolysin : An X-ray Structural Study Gabriel Birrane, Balaji Bhyravbhatla, and Manuel A. Navia METHODS Crystallization. Thermolysin (TLN) from Calbiochem

More information

Supplemental Information

Supplemental Information Supplemental Information Combinatorial Readout of Unmodified H3R2 and Acetylated H3K14 by the Tandem PHD Finger of MOZ Reveals a Regulatory Mechanism for HOXA9 Transcription Yu Qiu 1, Lei Liu 1, Chen Zhao

More information

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate dehydrogenase from Escherichia coli [ICD, pdb 1PB1, Mesecar, A. D., and Koshland,

More information

Data reduction and processing tutorial

Data reduction and processing tutorial Data reduction and processing tutorial Petr V. Konarev European Molecular Biology Laboratory, Hamburg Outstation BioSAXS group EMBL BioSAXS beamline X33, 2012 Optics Vacuum cell Completely redesigned 2005-2012

More information

Supporting Information

Supporting Information Supporting Information Self-Assembly of 4-(Diethylboryl)pyridine: Crystal Structures of Cyclic Pentamer and Hexamer and Their Solvent-Dependent Selective Crystallization Shigeharu Wakabayashi, * Yuka Hori,

More information

Scattering by two Electrons

Scattering by two Electrons Scattering by two Electrons p = -r k in k in p r e 2 q k in /λ θ θ k out /λ S q = r k out p + q = r (k out - k in ) e 1 Phase difference of wave 2 with respect to wave 1: 2π λ (k out - k in ) r= 2π S r

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12045 Supplementary Table 1 Data collection and refinement statistics. Native Pt-SAD X-ray source SSRF BL17U SPring-8 BL41XU Wavelength (Å) 0.97947 1.07171 Space group P2 1 2 1 2 1 P2

More information

Trapped intermediates in crystals of the FMN-dependent oxidase PhzG provide insight into the final steps of phenazine biosynthesis

Trapped intermediates in crystals of the FMN-dependent oxidase PhzG provide insight into the final steps of phenazine biosynthesis Supporting Materials: Trapped intermediates in crystals of the FMNdependent oxidase PhzG provide insight into the final steps of phenazine biosynthesis Ningna Xu ab, Ekta Gahanji Ahuja bc, Petra Janning

More information

Cks1 CDK1 CDK1 CDK1 CKS1. are ice- lobe. conserved. conserved

Cks1 CDK1 CDK1 CDK1 CKS1. are ice- lobe. conserved. conserved Cks1 d CKS1 Supplementary Figure 1 The -Cks1 crystal lattice. (a) Schematic of the - Cks1 crystal lattice. -Cks1 crystallizes in a lattice that contains c 4 copies of the t - Cks1 dimer in the crystallographic

More information

SAXS/SANS data processing and overall parameters

SAXS/SANS data processing and overall parameters EMBO Global Exchange Lecture Course 30 November 2012 Hyderabad India SAXS/SANS data processing and overall parameters Petr V. Konarev European Molecular Biology Laboratory, Hamburg Outstation BioSAXS group

More information

Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b).

Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b). Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b). Crystal contacts at B-C loop are magnified and stereo view of A-weighted

More information

Supplementary Information

Supplementary Information Supplementary Information Structural analysis of leader peptide binding enables leaderfree cyanobactin processing Jesko Koehnke 1,2, Greg Mann 1,2, Andrew F Bent 1,2, Hannes Ludewig 1, Sally Shirran 1,

More information

Macromolecular X-ray Crystallography

Macromolecular X-ray Crystallography Protein Structural Models for CHEM 641 Fall 07 Brian Bahnson Department of Chemistry & Biochemistry University of Delaware Macromolecular X-ray Crystallography Purified Protein X-ray Diffraction Data collection

More information

BM29 biosaxs data processing tutorial

BM29 biosaxs data processing tutorial HERCULES 2014 BM29 biosaxs data processing tutorial Page 2 OUTLINE Sample Changer Primary Data Processing Model Validation HPLC-SAXS Primary Data Processing Model Validation Ab Initio Model Software in

More information

Biophysics 490M Project

Biophysics 490M Project Biophysics 490M Project Dan Han Department of Biochemistry Structure Exploration of aa 3 -type Cytochrome c Oxidase from Rhodobacter sphaeroides I. Introduction: All organisms need energy to live. They

More information

Structure and RNA-binding properties. of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex

Structure and RNA-binding properties. of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex Structure and RNA-binding properties of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex Varun Bhaskar 1, Vladimir Roudko 2,3, Jerome Basquin 1, Kundan Sharma 4, Henning Urlaub 4, Bertrand Seraphin

More information

Table S1. Theoretical and apparent molecular weights of the proteins and protein complexes used for ITC analysis

Table S1. Theoretical and apparent molecular weights of the proteins and protein complexes used for ITC analysis Table S1. Theoretical and apparent molecular weights of the proteins and protein complexes used for ITC analysis Sample Theoretical molecular weight (without glycosylation) Apparent molecular weight R-2

More information

Supporting Information

Supporting Information Supporting Information Structural Basis of the Antiproliferative Activity of Largazole, a Depsipeptide Inhibitor of the Histone Deacetylases Kathryn E. Cole 1, Daniel P. Dowling 1,2, Matthew A. Boone 3,

More information

Acta Crystallographica Section D

Acta Crystallographica Section D Supporting information Acta Crystallographica Section D Volume 70 (2014) Supporting information for article: Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling

More information

Small-Angle Scattering from Biomolecular Solutions

Small-Angle Scattering from Biomolecular Solutions T H E U N I V E R S I T Y of T E X A S S C H O O L O F H E A L T H I N F O R M A T I O N S C I E N C E S A T H O U S T O N Small-Angle Scattering from Biomolecular Solutions For students of HI 6001-125

More information

Supplementary Material for. Herapathite

Supplementary Material for. Herapathite Supplementary Material for Herapathite Bart Kahr, John Freudenthal, Shane Phillips, Werner Kaminsky Department of Chemistry, Box 351700, University of Washington, Seattle WA 98195-1700 Crystal Structure

More information

Supplementary Information for: A de novo peptide hexamer with a mutable channel. Walk, Bristol BS8 1TD, UK. UK.

Supplementary Information for: A de novo peptide hexamer with a mutable channel. Walk, Bristol BS8 1TD, UK. UK. SI.1 Supplementary Information for: A de novo peptide hexamer with a mutable channel Nathan R. Zaccai, 1 Bertie Chi, 1,2 Andrew R. Thomson, 2 Aimee L. Boyle, 2 Gail J. Bartlett, 2 Marc Bruning, 2 Noah

More information