SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 SUPPLEMENTARY INFORMATION doi: /nature11524 Supplementary discussion Functional analysis of the sugar porter family (SP) signature motifs. As seen in Fig. 5c, single point mutation of the conserved SP motif residues of XylE, G83A, E153A, R160A, G340A, R341A, and E397A, led to complete loss of function in both cell-based uptake and proteoliposome-based counterflow assays. Gly 83 and Gly 340, the highly conserved residues in the TM2-3 and TM8-9 motifs, are located on the tight turns connecting TMs 2-3 and TMs 8-9, respectively (Supplementary Figs. 1b & 2). Change of either Gly to Ala may cause disturbance of the local structural integrity, thereby leading to complete loss of transport activity. The charged residues, Glu 153 and Arg 160 on the TM4-5 motif, Arg 341 on the TM 8-9 motif, and Glu 397 on the TM10-11 motif, are involved in the inter-domain contacts (Supplementary Fig. 6). The observation that single point mutation of any of these residues led to complete abrogation of transport activity supports our speculation that the interactions between the intracellular domain and the TMs are functionally critical for XylE. Mutation of Arg404 resulted in more than 75% loss of the transport activity in both assays. Structural examination shows that Arg 404 contributes to the local, but not the inter-domain, H-bond network in the present conformation of XylE (Supplementary Fig. 6). Mutation of the residues in the TM12C motif, E465A or K467A, was largely tolerated, probably because these two residues are barely involved in the interaction network (Supplementary Fig. 6). Notably, the XylE variant containing E222A exhibited little change in transport activities. Supporting 1

2 RESEARCH SUPPLEMENTARY INFORMATION this functional observation, Glu222 is located at one side of the structure and not involved in any H-bond formation in the present conformation. The biochemical characterizations suggested that the SP motifs as well as the intracellular helix domain play an essential role for the function of XylE. Given that extensive H-bonds are formed by these structural elements, some of the residues may be involved in proton-symport. On the other hand, single missense mutation of some residues, such as Glu153, Arg160, Arg341, and Glu397, led to complete loss of activity even in the counterflow assay, suggesting that these residues may play an important role in the structural changes required for the completion of a transport cycle. Elucidation of the functional mechanism of the SP motifs awaits further biochemical, biophysical, and simulation analyses. 2

3 SUPPLEMENTARY INFORMATION RESEARCH Supplementary Figures and Legends 3

4 RESEARCH SUPPLEMENTARY INFORMATION Supplementary Figure 1 XylE is a bacterial homologue of GLUT1-4. a, Phylogenetic tree of GLUT1-4 and their homologues. Multiple sequence alignments were performed with ClustalW and the result was presented with PHYLIP. Sequences of 84 members in the sugar porter family 2.A.1.1 in the Transporter Classification Database (TCDB), excluding 6 redundant sequences for the same proteins, were used for the alignment. b, Sequence alignment of XylE with human GLUT1-4. Secondary structural elements of XylE are indicated above the sequence alignment. Invariant and highly conserved amino acids are shaded yellow and grey, respectively. The conserved SP family signature motifs are underscored with red lines or stars. The residues that are H-bonded to D-xylose are shaded red. The aromatic residues that surround the bound ligands in the crystal structures are shaded orange. Gln 175 and Gly 388 in XylE as well as their corresponding amino acids in GLUT1-4, which are involved in binding to D-glucose, but not D-xylose, are shaded blue. c, Sequence conservation between the E. coli XylE and the human proteins GLUT1-4. The pair-wise sequence comparison was performed with Blastp (NCBI. Basic Local Alignment Search Tool). 4

5 SUPPLEMENTARY INFORMATION RESEARCH Supplementary Figure 2 Sequence alignment of the E. coli XylE with homologs from other organisms. Secondary structural elements of the E. coli XylE are indicated above the sequence alignment. Conserved amino acids are shaded orange, yellow, and grey with decreasing degree of conservations. The conserved SP family signature motifs are underscored with red lines or dots. The listed XylE homologs, from top to bottom, are from Escherichia coli O157:H7 str. EDL933, GI: ; Cyanothece sp. PCC 7822, GI: ; Saccharomyces cerevisiae EC1118, GI: ; Plasmodium knowlesi strain H, GI: ; Arabidopsis thaliana, GI: ; and GLUT1 of Homo sapiens, GI: The sequences were aligned with ClustalW. 5

6 RESEARCH SUPPLEMENTARY INFORMATION Supplementary Figure 3 Recombinant XylE binds to and transports D-xylose. a, ITC titration for WT XylE with 10 mm D-xylose at ph 6.5. The titration signals were fitted by Origin 7. b, XylE transports D-xylose in a ph-dependent manner in the proteoliposome-based counterflow assay. The proteoliposomes were preloaded with 20 mm cold D-xylose at indicated ph. At time point zero, 2 μl concentrated proteoliposomes were diluted into 100 μl KPM buffer (same ph as the proteoliposomes were prepared with) containing 0.83 μm [ 3 H]- D-Xylose. Reaction was stopped at indicated time points by immediately filtering the solution through 0.22 μm filter membranes and washed with ice-cold buffer. The filter was then taken for liquid scintillation counting. All Error bars represent the standard deviation of three independent experiments. c, Transport activity of XylE was measured using a liposome-based counterflow assay at ph 6.5. Details of the experiments can be found in Methods. 6

7 SUPPLEMENTARY INFORMATION RESEARCH Supplementary Figure 4 Structural determination of XylE bound to D-xylose. a, Up to four Hg atoms were found. The anomalous signal for Hg, shown as magenta mesh, was contoured at 5 σ. The refined positions of Hg atoms are represented by grey spheres. b, A stereo view of the 2Fo-Fc electron density for one representative slab is contoured at 1.2 σ. 7

8 RESEARCH SUPPLEMENTARY INFORMATION Supplementary Figure 5 The structure of D-xylose-bound XylE is outward-facing and partly occluded. a, The N- and C-domains of XylE share a similar fold. The two distinct domains can be superimposed with a root-mean-square deviation (rmsd) of 3.11 Å over 153 Cα atoms. b, TM7 and TM10 are bent helices. c, D-xylose resides in the center of the structure, occluded from intracellular side, but solvent accessible from extracellular side of the membrane. A halfway, cut-open view of the surface electrostatic potential is shown here. The van der Waals surface of XylE was calculated with the program HOLE and shown in the right panel, which revealed that the bound D-xylose is accessible to solvent on the extracellular side, but insulated from cytoplasm. The radii of the potential water path are tabulated. The surface electrostatic potential was calculated with PyMol. 8

9 SUPPLEMENTARY INFORMATION RESEARCH Supplementary Figure 6 The polar interactions between the intracellular helices and the TMs of XylE. The residues that mediate the polar interactions between the intracellular helices and the TMs are shown in sticks. The invariant residues between XylE and GLUT1-4 are colored and labeled green. H-bonds are represented by red, dashed lines. A stereoview is shown. IC: intracellular α-helix. 9

10 RESEARCH SUPPLEMENTARY INFORMATION Supplementary Figure 7 D-xylose is coordinated by residues mainly from the C-domain. a, The N- and C-domains are colored green and cyan, respectively. TM7, which is a discontinuous helix, is highlighted in blue. Right panel: D-xylose stands 10

11 SUPPLEMENTARY INFORMATION RESEARCH against the C-domain. D-xylose is shown as white ball-and-sticks. b, D-xylose is bound to XylE by both polar and aromatic residues. A stereoview is shown. Otherwise, the panel is the same as Fig. 2b. c, Tyr298 and Gln415 of XylE contribute to D-xylose coordination through water-mediated H-bonds. The direct H-bonds discussed in the main text are shown as black, dashed lines. Water-mediated H-bonds are highlighted in red. The water molecules are shown as red spheres. A stereoview is shown. Supplementary Figure 8 XylE selectively binds to D-glucose. a, The chemical structures of the sugars examined in the competition assay. b, The binding affinity between D-glucose and XylE was measured with ITC at ph 6.5. The details of the experiment can be found in online Methods. 11

12 RESEARCH SUPPLEMENTARY INFORMATION Supplementary Figure 9 Electron densities for the ligands bound in the three structures. a. The 2Fo-Fc electron density of 6-bromo-6-deoxy-D-glucose (6-Br-D-glucose), shown in cyan mesh, is contoured at 1σ. The anomalous signal for bromide, shown in magenta mesh, is contoured at 5σ. b-d, The omit electron densities, observed in the structures of XylE obtained in the presence of (b) D-xylose, (c) D-glucose, and (d) 6-Br-D-glucose, are contoured at 3σ and shown in blue meshes. The ligands and water molecules, which were not built when calculating the omit densities, are displayed to better illustrate the positions and orientations of the ligands. 12

13 SUPPLEMENTARY INFORMATION RESEARCH Supplementary Figure 10 D-xylose and D-glucose bind to XylE in a similar manner. a, Coordination of D-glucose by XylE. A stereoview is shown. Otherwise, the panel is the same as Fig. 3b. b, D-xylose (black) and D-glucose (silver), which exhibit similar configurations, are located at the same position within XylE. Two perpendicular views are shown. c-d, Comparison of the coordination of D-xylose and D-glucose by XylE. Water-mediated H-bonds are represented by red, dashed lines, and the direct H-bonds discussed in the main text are colored black. The water molecules are shown as red spheres. 13

14 RESEARCH SUPPLEMENTARY INFORMATION Supplementary Table 1. Statistics of data collection and refinement Data D-xylose-bound XylE D-glucose- Hg-SAD Pt-SAD Native bound XylE 6-BrGlcbound XylE Space Group P P P P P Unit Cell (Å) 95.1, , 96.1, , 95.3, , 95.0, , 95.2, Unit Cell ( ) 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 Wavelength (Å) Resolution (Å) ( ) ( ) ( ) ( ) ( ) R merge (%) 8.6 (52.7) 6.3 (59.9) 6.5 (61.9) 8.2 (69.0) 8.4 (71.6) I/σ 19.2 (2.6) 21.8 (2.40) 27 (2.5) 24.4 (2.2) 29.3 (3.8) Completeness (%) 98.7 (89.7) (96.8) 98.1 (97.9) 99.6 (97.9) (100.0) Number of 80,336 91, , , ,030 measured reflections Number of unique 19,816 28,438 19,996 17,572 24,981 reflections Redundancy 4.1 (3.2) 3.2 (3.2) 5.4 (4.0) 6.1 (6.0) 7.8 (8.1) Wilson B factor (Å 2 ) R work / R free (%) 22.75/ / /24.64 Number of atoms Overall Protein Ligand Water Other entities Average B value (Å 2 ) Overall Protein Ligand Water Other entities R.m.s. deviations Bonds (Å) Angle ( ) Ramachandran plot statistics (%) Most favourable Additionally allowed Generously allowed Disallowed Values in parentheses are for the highest resolution shell. R merge =Σ h Σ i I h,i -I h /Σ h Σ i I h,i, where I h is the mean intensity of the i observations of symmetry related reflections of h. R=Σ F obs -F calc /ΣF obs, where F calc is the calculated protein structure factor from the atomic model (R free was calculated with 5% of the reflections selected). 14

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11054 Supplementary Fig. 1 Sequence alignment of Na v Rh with NaChBac, Na v Ab, and eukaryotic Na v and Ca v homologs. Secondary structural elements of Na v Rh are indicated above the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Table of Contents Page Supplementary Table 1. Diffraction data collection statistics 2 Supplementary Table 2. Crystallographic refinement statistics 3 Supplementary Fig. 1. casic1mfc packing in the R3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12045 Supplementary Table 1 Data collection and refinement statistics. Native Pt-SAD X-ray source SSRF BL17U SPring-8 BL41XU Wavelength (Å) 0.97947 1.07171 Space group P2 1 2 1 2 1 P2

More information

SUPPLEMENTARY INFORMATION. doi: /nature07461

SUPPLEMENTARY INFORMATION. doi: /nature07461 Figure S1 Electrophysiology. a ph-activation of. Two-electrode voltage clamp recordings of Xenopus oocytes expressing in comparison to waterinjected oocytes. Currents were recorded at 40 mv. The ph of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table 1: Data collection, phasing and refinement statistics ChbC/Ta 6 Br 12 Native ChbC Data collection Space group P4 3 2 1 2 P4 3 2 1 2 Cell dimensions a, c (Å) 132.75, 453.57 132.81, 452.95

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Results DNA binding property of the SRA domain was examined by an electrophoresis mobility shift assay (EMSA) using synthesized 12-bp oligonucleotide duplexes containing unmodified, hemi-methylated,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. 1 Influences of crystal lattice contacts on Pol η structures. a. The dominant lattice contact between two hpol η molecules (silver and gold) in the type 1 crystals. b. A close-up view of the hydrophobic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1737 Supplementary Table 1 variant Description FSEC - 2B12 a FSEC - 6A1 a K d (leucine) c Leucine uptake e K (wild-type like) K (Y18F) K (TS) K (TSY) K288A mutant, lipid facing side chain

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table 1: Amplitudes of three current levels. Level 0 (pa) Level 1 (pa) Level 2 (pa) TrkA- TrkH WT 200 K 0.01 ± 0.01 9.5 ± 0.01 18.7 ± 0.03 200 Na * 0.001 ± 0.01 3.9 ± 0.01 12.5 ± 0.03 200

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11085 Supplementary Tables: Supplementary Table 1. Summary of crystallographic and structure refinement data Structure BRIL-NOP receptor Data collection Number of crystals 23 Space group

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION www.nature.com/nature 1 Figure S1 Sequence alignment. a Structure based alignment of the plgic of E. chrysanthemi (ELIC), the acetylcholine binding protein from the snail Lymnea stagnalis (AchBP, PDB code

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11744 Supplementary Table 1. Crystallographic data collection and refinement statistics. Wild-type Se-Met-BcsA-B SmCl 3 -soaked EMTS-soaked Data collection Space

More information

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2 Table 1. Crystallographic data collection, phasing and refinement statistics Native Hg soaked Mn soaked 1 Mn soaked 2 Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dph2 SeMet (iron-free) # Dph2 (iron-free) Dph2-[4Fe-4S] Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell dimensions a, b, c (Å) 58.26, 82.08, 160.42 58.74, 81.87, 160.01 55.70, 80.53,

More information

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. PDZK1 constru cts Amino acids MW [kda] KD [μm] PEPT2-CT- FITC KD [μm] NHE3-CT- FITC KD [μm] PDZK1-CT-

More information

Supplementary Figure 1. Biochemical and sequence alignment analyses the

Supplementary Figure 1. Biochemical and sequence alignment analyses the Supplementary Figure 1. Biochemical and sequence alignment analyses the interaction of OPTN and TBK1. (a) Analytical gel filtration chromatography analysis of the interaction between TBK1 CTD and OPTN(1-119).

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Crystallization. a, Crystallization constructs of the ET B receptor are shown, with all of the modifications to the human wild-type the ET B receptor indicated. Residues interacting

More information

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases Supplementary Information The protease GtgE from Salmonella exclusively targets inactive Rab GTPases Table of Contents Supplementary Figures... 2 Supplementary Figure 1... 2 Supplementary Figure 2... 3

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Supplementary Figure 1 Protein sequence alignment of Vibrionaceae with either a 40-residue insertion or a 44-residue insertion. Identical residues are indicated by red background.

More information

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27 Acta Cryst. (2014). D70, doi:10.1107/s1399004714021695 Supporting information Volume 70 (2014) Supporting information for article: Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase

More information

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two Supplementary Figure 1. Biopanningg and clone enrichment of Alphabody binders against human IL 23. Positive clones in i phage ELISA with optical density (OD) 3 times higher than background are shown for

More information

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine Supplementary figure 1. Comparison of unbound and as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine GM-CSF (slate) with bound GM-CSF in the GIF:GM-CSF complex (GIF: green,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table S1 Kinetic Analyses of the AMSH-LP mutants AMSH-LP K M (μm) k cat x 10-3 (s -1 ) WT 71.8 ± 6.3 860 ± 65.4 T353A 76.8 ± 11.7 46.3 ± 3.7 F355A 58.9 ± 10.4 5.33 ± 0.30 proximal S358A 75.1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11539 Supplementary Figure 1 Schematic representation of plant (A) and mammalian (B) P 2B -ATPase domain organization. Actuator (A-), nucleotide binding (N-),

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17991 Supplementary Discussion Structural comparison with E. coli EmrE The DMT superfamily includes a wide variety of transporters with 4-10 TM segments 1. Since the subfamilies of the

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Data collection Supplementary Table 1 Statistics of data collection, phasing and refinement Native Se-MAD Space group P2 1 2 1 2 1 P2 1 2 1 2 1 Cell dimensions a, b, c (Å) 50.4, 94.2, 115.4 49.8, 94.2,

More information

Full-length GlpG sequence was generated by PCR from E. coli genomic DNA. (with two sequence variations, D51E/L52V, from the gene bank entry aac28166),

Full-length GlpG sequence was generated by PCR from E. coli genomic DNA. (with two sequence variations, D51E/L52V, from the gene bank entry aac28166), Supplementary Methods Protein expression and purification Full-length GlpG sequence was generated by PCR from E. coli genomic DNA (with two sequence variations, D51E/L52V, from the gene bank entry aac28166),

More information

Diphthamide biosynthesis requires a radical iron-sulfur enzyme. Pennsylvania State University, University Park, Pennsylvania 16802, USA

Diphthamide biosynthesis requires a radical iron-sulfur enzyme. Pennsylvania State University, University Park, Pennsylvania 16802, USA Diphthamide biosynthesis requires a radical iron-sulfur enzyme Yang Zhang, 1,4 Xuling Zhu, 1,4 Andrew T. Torelli, 1 Michael Lee, 2 Boris Dzikovski, 1 Rachel Koralewski, 1 Eileen Wang, 1 Jack Freed, 1 Carsten

More information

Supplementary information

Supplementary information Supplementary information The structural basis of modularity in ECF-type ABC transporters Guus B. Erkens 1,2, Ronnie P-A. Berntsson 1,2, Faizah Fulyani 1,2, Maria Majsnerowska 1,2, Andreja Vujičić-Žagar

More information

THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN

THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN HSP90 AND BOTH SCF E3 UBIQUITIN LIGASES AND KINETOCHORES Oliver Willhoft, Richard Kerr, Dipali Patel, Wenjuan Zhang, Caezar Al-Jassar, Tina

More information

FW 1 CDR 1 FW 2 CDR 2

FW 1 CDR 1 FW 2 CDR 2 Supplementary Figure 1 Supplementary Figure 1: Interface of the E9:Fas structure. The two interfaces formed by V H and V L of E9 with Fas are shown in stereo. The Fas receptor is represented as a surface

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary materials Figure S1 Fusion protein of Sulfolobus solfataricus SRP54 and a signal peptide. a, Expression vector for the fusion protein. The signal peptide of yeast dipeptidyl aminopeptidase

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10955 Supplementary Figures Supplementary Figure 1. Electron-density maps and crystallographic dimer structures of the motor domain. (a f) Stereo views of the final electron-density maps

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Identification of the ScDcp2 minimal region interacting with both ScDcp1 and the ScEdc3 LSm domain. Pull-down experiment of untagged ScEdc3 LSm with various ScDcp1-Dcp2-His 6 fragments.

More information

Supporting Information

Supporting Information Supporting Information Ottmann et al. 10.1073/pnas.0907587106 Fig. S1. Primary structure alignment of SBT3 with C5 peptidase from Streptococcus pyogenes. The Matchmaker tool in UCSF Chimera (http:// www.cgl.ucsf.edu/chimera)

More information

Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b).

Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b). Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b). Crystal contacts at B-C loop are magnified and stereo view of A-weighted

More information

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Supporting information Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas

More information

Supplementary information for:

Supplementary information for: SUPPLEMETARY IFRMATI Supplementary information for: Structure of a β 1 -adrenergic G protein-coupled receptor Tony Warne, Maria J. Serrano-Vega, Jillian G. Baker#, Rouslan Moukhametzianov, Patricia C.

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/5/243/ra68/dc1 Supplementary Materials for Superbinder SH2 Domains Act as Antagonists of Cell Signaling Tomonori Kaneko, Haiming Huang, Xuan Cao, Xing Li, Chengjun

More information

Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a

Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a series of tmfret-pairs comprised of single cysteine mutants

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1: The HpUreI crystal used for collection of native diffraction data. The crystal belongs to spacegroup P4 2 2 1 2 and has an approximate maximal dimension of 0.25 mm. Supplementary

More information

Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps

Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps Cell Reports Supplemental Information Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps Chih-Chia Su, Jani Reddy Bolla, Nitin Kumar, Abhijith Radhakrishnan,

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Chemical structure of LPS and LPS biogenesis in Gram-negative bacteria. a. Chemical structure of LPS. LPS molecule consists of Lipid A, core oligosaccharide and O-antigen. The polar

More information

Bacterial protease uses distinct thermodynamic signatures for substrate recognition

Bacterial protease uses distinct thermodynamic signatures for substrate recognition Bacterial protease uses distinct thermodynamic signatures for substrate recognition Gustavo Arruda Bezerra, Yuko Ohara-Nemoto, Irina Cornaciu, Sofiya Fedosyuk, Guillaume Hoffmann, Adam Round, José A. Márquez,

More information

CH 3 CH 2 OH +H 2 O CHO. 2e + 2H + + O 2 H 2 O +HCOOH

CH 3 CH 2 OH +H 2 O CHO. 2e + 2H + + O 2 H 2 O +HCOOH 2 4 H CH 3 2e + 2H + + 2 H 2 2 H CH 2 H 2e + 2H + + 2 H 2 2 H +H 2 CH 2e + 2H + + 2 H 2 2 H +HCH Supplemental Figure S. The three-step 4DM reaction, each step requires two reducing equivalents from ADPH

More information

Structure and RNA-binding properties. of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex

Structure and RNA-binding properties. of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex Structure and RNA-binding properties of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex Varun Bhaskar 1, Vladimir Roudko 2,3, Jerome Basquin 1, Kundan Sharma 4, Henning Urlaub 4, Bertrand Seraphin

More information

Supporting Information

Supporting Information Supporting Information Micelle-Triggered b-hairpin to a-helix Transition in a 14-Residue Peptide from a Choline-Binding Repeat of the Pneumococcal Autolysin LytA HØctor Zamora-Carreras, [a] Beatriz Maestro,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10458 Active Site Remodeling in the Bifunctional Fructose-1,6- bisphosphate aldolase/phosphatase Juan Du, Rafael F. Say, Wei Lü, Georg Fuchs & Oliver Einsle SUPPLEMENTARY FIGURES Figure

More information

Supplementary Information. Viral immunoevasin targeting of a Natural Killer cell receptor family

Supplementary Information. Viral immunoevasin targeting of a Natural Killer cell receptor family Supplementary Information Viral immunoevasin targeting of a Natural Killer cell receptor family Richard Berry 1, Natasha Ng 1, Philippa M. Saunders 2, Julian P. Vivian 1, Jie Lin 2, Felix A. Deuss 1, Alexandra

More information

Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R)

Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R) Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R) Shown in cyan and green are two adjacent tetramers from the crystallographic lattice of COP, forming the only unique inter-tetramer

More information

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti Table S1. E. coli plasmids Plasmid Relevant features Source pdg680 T. reesei XynII AA 2-190 with C-terminal His 6 tag optimized for E. coli expression in pjexpress401 Wan et al. (in press) psbn44d psbn44h

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis Sergio de Cima, Luis M. Polo, Carmen Díez-Fernández, Ana I. Martínez, Javier

More information

Supplementary Information

Supplementary Information Supplementary Information The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis Marta C. Marques a, Cristina Tapia b, Oscar Gutiérrez-Sanz b, Ana Raquel Ramos a, Kimberly L.

More information

SI Text S1 Solution Scattering Data Collection and Analysis. SI references

SI Text S1 Solution Scattering Data Collection and Analysis. SI references SI Text S1 Solution Scattering Data Collection and Analysis. The X-ray photon energy was set to 8 kev. The PILATUS hybrid pixel array detector (RIGAKU) was positioned at a distance of 606 mm from the sample.

More information

NB-DNJ/GCase-pH 7.4 NB-DNJ+/GCase-pH 7.4 NB-DNJ+/GCase-pH 4.5

NB-DNJ/GCase-pH 7.4 NB-DNJ+/GCase-pH 7.4 NB-DNJ+/GCase-pH 4.5 SUPPLEMENTARY TABLES Suppl. Table 1. Protonation states at ph 7.4 and 4.5. Protonation states of titratable residues in GCase at ph 7.4 and 4.5. Histidine: HID, H at δ-nitrogen; HIE, H at ε-nitrogen; HIP,

More information

Nature Structural & Molecular Biology doi: /nsmb Supplementary Figure 1. CRBN binding assay with thalidomide enantiomers.

Nature Structural & Molecular Biology doi: /nsmb Supplementary Figure 1. CRBN binding assay with thalidomide enantiomers. Supplementary Figure 1 CRBN binding assay with thalidomide enantiomers. (a) Competitive elution assay using thalidomide-immobilized beads coupled with racemic thalidomide. Beads were washed three times

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/1/eaau413/dc1 Supplementary Materials for Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins Per Jemth*, Elin

More information

Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon

Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon Stabilizing the CH2 domain of an Antibody by Engineering in an Enhanced Aromatic Sequon Wentao Chen,, Leopold Kong, Stephen Connelly, Julia M. Dendle,, Yu Liu,, Ian A. Wilson,#, Evan T. Powers, *, Jeffery

More information

Supplementary Information. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

Supplementary Information. Structural basis for precursor protein-directed ribosomal peptide macrocyclization Supplementary Information Structural basis for precursor protein-directed ribosomal peptide macrocyclization Kunhua Li 1,3, Heather L. Condurso 1,3, Gengnan Li 1, Yousong Ding 2 and Steven D. Bruner 1*

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.108/nature0608 a c pmol L-[ H]Leu / mg LeuT pmol L-[ H]Leu / min / mg LeuT 900 50 600 450 00 150 200 150 100 0 0.0 2.5 5.0.5 10.0.5 50 N Cl CMI IMI DMI H C CH N N H C CH N Time (min) 0 0 100 200

More information

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. MhsT and LeuT architecture.

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. MhsT and LeuT architecture. Supplementary Figure 1 MhsT and LeuT architecture. a, Cartoon structure representation and topology diagram for MhsT in the occluded inward-facing state and b, LeuT in the occluded outward-facing state

More information

Physiochemical Properties of Residues

Physiochemical Properties of Residues Physiochemical Properties of Residues Various Sources C N Cα R Slide 1 Conformational Propensities Conformational Propensity is the frequency in which a residue adopts a given conformation (in a polypeptide)

More information

Supplementary Figures

Supplementary Figures 1 Supplementary Figures Supplementary Figure 1 Type I FGFR1 inhibitors (a) Chemical structures of a pyrazolylaminopyrimidine inhibitor (henceforth referred to as PAPI; PDB-code of the FGFR1-PAPI complex:

More information

Cryo-EM data collection, refinement and validation statistics

Cryo-EM data collection, refinement and validation statistics 1 Table S1 Cryo-EM data collection, refinement and validation statistics Data collection and processing CPSF-160 WDR33 (EMDB-7114) (PDB 6BM0) CPSF-160 WDR33 (EMDB-7113) (PDB 6BLY) CPSF-160 WDR33 CPSF-30

More information

Cks1 CDK1 CDK1 CDK1 CKS1. are ice- lobe. conserved. conserved

Cks1 CDK1 CDK1 CDK1 CKS1. are ice- lobe. conserved. conserved Cks1 d CKS1 Supplementary Figure 1 The -Cks1 crystal lattice. (a) Schematic of the - Cks1 crystal lattice. -Cks1 crystallizes in a lattice that contains c 4 copies of the t - Cks1 dimer in the crystallographic

More information

Table S1. Primers used for the constructions of recombinant GAL1 and λ5 mutants. GAL1-E74A ccgagcagcgggcggctgtctttcc ggaaagacagccgcccgctgctcgg

Table S1. Primers used for the constructions of recombinant GAL1 and λ5 mutants. GAL1-E74A ccgagcagcgggcggctgtctttcc ggaaagacagccgcccgctgctcgg SUPPLEMENTAL DATA Table S1. Primers used for the constructions of recombinant GAL1 and λ5 mutants Sense primer (5 to 3 ) Anti-sense primer (5 to 3 ) GAL1 mutants GAL1-E74A ccgagcagcgggcggctgtctttcc ggaaagacagccgcccgctgctcgg

More information

Supplemental Data SUPPLEMENTAL FIGURES

Supplemental Data SUPPLEMENTAL FIGURES Supplemental Data CRYSTAL STRUCTURE OF THE MG.ADP-INHIBITED STATE OF THE YEAST F 1 C 10 ATP SYNTHASE Alain Dautant*, Jean Velours and Marie-France Giraud* From Université Bordeaux 2, CNRS; Institut de

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.108/nature11899 Supplementar Table 1. Data collection and refinement statistics (+TPMP, native) (-TPMP, native) (+TPMP, recombinant) (MgCl ) (MgSO ) Data collection Space group C P 1 C P 1 1 P 1

More information

of the Guanine Nucleotide Exchange Factor FARP2

of the Guanine Nucleotide Exchange Factor FARP2 Structure, Volume 21 Supplemental Information Structural Basis for Autoinhibition of the Guanine Nucleotide Exchange Factor FARP2 Xiaojing He, Yi-Chun Kuo, Tyler J. Rosche, and Xuewu Zhang Inventory of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION UPPEER ORO doi:10.1038/nature10753 D D D D P E ntracellular C1 W P P C EC1 D Q R H C D W D R C C2 D E D E C R Q Q W P W W R P P EC2 EC3 P C C P W P W W P C W H R C R E C3 P R R P P P C Extracellular embrane

More information

Three-dimensional structure of a viral genome-delivery portal vertex

Three-dimensional structure of a viral genome-delivery portal vertex Three-dimensional structure of a viral genome-delivery portal vertex Adam S. Olia 1, Peter E. Prevelige Jr. 2, John E. Johnson 3 and Gino Cingolani 4 1 Department of Biological Sciences, Purdue University,

More information

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions BIRKBECK COLLEGE (University of London) Advanced Certificate in Principles in Protein Structure MSc Structural Molecular Biology Date: Thursday, 1st September 2011 Time: 3 hours You will be given a start

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1. Secondary structure of CAP (in the camp 2 -bound state) 10. α-helices are shown as cylinders and β- strands as arrows. Labeling of secondary structure is indicated. CDB, DBD and the hinge are

More information

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits AhpC and AhpF from Escherichia coli Phat Vinh Dip 1,#, Neelagandan Kamariah 2,#, Malathy Sony Subramanian Manimekalai

More information

Supplementary Figure S1. Urea-mediated buffering mechanism of H. pylori. Gastric urea is funneled to a cytoplasmic urease that is presumably attached

Supplementary Figure S1. Urea-mediated buffering mechanism of H. pylori. Gastric urea is funneled to a cytoplasmic urease that is presumably attached Supplementary Figure S1. Urea-mediated buffering mechanism of H. pylori. Gastric urea is funneled to a cytoplasmic urease that is presumably attached to HpUreI. Urea hydrolysis products 2NH 3 and 1CO 2

More information

Supplemental Information. Molecular Basis of Spectral Diversity. in Near-Infrared Phytochrome-Based. Fluorescent Proteins

Supplemental Information. Molecular Basis of Spectral Diversity. in Near-Infrared Phytochrome-Based. Fluorescent Proteins Chemistry & Biology, Volume 22 Supplemental Information Molecular Basis of Spectral Diversity in Near-Infrared Phytochrome-Based Fluorescent Proteins Daria M. Shcherbakova, Mikhail Baloban, Sergei Pletnev,

More information

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate dehydrogenase from Escherichia coli [ICD, pdb 1PB1, Mesecar, A. D., and Koshland,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 5 N 4 8 20 22 24 2 28 4 8 20 22 24 2 28 a b 0 9 8 7 H c (kda) 95 0 57 4 28 2 5.5 Precipitate before NMR expt. Supernatant before NMR expt. Precipitate after hrs NMR expt. Supernatant after hrs NMR expt.

More information

ml. ph 7.5 ph 6.5 ph 5.5 ph 4.5. β 2 AR-Gs complex + GDP β 2 AR-Gs complex + GTPγS

ml. ph 7.5 ph 6.5 ph 5.5 ph 4.5. β 2 AR-Gs complex + GDP β 2 AR-Gs complex + GTPγS a UV28 absorption (mau) 9 8 7 5 3 β 2 AR-Gs complex β 2 AR-Gs complex + GDP β 2 AR-Gs complex + GTPγS β 2 AR-Gs complex dissociated complex excess nucleotides b 9 8 7 5 3 β 2 AR-Gs complex β 2 AR-Gs complex

More information

Supplementary Figure 1 Schematic overview of ASTNs in neuronal migration. (a) Schematic of roles played by ASTNs 1 and 2. ASTN-1-mediated adhesions

Supplementary Figure 1 Schematic overview of ASTNs in neuronal migration. (a) Schematic of roles played by ASTNs 1 and 2. ASTN-1-mediated adhesions Supplementary Figure 1 Schematic overview of ASTNs in neuronal migration. (a) Schematic of roles played by ASTNs 1 and 2. ASTN-1-mediated adhesions undergo endocytosis into clathrin-coated vesicles dependent

More information

Supplemental Information

Supplemental Information Supplemental Information Combinatorial Readout of Unmodified H3R2 and Acetylated H3K14 by the Tandem PHD Finger of MOZ Reveals a Regulatory Mechanism for HOXA9 Transcription Yu Qiu 1, Lei Liu 1, Chen Zhao

More information

The structure of a nucleolytic ribozyme that employs a catalytic metal ion. Yijin Liu, Timothy J. Wilson and David M.J. Lilley

The structure of a nucleolytic ribozyme that employs a catalytic metal ion. Yijin Liu, Timothy J. Wilson and David M.J. Lilley SUPPLEMENTARY INFORMATION The structure of a nucleolytic ribozyme that employs a catalytic metal ion Yijin Liu, Timothy J. Wilson and David M.J. Lilley Cancer Research UK Nucleic Acid Structure Research

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLMTARY IFORMATIO a doi:10.108/nature10402 b 100 nm 100 nm c SAXS Model d ulers assigned to reference- Back-projected free class averages class averages Refinement against single particles Reconstructed

More information

Acta Crystallographica Section F

Acta Crystallographica Section F Supporting information Acta Crystallographica Section F Volume 70 (2014) Supporting information for article: Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallised

More information

Nature Structural and Molecular Biology: doi: /nsmb.2783

Nature Structural and Molecular Biology: doi: /nsmb.2783 Supplementary Figure 1: Crystallized chimera construct (mhv1cc). (a) Sequence alignment between mhv1cc and other VSDs. These sequences (mhv1cc, Kv1.2 Kv2.1; shaker family voltage gated potassium channel

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature12242 C. thermophilum 666 RPAVLDNVYIRPALE-GKRVPGKVEIHQNGIRYQSPLSTTQRVDVLFSNIRHLFFQPCQN S. pombe 659 RPAHINDVYVRPAID-GKRLPGFIEIHQNGIRYQSPLRSDSHIDLLFSNMKHLFFQPCEG

More information

Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France

Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France Supplementary Information to Lysine relay mechanism coordinates intermediate transfer in vitamin B6 biosynthesis Matthew J. Rodrigues 1,2, Volker Windeisen 1,3, Yang Zhang 4, Gabriela Guédez 3, Stefan

More information

Structural insights into Aspergillus fumigatus lectin specificity - AFL binding sites are functionally non-equivalent

Structural insights into Aspergillus fumigatus lectin specificity - AFL binding sites are functionally non-equivalent Acta Cryst. (2015). D71, doi:10.1107/s1399004714026595 Supporting information Volume 71 (2015) Supporting information for article: Structural insights into Aspergillus fumigatus lectin specificity - AFL

More information

Impact of the crystallization condition on importin-β conformation

Impact of the crystallization condition on importin-β conformation Supporting information Volume 72 (2016) Supporting information for article: Impact of the crystallization condition on importin-β conformation Marcel J. Tauchert, Clément Hémonnot, Piotr Neumann, Sarah

More information

Nature Structural and Molecular Biology: doi: /nsmb.2938

Nature Structural and Molecular Biology: doi: /nsmb.2938 Supplementary Figure 1 Characterization of designed leucine-rich-repeat proteins. (a) Water-mediate hydrogen-bond network is frequently visible in the convex region of LRR crystal structures. Examples

More information

Structural characterization of NiV N 0 P in solution and in crystal.

Structural characterization of NiV N 0 P in solution and in crystal. Supplementary Figure 1 Structural characterization of NiV N 0 P in solution and in crystal. (a) SAXS analysis of the N 32-383 0 -P 50 complex. The Guinier plot for complex concentrations of 0.55, 1.1,

More information

RNA Polymerase I Contains a TFIIF-Related DNA-Binding Subcomplex

RNA Polymerase I Contains a TFIIF-Related DNA-Binding Subcomplex Molecular Cell, Volume 39 Supplemental Information RNA Polymerase I Contains a TFIIFRelated DNABinding Subcomplex Sebastian R. Geiger, Kristina Lorenzen, Amelie Schreieck, Patrizia Hanecker, Dirk Kostrewa,

More information

ENZYME MECHANISMS, PROTEASES, STRUCTURAL BIOLOGY

ENZYME MECHANISMS, PROTEASES, STRUCTURAL BIOLOGY Supplementary Information SUBJECT AREAS: ENZYME MECHANISMS, PROTEASES, STRUCTURAL BIOLOGY Correspondence and requests for materials should be addressed to N.T. (ntanaka@pharm.showa-u.ac.jp) or W.O. (owataru@vos.nagaokaut.ac.jp)

More information

Rational Design of Thermodynamic and Kinetic Binding Profiles by. Optimizing Surface Water Networks Coating Protein Bound Ligands

Rational Design of Thermodynamic and Kinetic Binding Profiles by. Optimizing Surface Water Networks Coating Protein Bound Ligands SUPPORTING INFORMATION Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein Bound Ligands Stefan G. Krimmer,, Jonathan Cramer,, Michael Betz,

More information

A Single Outer Sphere Mutation Stabilizes apo- Mn Superoxide Dismutase by 35 C and. Disfavors Mn Binding.

A Single Outer Sphere Mutation Stabilizes apo- Mn Superoxide Dismutase by 35 C and. Disfavors Mn Binding. Supporting information for A Single Outer Sphere Mutation Stabilizes apo- Mn Superoxide Dismutase by 35 C and Disfavors Mn Binding. Anne-Frances Miller* and Ting Wang Department of Chemistry, University

More information

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site Experimental and Computational Mutagenesis to Investigate the Positioning of a General Base within an Enzyme Active Site Jason P. Schwans, Philip Hanoian, Benjamin J. Lengerich, Fanny Sunden, Ana Gonzalez

More information

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2009 NMR study of complexes between low molecular mass inhibitors and the West Nile

More information

Bioinformatics. Macromolecular structure

Bioinformatics. Macromolecular structure Bioinformatics Macromolecular structure Contents Determination of protein structure Structure databases Secondary structure elements (SSE) Tertiary structure Structure analysis Structure alignment Domain

More information