Modelling against small angle scattering data. Al Kikhney EMBL Hamburg, Germany

Size: px
Start display at page:

Download "Modelling against small angle scattering data. Al Kikhney EMBL Hamburg, Germany"

Transcription

1 Modelling against small angle scattering data Al Kikhney EMBL Hamburg, Germany

2 Validation of atomic models CRYSOL Rigid body modelling SASREF BUNCH CORAL Oligomeric mixtures OLIGOMER Flexible systems EOM Outline

3 R g MM Volume SAXS studies of biological macromolecules Shape Validation in solution

4 Compute SAS from an atomic model log I(s) s, Å -1 Validation in solution

5 Compute SAS from an atomic model A(s): atomic scattering log I(s) s, Å -1

6 Compute SAS from an atomic model in solution

7 Compute SAS from an atomic model log I(s) A a (s): atomic scattering in vacuum E(s): scattering from the excluded volume B(s): scattering from the hydration shell s, Å -1 CRYSOL (X-rays): Svergun et al. (1995) J. Appl. Cryst. 28, 768 CRYSON (neutrons): Svergun et al. (1998) P.N.A.S. USA 95, 2267

8 Compute SAS from an atomic model Using spherical harmonics to perform the average analytically:...permits to further use rapid algorithms for rigid body modelling. CRYSOL (X-rays): Svergun et al. (1995) J. Appl. Cryst. 28, 768 CRYSON (neutrons): Svergun et al. (1998) P.N.A.S. USA 95, 2267

9 R g MM Volume SAXS studies of biological macromolecules Shape Rigid body modelling

10 Why Rigid body modelling Huge amount of structural information about individual macromolecules Large macromolecular complexes are difficult to study by high resolution methods High resolution models of subunits can be used to model the quaternary structure of complexes based on low resolution methods SASREF: Petoukhov & Svergun (2005) Biophys J. 89, 1237; (2006) Eur. Biophys. J. 35, 567.

11 Rigid body modelling Global refinement with distance constraints A tyrosine kinase MET (118 kda) consisting of five domains Gherardi, Sandin, Petoukhov, Finch, Youles, Ofverstedt, Miguel, Blundell, Vande Woude, Skoglund, & Svergun (2006) PNAS USA, 103, 4046.

12 Rigid body modelling SASREF Interconnectivity Absence of steric clashes Symmetry SASREF: Petoukhov & Svergun (2005) Biophys J. 89, 1237; (2006) Eur. Biophys. J. 35, 567.

13 Rigid body modelling SASREF Interconnectivity Absence of steric clashes Symmetry SASREF: Petoukhov & Svergun (2005) Biophys J. 89, 1237; (2006) Eur. Biophys. J. 35, 567.

14 Rigid body modelling SASREF Interconnectivity Absence of steric clashes Symmetry SASREF: Petoukhov & Svergun (2005) Biophys J. 89, 1237; (2006) Eur. Biophys. J. 35, 567.

15 Rigid body modelling SASREF Interconnectivity Absence of steric clashes Symmetry Intersubunit contacts (from chemical shifts by NMR or mutagenesis) Distances between residues (FRET or mutagenesis) Relative orientation of subunits (RDC by NMR) Scattering data from subcomplexes SASREF: Petoukhov & Svergun (2005) Biophys J. 89, 1237; (2006) Eur. Biophys. J. 35, 567.

16 Rigid body modelling SASREF Can fit multiple X-ray and neutron scattering curves from partial constructs or contrast variation lg I, r e la t iv e s, n m -1

17 Rigid body modelling

18 R g MM Volume SAXS studies of biological macromolecules Shape Rigid body modelling Add missing fragments

19 Add missing fragments BUNCH Flexible loops/domains Not resolved in high resolution models Genetically removed to facilitate crystallization Reconstruct the missing part to fit the experimental data

20 Add missing fragments BUNCH Positions/orientations of rigid domains Probable conformations of flexible linkers represented as dummy residue chains Fits multiple scattering curves from partial constructs (e.g. deletion mutants) Symmetry Allows to fix domains Restrain the model by contacts between specific residues Only single chain proteins (no complexes)

21 CORAL Modelling of multidomain protein complexes against multiple data sets Loops library Combines the algorithms of SASREF and BUNCH

22 Words of caution SAS is a low resolution method Several shapes may yield an identical scattering pattern Even with information about contacting residues from other methods (spin labelling, site-directed mutagenesis, FRET, chemical shifts etc.) symmetry no steric clashes one must cross-validate SAS models against all available biochemical/biophysical information The sample is never perfect

23 R g MM Volume SAXS studies of biological macromolecules Shape Rigid body modelling Missing fragments Oligomeric mixtures

24 Monomer-dimer equilibrium of tetanus toxin Receptor binding H(C) domain reveals concentration-dependent oligomerization Mon : Dim 100 : 0 0 : : : : : 90 The model of the dimeric H(C) domain was reconstructed by rigid body modelling using the atomic structure of the monomer (1FV2). Qazi, O., Bolgiano, B., Crane, D., Svergun, D.I., Konarev, P.V., Yao, Z.P., Robinson, C.V., Brown, K.A. & Fairweather N. (2007) J Mol Biol. 365,

25 R g MM Volume SAXS studies of biological macromolecules Shape Rigid body modelling Missing fragments Oligomeric mixtures Flexible systems

26 Flexible systems

27 Flexible systems

28 Flexible systems Ensemble Optimization Method Multiple conformations in solution

29 Flexible systems Ensemble Optimization Method Multiple conformations in solution

30 Flexible systems Ensemble Optimization Method Multiple conformations in solution

31 Flexible systems Ensemble Optimization Method R g R g R g

32 Flexible systems Ensemble Optimization Method R g R g distribution for the selected models compared to the R g distribution for the whole pool

33

34 R g MM Volume Missing fragments SAXS studies of biological macromolecules ATSAS Shape software package Rigid body modelling Oligomeric mixtures Flexible systems

35 Summary Nothing known: ab initio low resolution structure Complete high resolution structure known: validation in solution and biologically active oligomers High resolution structure of domains/subunits known: quaternary structure by rigid body refinement Incomplete high resolution structure known: probable configuration of missing portions Mixtures/assemblies: volume fractions of components Flexible systems: quantitative analysis of configurational ensembles

36 Thank you! biosaxs.com wenmr.eu

Small-Angle Scattering Atomic Structure Based Modeling

Small-Angle Scattering Atomic Structure Based Modeling Small-Angle Scattering Atomic Structure Based Modeling Alejandro Panjkovich EMBL Hamburg 07.12.2017 A. Panjkovich (EMBL) BioSAS atomic modeling 07.12.2017 1 / 49 From the forest to the particle accelerator

More information

ID14-EH3. Adam Round

ID14-EH3. Adam Round Bio-SAXS @ ID14-EH3 Adam Round Contents What can be obtained from Bio-SAXS Measurable parameters Modelling strategies How to collect data at Bio-SAXS Procedure Data collection tests Data Verification and

More information

Rigid body refinement (basics) D.Svergun, EMBL-Hamburg

Rigid body refinement (basics) D.Svergun, EMBL-Hamburg Rigid body refinement (basics) D.Svergun, EMBL-Hamburg Shapes from recent projects at EMBL-HH Transcription factor heterodimer Folded RTX Domain of CyaA Bivalent binding to BET bromodomains Bcr-Abl Tyrosine

More information

Rigid body refinement (basics) D.Svergun, EMBL-Hamburg

Rigid body refinement (basics) D.Svergun, EMBL-Hamburg Rigid body refinement (basics) D.Svergun, EMBL-Hamburg Shapes from recent projects at EMBL-HH Complexes and assemblies Domain and quaternary structure S-layer proteins α-synuclein oligomers Dcp1/Dcp2 complex

More information

Shapes from recent projects at EMBL-HH

Shapes from recent projects at EMBL-HH Rigid body refinement (basics) D.Svergun, EMBL-Hamburg Shapes from recent projects at EMBL-HH Complexes and assemblies Domain and quaternary structure S-layer proteins α-synuclein oligomers Dcp1/Dcp complex

More information

Development of Novel Small- Angle X-ray Scattering Data Analysis Methods for Study of Flexible Proteins. Michael Kachala EMBL-Hamburg, Germany

Development of Novel Small- Angle X-ray Scattering Data Analysis Methods for Study of Flexible Proteins. Michael Kachala EMBL-Hamburg, Germany Development of Novel Small- Angle X-ray Scattering Data Analysis Methods for Study of Flexible Proteins Michael Kachala EMBL-Hamburg, Germany 60 mkl >1 mg/ml Monocromatic X-ray beam Sample Mono- or polydisperse

More information

Small-Angle Scattering from Biomolecular Solutions

Small-Angle Scattering from Biomolecular Solutions T H E U N I V E R S I T Y of T E X A S S C H O O L O F H E A L T H I N F O R M A T I O N S C I E N C E S A T H O U S T O N Small-Angle Scattering from Biomolecular Solutions For students of HI 6001-125

More information

SI Text S1 Solution Scattering Data Collection and Analysis. SI references

SI Text S1 Solution Scattering Data Collection and Analysis. SI references SI Text S1 Solution Scattering Data Collection and Analysis. The X-ray photon energy was set to 8 kev. The PILATUS hybrid pixel array detector (RIGAKU) was positioned at a distance of 606 mm from the sample.

More information

Studying conformational dynamics and molecular recognition using integrated structural biology in solution Michael Sattler

Studying conformational dynamics and molecular recognition using integrated structural biology in solution Michael Sattler Studying conformational dynamics and molecular recognition using integrated structural biology in solution Michael Sattler http://www.nmr.ch.tum.de http://www.helmholtz-muenchen.de/stb/ Outline Dynamics

More information

SAXS/SANS data processing and overall parameters

SAXS/SANS data processing and overall parameters EMBO Global Exchange Lecture Course 30 November 2012 Hyderabad India SAXS/SANS data processing and overall parameters Petr V. Konarev European Molecular Biology Laboratory, Hamburg Outstation BioSAXS group

More information

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands This document was presented at PPXRD - Pharmaceutical Powder X-ray

More information

Introduction to Biological Small Angle Scattering

Introduction to Biological Small Angle Scattering Introduction to Biological Small Angle Scattering Tom Grant, Ph.D. Staff Scientist BioXFEL Science and Technology Center Hauptman-Woodward Institute Buffalo, New York, USA tgrant@hwi.buffalo.edu SAXS Literature

More information

BM29 biosaxs data processing tutorial

BM29 biosaxs data processing tutorial HERCULES 2014 BM29 biosaxs data processing tutorial Page 2 OUTLINE Sample Changer Primary Data Processing Model Validation HPLC-SAXS Primary Data Processing Model Validation Ab Initio Model Software in

More information

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Definition and assessment of ciap1 constructs.

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Definition and assessment of ciap1 constructs. Supplementary Figure 1 Definition and assessment of ciap1 constructs. (a) ciap1 constructs used in this study are shown as primary structure schematics with domains colored as in the main text. Mutations

More information

Combined Use of NMR and SAS for Flexible Proteins

Combined Use of NMR and SAS for Flexible Proteins Combined Use of NMR and SAS for Flexible Proteins Pau Bernadó Centre de Biochimie Structurale - Montpellier pau.bernado@cbs.cnrs.fr Biochem. Soc. Trans. (2012) 40, 955-962. Intrinsically Disordered Proteins

More information

EMBL Life Science Hamburg

EMBL Life Science Hamburg Small-angle X-ray scattering and its complementarity to NMR Dmitri Svergun EMBL, Hamburg Outstation EMBL Life Science Center@DESY, Hamburg River Elbe Hamburg-Bahrenfeld harness racing track PETRA III (octant)

More information

Experimental Techniques in Protein Structure Determination

Experimental Techniques in Protein Structure Determination Experimental Techniques in Protein Structure Determination Homayoun Valafar Department of Computer Science and Engineering, USC Two Main Experimental Methods X-Ray crystallography Nuclear Magnetic Resonance

More information

SOCS3 binds specific receptor JAK complexes to control cytokine signaling by direct kinase inhibition SUPPLEMENTARY INFORMATION

SOCS3 binds specific receptor JAK complexes to control cytokine signaling by direct kinase inhibition SUPPLEMENTARY INFORMATION SOCS3 binds specific receptor JAK complexes to control cytokine signaling by direct kinase inhibition Nadia J. Kershaw 1,2, James M. Murphy 1,2, Nicholas P.D. Liau 1,2, Leila N. Varghese 1,2, Artem Laktyushin

More information

Data reduction and processing tutorial

Data reduction and processing tutorial Data reduction and processing tutorial Petr V. Konarev European Molecular Biology Laboratory, Hamburg Outstation BioSAXS group EMBL BioSAXS beamline X33, 2012 Optics Vacuum cell Completely redesigned 2005-2012

More information

Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions

Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions José García de la Torre, Departament of Physical Chemistry University of Murcia, Spain jgt@um.es

More information

Introduction to biological small angle scattering

Introduction to biological small angle scattering Introduction to biological small angle scattering Frank Gabel (IBS/ILL) EMBO Practical Course (May 6th 013) F. Gabel (May 6th 013) EMBO Practical Course Length-scales and tools in structural biology small

More information

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine Supplementary figure 1. Comparison of unbound and as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine GM-CSF (slate) with bound GM-CSF in the GIF:GM-CSF complex (GIF: green,

More information

ParM filament images were extracted and from the electron micrographs and

ParM filament images were extracted and from the electron micrographs and Supplemental methods Outline of the EM reconstruction: ParM filament images were extracted and from the electron micrographs and straightened. The digitized images were corrected for the phase of the Contrast

More information

Interpreting and evaluating biological NMR in the literature. Worksheet 1

Interpreting and evaluating biological NMR in the literature. Worksheet 1 Interpreting and evaluating biological NMR in the literature Worksheet 1 1D NMR spectra Application of RF pulses of specified lengths and frequencies can make certain nuclei detectable We can selectively

More information

Scattering of Neutrons: Basics. Jill Trewhella University of Sydney

Scattering of Neutrons: Basics. Jill Trewhella University of Sydney Scattering of Neutrons: Basics Jill Trewhella University of Sydney Small-angle scattering of x-rays (or neutrons) tells us about the size and shape of macromolecules r r Sample -randomly oriented particles

More information

NGF - twenty years a-growing

NGF - twenty years a-growing NGF - twenty years a-growing A molecule vital to brain growth It is twenty years since the structure of nerve growth factor (NGF) was determined [ref. 1]. This molecule is more than 'quite interesting'

More information

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition JBC Papers in Press. Published on November 1, 2000 as Manuscript M006502200 Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions Implicated in Dimerization and Autoinhibition 1 Copyright

More information

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits AhpC and AhpF from Escherichia coli Phat Vinh Dip 1,#, Neelagandan Kamariah 2,#, Malathy Sony Subramanian Manimekalai

More information

Biological Opportunities with Solution Scattering. Brian R. Crane

Biological Opportunities with Solution Scattering. Brian R. Crane Biological Opportunities with Solution Scattering XDL 2011 Brian R. Crane Cornell University, Ithaca NY bc69@cornell.edu Bacterial Transmembrane Receptors Histidine kinases, adenylyl cyclases, methyl accepting

More information

Build_model v User Guide

Build_model v User Guide Build_model v.2.0.1 User Guide MolTech Build_model User Guide 2008-2011 Molecular Technologies Ltd. www.moltech.ru Please send your comments and suggestions to contact@moltech.ru. Table of Contents Input

More information

Principles of Physical Biochemistry

Principles of Physical Biochemistry Principles of Physical Biochemistry Kensal E. van Hold e W. Curtis Johnso n P. Shing Ho Preface x i PART 1 MACROMOLECULAR STRUCTURE AND DYNAMICS 1 1 Biological Macromolecules 2 1.1 General Principles

More information

Modeling Biological Systems Opportunities for Computer Scientists

Modeling Biological Systems Opportunities for Computer Scientists Modeling Biological Systems Opportunities for Computer Scientists Filip Jagodzinski RBO Tutorial Series 25 June 2007 Computer Science Robotics & Biology Laboratory Protein: πρώτα, "prota, of Primary Importance

More information

different subdomains of the lectin domain. W282A 10 mins 10 mins 20 mins 20 mins 40 mins 40 mins 1 hour 1 hour 2 hours 2 hours 4 hours 4 hours

different subdomains of the lectin domain. W282A 10 mins 10 mins 20 mins 20 mins 40 mins 40 mins 1 hour 1 hour 2 hours 2 hours 4 hours 4 hours a +0 WT +1 +2 +3 GalNAc residues 1672.940 1875.891 20 mins 20 mins 40 mins 40 mins Intensity Intensity 1 hour 2079.133 2282.226 0 1000 1800 m/z 2200 1672.940 10 mins W282A 1 hour 2 hours 2 hours 4 hours

More information

Ensemble refinement of protein crystal structures in PHENIX. Tom Burnley Piet Gros

Ensemble refinement of protein crystal structures in PHENIX. Tom Burnley Piet Gros Ensemble refinement of protein crystal structures in PHENIX Tom Burnley Piet Gros Incomplete modelling of disorder contributes to R factor gap Only ~5% of residues in the PDB are modelled with more than

More information

Guided Prediction with Sparse NMR Data

Guided Prediction with Sparse NMR Data Guided Prediction with Sparse NMR Data Gaetano T. Montelione, Natalia Dennisova, G.V.T. Swapna, and Janet Y. Huang, Rutgers University Antonio Rosato CERM, University of Florance Homay Valafar Univ of

More information

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Biophysical Journal, Volume 98 Supporting Material Molecular dynamics simulations of anti-aggregation effect of ibuprofen Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Supplemental

More information

Summary of Experimental Protein Structure Determination. Key Elements

Summary of Experimental Protein Structure Determination. Key Elements Programme 8.00-8.20 Summary of last week s lecture and quiz 8.20-9.00 Structure validation 9.00-9.15 Break 9.15-11.00 Exercise: Structure validation tutorial 11.00-11.10 Break 11.10-11.40 Summary & discussion

More information

Determination of protein oligomeric structure from small-angle X-ray scattering

Determination of protein oligomeric structure from small-angle X-ray scattering REVIEW Determination of protein oligomeric structure from small-angle X-ray scattering David A. Korasick 1 and John J. Tanner 1,2 * 1 Department of Biochemistry, University of Missouri, Columbia, Missouri

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR

Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR Theory and Applications of Residual Dipolar Couplings in Biomolecular NMR Residual Dipolar Couplings (RDC s) Relatively new technique ~ 1996 Nico Tjandra, Ad Bax- NIH, Jim Prestegard, UGA Combination of

More information

Structural Bioinformatics (C3210) Molecular Docking

Structural Bioinformatics (C3210) Molecular Docking Structural Bioinformatics (C3210) Molecular Docking Molecular Recognition, Molecular Docking Molecular recognition is the ability of biomolecules to recognize other biomolecules and selectively interact

More information

Molecular shapes from small-angle X-ray scattering: extension of the theory to higher scattering angles

Molecular shapes from small-angle X-ray scattering: extension of the theory to higher scattering angles Acta Crystallographica Section A Foundations of Crystallography ISSN 0108-7673 Editor: D. Schwarzenbach Molecular shapes from small-angle X-ray scattering: extension of the theory to higher scattering

More information

Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor

Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor Presented by Stephanie Lee Research Mentor: Dr. Rob Coalson Glycine Alpha 1 Receptor (GlyRa1) Member of the superfamily

More information

Nuclear targeting by Nuclear Localization Signals (NLS) Richardson and Laskey (1988)

Nuclear targeting by Nuclear Localization Signals (NLS) Richardson and Laskey (1988) Nuclear targeting by Nuclear Localization Signals (NLS) Richardson and Laskey (1988) The nuclear import pathway of proteins containing a classical Nuclear Localization Signal (NLS) Uptake of NLS-containing

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11539 Supplementary Figure 1 Schematic representation of plant (A) and mammalian (B) P 2B -ATPase domain organization. Actuator (A-), nucleotide binding (N-),

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

Introduction to" Protein Structure

Introduction to Protein Structure Introduction to" Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Learning Objectives Outline the basic levels of protein structure.

More information

Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013

Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013 Biological Small Angle X-ray Scattering (SAXS) Dec 2, 2013 Structural Biology Shape Dynamic Light Scattering Electron Microscopy Small Angle X-ray Scattering Cryo-Electron Microscopy Wide Angle X- ray

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1. Secondary structure of CAP (in the camp 2 -bound state) 10. α-helices are shown as cylinders and β- strands as arrows. Labeling of secondary structure is indicated. CDB, DBD and the hinge are

More information

Overview & Applications. T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 04 June, 2015

Overview & Applications. T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 04 June, 2015 Overview & Applications T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 4 June, 215 Simulations still take time Bakan et al. Bioinformatics 211. Coarse-grained Elastic

More information

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP)

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP) Joana Pereira Lamzin Group EMBL Hamburg, Germany Small molecules How to identify and build them (with ARP/wARP) The task at hand To find ligand density and build it! Fitting a ligand We have: electron

More information

Joint use of small-angle X-ray and neutron scattering to study biological. European Molecular Biology Laboratory, Hamburg Outstation, Notkestraße 85,

Joint use of small-angle X-ray and neutron scattering to study biological. European Molecular Biology Laboratory, Hamburg Outstation, Notkestraße 85, Joint use of small-angle X-ray and neutron scattering to study biological macromolecules in solution Maxim V. Petoukhov 1,2 and Dmitri I. Svergun 1,2 1 European Molecular Biology Laboratory, Hamburg Outstation,

More information

Small Angle X-Ray Solution Scattering of Biological Macromolecules

Small Angle X-Ray Solution Scattering of Biological Macromolecules Small Angle X-Ray Solution Scattering of Biological Macromolecules Emre Brookes UltraScan Workshop 15 June 2014 Overview Experimental method Sample preparation Experimental data analysis Experimental method

More information

Symmetry Ideas in Protein Assembly

Symmetry Ideas in Protein Assembly Symmetry Ideas in Protein Assembly natural designed accidental 1000 Å 100 Å RAMC 2013 Giant Biological Protein Assemblies Bacterial Microcompartments Structural studies illuminate key assembly and molecular

More information

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. PDZK1 constru cts Amino acids MW [kda] KD [μm] PEPT2-CT- FITC KD [μm] NHE3-CT- FITC KD [μm] PDZK1-CT-

More information

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization

Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation, and crystallization HERCULES Specialized Course: Non-atomic resolution scattering in biology and soft matter Grenoble, September 14-19, 2014 Proteins in solution: charge-tuning, cluster formation, liquid-liquid phase separation,

More information

Supplementary Figure 1A Supplementary Figure 1B

Supplementary Figure 1A Supplementary Figure 1B B A C Supplementary Figure 1A. (A) superposition of example decoy geometries as seen from the side and top. (B) docking of a section of the minimum stress decoy structure into the EMD-5136 electron density

More information

Direct Methods and Many Site Se-Met MAD Problems using BnP. W. Furey

Direct Methods and Many Site Se-Met MAD Problems using BnP. W. Furey Direct Methods and Many Site Se-Met MAD Problems using BnP W. Furey Classical Direct Methods Main method for small molecule structure determination Highly automated (almost totally black box ) Solves structures

More information

Physical Models of Allostery: Allosteric Regulation in Capsid Assembly

Physical Models of Allostery: Allosteric Regulation in Capsid Assembly Physical Models of Allostery: Allosteric Regulation in Capsid Assembly QCB Journal Club Prof. Sima Setayeshgar JB Holmes Nov. 2, 2017 Mechanisms of Allosteric Regulation From R.A. Laskowski, FEBS Letters,

More information

P. Vachette IBBMC (CNRS-Université Paris-Sud), Orsay, France

P. Vachette IBBMC (CNRS-Université Paris-Sud), Orsay, France Scattering of X-rays P. Vachette IBBMC (CNRS-Université Paris-Sud), Orsay, France SAXS measurement Sample SAXS measuring cell SAXS measurement Scattering experiment X-ray beam?? Detector SAXS measurement

More information

BCM Protein crystallography - I. Crystal symmetry X-ray diffraction Protein crystallization X-ray sources SAXS

BCM Protein crystallography - I. Crystal symmetry X-ray diffraction Protein crystallization X-ray sources SAXS BCM 6200 - Protein crystallography - I Crystal symmetry X-ray diffraction Protein crystallization X-ray sources SAXS What SAXS can do Small-angle X-ray scattering (SAXS) yields information on biological

More information

Supporting Information. Directing the Breathing Behavior of Pillared-Layered. Metal Organic Frameworks via a Systematic Library of

Supporting Information. Directing the Breathing Behavior of Pillared-Layered. Metal Organic Frameworks via a Systematic Library of Supporting Information Directing the Breathing Behavior of Pillared-Layered Metal Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents Sebastian Henke, Andreas

More information

Structural Characterization of Flexible Proteins Using Small-Angle X-ray Scattering

Structural Characterization of Flexible Proteins Using Small-Angle X-ray Scattering Published on Web 04/06/2007 Structural Characterization of Flexible Proteins Using Small-Angle X-ray Scattering Pau Bernadó,*,, Efstratios Mylonas, Maxim V. Petoukhov,, Martin Blackledge, and Dmitri I.

More information

Structural insights into Aspergillus fumigatus lectin specificity - AFL binding sites are functionally non-equivalent

Structural insights into Aspergillus fumigatus lectin specificity - AFL binding sites are functionally non-equivalent Acta Cryst. (2015). D71, doi:10.1107/s1399004714026595 Supporting information Volume 71 (2015) Supporting information for article: Structural insights into Aspergillus fumigatus lectin specificity - AFL

More information

Supporting Information. Impact of Molecular Flexibility on Binding Strength and Self-Sorting of Chiral -Surfaces

Supporting Information. Impact of Molecular Flexibility on Binding Strength and Self-Sorting of Chiral -Surfaces Supporting Information Impact of Molecular Flexibility on Binding Strength and Self-Sorting of Chiral -Surfaces Marina M. Safont-Sempere, a Peter Osswald, a Matthias Stolte, a Matthias Grüne, a Manuel

More information

Use of neutrons in biology and medicine. Jayne Lawrence Pharmaceutical Science Division King s College London London

Use of neutrons in biology and medicine. Jayne Lawrence Pharmaceutical Science Division King s College London London Use of neutrons in biology and medicine Jayne Lawrence Pharmaceutical Science Division King s College London London Useful reading Chapter 23 Neutron crystallography of proteins and Chapter 24 Molecular

More information

BA, BSc, and MSc Degree Examinations

BA, BSc, and MSc Degree Examinations Examination Candidate Number: Desk Number: BA, BSc, and MSc Degree Examinations 2017-8 Department : BIOLOGY Title of Exam: Molecular Biology and Biochemistry Part I Time Allowed: 1 hour and 30 minutes

More information

Kd = koff/kon = [R][L]/[RL]

Kd = koff/kon = [R][L]/[RL] Taller de docking y cribado virtual: Uso de herramientas computacionales en el diseño de fármacos Docking program GLIDE El programa de docking GLIDE Sonsoles Martín-Santamaría Shrödinger is a scientific

More information

Chris C. Broomell, Henrik Birkedal, Cristiano L. P. Oliveira, Jan Skov Pedersen, Jan-André Gertenbach, Mark Young, and Trevor Douglas*

Chris C. Broomell, Henrik Birkedal, Cristiano L. P. Oliveira, Jan Skov Pedersen, Jan-André Gertenbach, Mark Young, and Trevor Douglas* Chris C. Broomell, Henrik Birkedal, Cristiano L. P. Oliveira, Jan Skov Pedersen, Jan-André Gertenbach, Mark Young, and Trevor Douglas* Protein Cage Nanoparticles as Secondary Building Units for the Synthesis

More information

T H E J O U R N A L O F G E N E R A L P H Y S I O L O G Y. jgp

T H E J O U R N A L O F G E N E R A L P H Y S I O L O G Y. jgp S u p p l e m e n ta l m at e r i a l jgp Lee et al., http://www.jgp.org/cgi/content/full/jgp.201411219/dc1 T H E J O U R N A L O F G E N E R A L P H Y S I O L O G Y S u p p l e m e n ta l D I S C U S

More information

Complementary use of SAXS and SANS. Jill Trewhella University of Sydney

Complementary use of SAXS and SANS. Jill Trewhella University of Sydney Complementary use of SAXS and SANS Jill Trewhella University of Sydney Conceptual diagram of the small-angle scattering experiment The conceptual experiment and theory is the same for X-rays and neutrons,

More information

Introduction to biological small angle scattering

Introduction to biological small angle scattering Introduction to biological small angle scattering Frank Gabel (IBS/ILL) HERCULES Specialized Course 16 (September 15 th 014) Length-scales and tools in structural biology small angle scattering in solution

More information

IgE binds asymmetrically to its B cell receptor CD23

IgE binds asymmetrically to its B cell receptor CD23 Supplementary Information IgE binds asymmetrically to its B cell receptor CD23 Balvinder Dhaliwal 1*, Marie O. Y. Pang 2, Anthony H. Keeble 2,3, Louisa K. James 2,4, Hannah J. Gould 2, James M. McDonnell

More information

From x-ray crystallography to electron microscopy and back -- how best to exploit the continuum of structure-determination methods now available

From x-ray crystallography to electron microscopy and back -- how best to exploit the continuum of structure-determination methods now available From x-ray crystallography to electron microscopy and back -- how best to exploit the continuum of structure-determination methods now available Scripps EM course, November 14, 2007 What aspects of contemporary

More information

Preparing a PDB File

Preparing a PDB File Figure 1: Schematic view of the ligand-binding domain from the vitamin D receptor (PDB file 1IE9). The crystallographic waters are shown as small spheres and the bound ligand is shown as a CPK model. HO

More information

Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi

Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi 1 Wikipedia Small-angle X-ray scattering (SAXS) is a small-angle scattering (SAS) technique where the elastic scattering of X-rays (wavelength

More information

Supplementary Information. The Solution Structural Ensembles of RNA Kink-turn Motifs and Their Protein Complexes

Supplementary Information. The Solution Structural Ensembles of RNA Kink-turn Motifs and Their Protein Complexes Supplementary Information The Solution Structural Ensembles of RNA Kink-turn Motifs and Their Protein Complexes Xuesong Shi, a Lin Huang, b David M. J. Lilley, b Pehr B. Harbury a,c and Daniel Herschlag

More information

Supplementary Figure 1. SDS-PAGE analysis of GFP oligomer variants with different linkers. Oligomer mixtures were applied to a PAGE gel containing

Supplementary Figure 1. SDS-PAGE analysis of GFP oligomer variants with different linkers. Oligomer mixtures were applied to a PAGE gel containing Supplementary Figure 1. SDS-PAGE analysis of GFP oligomer variants with different linkers. Oligomer mixtures were applied to a PAGE gel containing 0.1% SDS without boiling. The gel was analyzed by a fluorescent

More information

NMR for studying biomolecular recognition and dynamics

NMR for studying biomolecular recognition and dynamics NMR for studying biomolecular recognition and dynamics Michael Sattler http://www.nmr.ch.tum.de http://www.helmholtz-muenchen.de/stb http://www.bnmrz.org Outline Biomolecular NMR Tools for studying protein

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLMTARY IFORMATIO a doi:10.108/nature10402 b 100 nm 100 nm c SAXS Model d ulers assigned to reference- Back-projected free class averages class averages Refinement against single particles Reconstructed

More information

Measuring quaternary structure similarity using global versus local measures.

Measuring quaternary structure similarity using global versus local measures. Supplementary Figure 1 Measuring quaternary structure similarity using global versus local measures. (a) Structural similarity of two protein complexes can be inferred from a global superposition, which

More information

Small-Angle X-Ray Scattering Reveals Compact Domain-Domain Interactions in the N-Terminal Region of Filamin C

Small-Angle X-Ray Scattering Reveals Compact Domain-Domain Interactions in the N-Terminal Region of Filamin C Small-Angle X-Ray Scattering Reveals Compact Domain-Domain Interactions in the N-Terminal Region of Filamin C Ritika Sethi*, Jari Ylänne Department of Biological and Environmental Science and Nanoscience

More information

HTCondor and macromolecular structure validation

HTCondor and macromolecular structure validation HTCondor and macromolecular structure validation Vincent Chen John Markley/Eldon Ulrich, NMRFAM/BMRB, UW@Madison David & Jane Richardson, Duke University Macromolecules David S. Goodsell 1999 Two questions

More information

X-ray Crystallography

X-ray Crystallography 2009/11/25 [ 1 ] X-ray Crystallography Andrew Torda, wintersemester 2009 / 2010 X-ray numerically most important more than 4/5 structures Goal a set of x, y, z coordinates different properties to NMR History

More information

Weak protein ligand interactions studied by small-angle X-ray scattering

Weak protein ligand interactions studied by small-angle X-ray scattering MINIREVIEW Weak protein ligand interactions studied by small-angle X-ray scattering Anne T. Tuukkanen and Dmitri I. Svergun EMBL Hamburg c/o DESY, Hamburg, Germany Keywords ab initio modeling; polydispersity;

More information

NMR, X-ray Diffraction, Protein Structure, and RasMol

NMR, X-ray Diffraction, Protein Structure, and RasMol NMR, X-ray Diffraction, Protein Structure, and RasMol Introduction So far we have been mostly concerned with the proteins themselves. The techniques (NMR or X-ray diffraction) used to determine a structure

More information

Supplemental Information for. Quaternary dynamics of B crystallin as a direct consequence of localised tertiary fluctuations in the C terminus

Supplemental Information for. Quaternary dynamics of B crystallin as a direct consequence of localised tertiary fluctuations in the C terminus Supplemental Information for Quaternary dynamics of B crystallin as a direct consequence of localised tertiary fluctuations in the C terminus Andrew J. Baldwin 1, Gillian R. Hilton 2, Hadi Lioe 2, Claire

More information

Biophysical Journal Volume 96 June

Biophysical Journal Volume 96 June Biophysical Journal Volume 96 June 2009 4449 4463 4449 A Rapid Coarse Residue-Based Computational Method for X-Ray Solution Scattering Characterization of Protein Folds and Multiple Conformational States

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary materials Figure S1 Fusion protein of Sulfolobus solfataricus SRP54 and a signal peptide. a, Expression vector for the fusion protein. The signal peptide of yeast dipeptidyl aminopeptidase

More information

Supramolecular self-assembly: molecular dynamics modeling of polyhedral shell formation

Supramolecular self-assembly: molecular dynamics modeling of polyhedral shell formation Computer Physics Communications 121 122 (1999) 231 235 www.elsevier.nl/locate/cpc Supramolecular self-assembly: molecular dynamics modeling of polyhedral shell formation D.C. Rapaport a,1, J.E. Johnson

More information

7.91 Amy Keating. Solving structures using X-ray crystallography & NMR spectroscopy

7.91 Amy Keating. Solving structures using X-ray crystallography & NMR spectroscopy 7.91 Amy Keating Solving structures using X-ray crystallography & NMR spectroscopy How are X-ray crystal structures determined? 1. Grow crystals - structure determination by X-ray crystallography relies

More information

Acta Crystallographica Section D

Acta Crystallographica Section D Supporting information Acta Crystallographica Section D Volume 70 (2014) Supporting information for article: Structural characterization of the virulence factor Nuclease A from Streptococcus agalactiae

More information

Supplementary materials. Crystal structure of the carboxyltransferase domain. of acetyl coenzyme A carboxylase. Department of Biological Sciences

Supplementary materials. Crystal structure of the carboxyltransferase domain. of acetyl coenzyme A carboxylase. Department of Biological Sciences Supplementary materials Crystal structure of the carboxyltransferase domain of acetyl coenzyme A carboxylase Hailong Zhang, Zhiru Yang, 1 Yang Shen, 1 Liang Tong Department of Biological Sciences Columbia

More information

Docking. GBCB 5874: Problem Solving in GBCB

Docking. GBCB 5874: Problem Solving in GBCB Docking Benzamidine Docking to Trypsin Relationship to Drug Design Ligand-based design QSAR Pharmacophore modeling Can be done without 3-D structure of protein Receptor/Structure-based design Molecular

More information

Protein dynamics from NMR Relaxation data

Protein dynamics from NMR Relaxation data Protein dynamics from NMR Relaxation data Clubb 3/15/17 (S f2 ) ( e ) Nitrogen-15 relaxation ZZ-exchange R 1 = 1/T 1 Longitudinal relaxation (decay back to z-axis) R 2 = 1/T 2 Spin-spin relaxation (dephasing

More information

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution page 1 of 7 EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December 2013 Suggested resolution Exercise 1. [total: 25 p] a) [t: 5 p] Describe the bonding [1.5 p] and the molecular orbitals [1.5 p] of the ethylene

More information

Intrinsic Dynamics of Restriction Endonuclease EcoO109I Studied by Molecular Dynamics Simulations and X-Ray Scattering Data Analysis

Intrinsic Dynamics of Restriction Endonuclease EcoO109I Studied by Molecular Dynamics Simulations and X-Ray Scattering Data Analysis 2808 Biophysical Journal Volume 96 April 2009 2808 2822 Intrinsic Dynamics of Restriction Endonuclease EcoO109I Studied by Molecular Dynamics Simulations and X-Ray Scattering Data Analysis Tomotaka Oroguchi,

More information

Small angle neutron and X-ray scattering in structural biology: recent examples from the literature

Small angle neutron and X-ray scattering in structural biology: recent examples from the literature DOI 10.1007/s00249-008-0259-2 REVIEW Small angle neutron and X-ray scattering in structural biology: recent examples from the literature Cameron Neylon Received: 4 October 2007 / Revised: 20 December 2007

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11991 Supplementary Figure 1 - Refinement strategy for PIC intermediate assemblies by negative stain EM. The cryo-negative stain structure of free Pol II 1 (a) was used as initial reference

More information

Application examples of single particle 3D reconstruction. Ning Gao Tsinghua University

Application examples of single particle 3D reconstruction. Ning Gao Tsinghua University Application examples of single particle 3D reconstruction Ning Gao Tsinghua University ninggao@tsinghua.edu.cn Electron Microscopes First electron microscope constructed by Ernst Ruska in 1930 s (1986

More information