SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 Fig. 1 Influences of crystal lattice contacts on Pol η structures. a. The dominant lattice contact between two hpol η molecules (silver and gold) in the type 1 crystals. b. A close-up view of the hydrophobic interactions between W339 of one molecule and V372 and C406 of the other. These three residues and E335 were mutated as listed on the right to break the lattice contact. All mutant proteins retain the polymerase activity (data not shown). c. Comparison of the LF-DNA interaction in the final Nrm structure with that in the type 1 structure and in the structure of yeast Pol η complexed with cisplatin (PDB: 2R8J). The green spheres represent the cations in the active site. The rmsd between two hpol η structures is 1.4Å over 335 pairs of Cα atoms, and between human (Nrm) and yeast Pol η is 2.3Å over 334 pairs of Cα atoms. 1

2 Fig. 2 Comparison of the palm domain and active site of hpol η and Pol β. Each palm domain is shown in rainbow colors from blue N- to red C-terminus. Extended loops are trimmed off for clarity. The PDB accession code of Pol β is 2FMS. 2

3 Fig. 3 Comparison of Y-family polymerases. a. Superposition of hpol η and homologous polymerases based on the palm domain. The view is similar to that in Fig. 1a. The orange arrowheads point to the finger domain, which is closed in the ternary complexes of hpol η and other Y-family members except for the structure of yeast hpol η-cisplatin complexes (pdb: 2R8J, 2R8K). The ovals encircle the thumb and LF domains, which are shifted in hpol η compared to Dpo4, Pol ι and κ. Letters b and c indicate where LF of hpol η interacts with the catalytic core. b-c. Detailed diagram of the interfaces between LF and the catalytic core. Palm is shown in pink, finger in light blue, LF in violet and thumb in green. 3

4 Fig. 4 Structural models. a. A 6-4PP (PDB: 3EI1 and shown in orange/red/blue sticks) is superimposed onto the CPD in TT1 (shown in yellow) and would clash severely with the Cα of S62. The 6-4PP cannot base pair with the incoming dntp either. b. When modeled at the -3 position (3bp from the replicating basepair), the CPD (colored in orange red) loses favorable hydrogen bonds that normal nucleotides (shown as grey sticks with oxygen atoms highlighted in raspberry color) make with the protein (grey carbon, blue nitrogen and red oxygen) as indicated by yellow dashed lines. CPD at the -3 position would also clash with hpol η as indicated by the black double arrowheads. 4

5 Fig. 5 Sequence alignment of Pol η orthologs. Names of species are Hs, Homo sapiens; Xl, Xenopus laevis; Dm, Drosophila melanogaster; At, Arabidopsis thaliana; Ce, Caenorhabditis elegans; Sp, Schizosaccharomyces pombe; Sc, Saccharomyces cerevisiae. Letters in red, green and blue indicate degrees of conservation from high to modest. Red and orange boxes indicate residues forming the active site and interacting with the incoming nucleotide, respectively. The green and blue boxes indicate residues that contact primer and template strand, respectively. The blue bars indicate residues that strengthen the molecular splint of Pol η. Q38 and R61 are marked by the red triangles. Seven XPV mutations are indicated by the yellow triangles. The eight, R361, is outside of the aligned region. R81, R84 and W339, which may interact with the downstream DNA duplex, is marked by purple dots. 5

6 Fig. 6 CPD-containing DNAs are bent, unstacked, and segmented when complexed with DNA repair proteins, photolyase, T4 endonuclease V and yeast Rad4. Their PDB accession codes are shown in parentheses and references can be found in the main text. The CPD complexed with yeast Rad4 was disordered in the crystal structure. 6

7 R361 V99 R111 A117 T122 G263/A264 G295 F290 W174 I272 Fig. 7 Mapping of all missense mutations of hpol η found in XPV and melanoma patients. The protein is represented by the Cα trace (pink palm, light-green thumb, light-blue finger and lightpurple LF), DNA as tube-and-ladders, and the altered residues are shown as ball-and-sticks. The 8 mutations predicted to alter the polymerase activity are highlighted in cyan and the remaining 3 in pea-green. V99 forms hydrophobic interactions, where Met can be readily accommodated. I272 is near the outer surface of the thumb domain, where Thr substitution is unlikely to alter the structure or polymerase activity of Pol η. W174 is in the back of the palm domain in the most flexible region of hpol η. The base substitution that leads to W174C mutation has been suggested to cause XPV by altering splicing and mrna level of Pol η 13. The catalytic carboxylates (pink/ red), two Mg 2+ ions (purple) are also shown. 7

8 Fig. 8 Potential interactions with downstream DNA. a. A front view of the symmetry-related DNA molecules in the P61 crystals (Nrm, TT1, TT3 and TT4). hpolη is shown in blue-grey cartoon with semi-transparent molecular surface. DNAs are colored in orange (template) and yellow (primer). The 5 end of the symmetry-related primer strand stacks with the exposed W339 (shown in magenta) on the back of LF. b. The back view of the complex. The symmetry-related DNA in the P crystal (TT2) is also included and colored in darker shades. It may represent a second location of the downstream duplex or mimic additional DNA hairpin structures at a fragile site. R81 and R84 near the symmetry-related DNA are highlighted in blue. 8

9 Fig. 9 Diagram of hpol η-dna interactions. Nrm, the undamaged DNA complex), is used as an example. Hydrogen bonds are defined as within 3.2Å and van der Waals contacts within 4.2Å. The template base is labeled +1, and upstream from it are -1, -2, etc.. W42 is base stacked with da at +3. 9

10 Supplementary Table 1 Crystals of hpolη ternary complexes Structure name Protein DNA sequence Incoming dntp Nrm (Type 3) TT1 (Type 3) TT2 (Type 2) TT3 (Type 3) TT4 (Type 3) Native (Type 2) SeMet (Type 2) Type 1 C406M C406M C406M 3 TCGCAGTATTACT 5 TAGCGTCAT 5 3 dampnpp 3 TCGCAGTATTAC 5 5 TAGCGTCAT 3 dampnpp 3 CGCAGTATTCAAT 5' TGCGTCATA 5 3 dampnpp 3 CGCAGTATTCAAT 5 ACGTCATAA 5 3 dgmpnpp 3 CGAGCATTACTAC 5 5 TCTCGTAAT 3 dgmpnpp 3 ATCGCAGTATTA 5 5 TAGCGTCAT 3 dampnpp 3 ATCGCAGTATTA 5 5 TAGCGTCAT 3 dampnpp 3 CCCCCTTCCTAAGTTTCT 5 5 GGGGGAAGGATTC 3 datp 3 GCACGGATCGCATGTATG 5 5 GTGCCTAGCGTA 3 dctp 3 CACGCACGGATCGCATGTATG 5 5 GTGCGTGCCTAGCGTA 3 dctp TT denotes cis-syn thymine dimer 10

11 Supplementary Table 2 Data collection, phasing and refinement statistics Nrm TT1 TT2 TT3 TT4 SeMet Native Type 1 Data collection Space group P 6 1 P 6 1 P P 6 1 P 6 1 P P P 6 1 Cell dimensions a, b, c (Å) Peak Inflection Remote Wavelength (Å) Resolution (Å) R sym (%)* 6.3 (51.7) 8.0 (59.6) 8.6 (59.3) 6.6 (57.4) 7.8 (53.4) (31.1) 9.1 (29.8) 4.5 (62.7) 9.6 (67.4) (23.8) I/σI* 17.9 (3.2) 13.9 (3.5) 12.4 (2.9) 15.1 (2.6) 14.5 (3.3) 10.5 (5.1) 11.8 (4.1) 10.9 (4.5) 18.3 (2.0) 23.6 (2.0) Completeness (%)* 98.9 (90.6) 99.5 (99.6) 99.0 (97.1) 99.3 (99.6) 98.9 (98.0) 97.2 (95.1) 93.9 (95.8) 95.5 (95.9) 92.1 (93.8) 99.0 (92.0) Redundancy* 4.4 (4.0) 4.0 (4.0) 8.4 (6.8) 4.1 (4.1) 3.3 (3.2) 3.4 (2.0) 2.0 (2.0) 2.0 (2.0) 2.4 (2.4) 7.2 (5.7) Refinement Resolution (Å) No. reflections R work/ R free 17.4 / / / / / 21.8 No. atoms Protein / DNA 3355 / / / / / 390 dnmpnpp / Mg / 2 30 / 2 30 / 2 31 / 2 31 / 2 Water / Solutes 402 / / / / / 54 B-factors Protein / DNA 22.2 / / / / / 29.5 dnmpnpp / Mg / / / / / 9.8 Water / Solutes 38.0 / / / / / 45.9 R.m.s deviations Bond lengths (Å) Bond angles (º) *Highest resolution shell is shown in parenthesis. 11

12 Supplementary Table 3 Kinetic parameters of dntp incorporation by, Q38A and R61A Polη on normal and CPD templates Enzyme Template : dntp K M (μm) k cat (min -1 ) k cat /K M (μm -1 min -1 ) Polη (1-511) ND (3 T) : datp 4.1 ± ± ND (3 T) : dgtp 17 ± 1 50 ± CPD (3 T) : datp 4.1± ± 5 20 CPD (3 T) : dgtp 110 ± ± Polη (1-511) Q38A ND (3 T) : datp 8.8 ± ± ND (3 T) : dgtp 80 ± 0 90 ± CPD (3 T) : datp 15 ± ± CPD (3 T) : dgtp 330 ± ± Polη (1-511) R61A ND (3 T) : datp 6.5 ± ± 6 22 ND (3 T) : dgtp 170 ± ± CPD (3 T) : datp 13± ± CPD (3 T) : dgtp 450 ± ±

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary materials Figure S1 Fusion protein of Sulfolobus solfataricus SRP54 and a signal peptide. a, Expression vector for the fusion protein. The signal peptide of yeast dipeptidyl aminopeptidase

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11524 Supplementary discussion Functional analysis of the sugar porter family (SP) signature motifs. As seen in Fig. 5c, single point mutation of the conserved

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dph2 SeMet (iron-free) # Dph2 (iron-free) Dph2-[4Fe-4S] Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell dimensions a, b, c (Å) 58.26, 82.08, 160.42 58.74, 81.87, 160.01 55.70, 80.53,

More information

Cryo-EM data collection, refinement and validation statistics

Cryo-EM data collection, refinement and validation statistics 1 Table S1 Cryo-EM data collection, refinement and validation statistics Data collection and processing CPSF-160 WDR33 (EMDB-7114) (PDB 6BM0) CPSF-160 WDR33 (EMDB-7113) (PDB 6BLY) CPSF-160 WDR33 CPSF-30

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Table of Contents Page Supplementary Table 1. Diffraction data collection statistics 2 Supplementary Table 2. Crystallographic refinement statistics 3 Supplementary Fig. 1. casic1mfc packing in the R3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Results DNA binding property of the SRA domain was examined by an electrophoresis mobility shift assay (EMSA) using synthesized 12-bp oligonucleotide duplexes containing unmodified, hemi-methylated,

More information

Diphthamide biosynthesis requires a radical iron-sulfur enzyme. Pennsylvania State University, University Park, Pennsylvania 16802, USA

Diphthamide biosynthesis requires a radical iron-sulfur enzyme. Pennsylvania State University, University Park, Pennsylvania 16802, USA Diphthamide biosynthesis requires a radical iron-sulfur enzyme Yang Zhang, 1,4 Xuling Zhu, 1,4 Andrew T. Torelli, 1 Michael Lee, 2 Boris Dzikovski, 1 Rachel Koralewski, 1 Eileen Wang, 1 Jack Freed, 1 Carsten

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11054 Supplementary Fig. 1 Sequence alignment of Na v Rh with NaChBac, Na v Ab, and eukaryotic Na v and Ca v homologs. Secondary structural elements of Na v Rh are indicated above the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis Sergio de Cima, Luis M. Polo, Carmen Díez-Fernández, Ana I. Martínez, Javier

More information

Structure and RNA-binding properties. of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex

Structure and RNA-binding properties. of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex Structure and RNA-binding properties of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex Varun Bhaskar 1, Vladimir Roudko 2,3, Jerome Basquin 1, Kundan Sharma 4, Henning Urlaub 4, Bertrand Seraphin

More information

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2 Table 1. Crystallographic data collection, phasing and refinement statistics Native Hg soaked Mn soaked 1 Mn soaked 2 Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell

More information

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. PDZK1 constru cts Amino acids MW [kda] KD [μm] PEPT2-CT- FITC KD [μm] NHE3-CT- FITC KD [μm] PDZK1-CT-

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table S1 Kinetic Analyses of the AMSH-LP mutants AMSH-LP K M (μm) k cat x 10-3 (s -1 ) WT 71.8 ± 6.3 860 ± 65.4 T353A 76.8 ± 11.7 46.3 ± 3.7 F355A 58.9 ± 10.4 5.33 ± 0.30 proximal S358A 75.1

More information

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases

Supplementary Information. The protease GtgE from Salmonella exclusively targets. inactive Rab GTPases Supplementary Information The protease GtgE from Salmonella exclusively targets inactive Rab GTPases Table of Contents Supplementary Figures... 2 Supplementary Figure 1... 2 Supplementary Figure 2... 3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11744 Supplementary Table 1. Crystallographic data collection and refinement statistics. Wild-type Se-Met-BcsA-B SmCl 3 -soaked EMTS-soaked Data collection Space

More information

SUPPLEMENTARY INFORMATION. doi: /nature07461

SUPPLEMENTARY INFORMATION. doi: /nature07461 Figure S1 Electrophysiology. a ph-activation of. Two-electrode voltage clamp recordings of Xenopus oocytes expressing in comparison to waterinjected oocytes. Currents were recorded at 40 mv. The ph of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION www.nature.com/nature 1 Figure S1 Sequence alignment. a Structure based alignment of the plgic of E. chrysanthemi (ELIC), the acetylcholine binding protein from the snail Lymnea stagnalis (AchBP, PDB code

More information

RNA Polymerase I Contains a TFIIF-Related DNA-Binding Subcomplex

RNA Polymerase I Contains a TFIIF-Related DNA-Binding Subcomplex Molecular Cell, Volume 39 Supplemental Information RNA Polymerase I Contains a TFIIFRelated DNABinding Subcomplex Sebastian R. Geiger, Kristina Lorenzen, Amelie Schreieck, Patrizia Hanecker, Dirk Kostrewa,

More information

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27 Acta Cryst. (2014). D70, doi:10.1107/s1399004714021695 Supporting information Volume 70 (2014) Supporting information for article: Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase

More information

Supporting Information

Supporting Information Supporting Information Ottmann et al. 10.1073/pnas.0907587106 Fig. S1. Primary structure alignment of SBT3 with C5 peptidase from Streptococcus pyogenes. The Matchmaker tool in UCSF Chimera (http:// www.cgl.ucsf.edu/chimera)

More information

THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN

THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN THE CRYSTAL STRUCTURE OF THE SGT1-SKP1 COMPLEX: THE LINK BETWEEN HSP90 AND BOTH SCF E3 UBIQUITIN LIGASES AND KINETOCHORES Oliver Willhoft, Richard Kerr, Dipali Patel, Wenjuan Zhang, Caezar Al-Jassar, Tina

More information

Supplementary Figure 1. Biochemical and sequence alignment analyses the

Supplementary Figure 1. Biochemical and sequence alignment analyses the Supplementary Figure 1. Biochemical and sequence alignment analyses the interaction of OPTN and TBK1. (a) Analytical gel filtration chromatography analysis of the interaction between TBK1 CTD and OPTN(1-119).

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table 1: Amplitudes of three current levels. Level 0 (pa) Level 1 (pa) Level 2 (pa) TrkA- TrkH WT 200 K 0.01 ± 0.01 9.5 ± 0.01 18.7 ± 0.03 200 Na * 0.001 ± 0.01 3.9 ± 0.01 12.5 ± 0.03 200

More information

Sunhats for plants. How plants detect dangerous ultraviolet rays

Sunhats for plants. How plants detect dangerous ultraviolet rays Sunhats for plants How plants detect dangerous ultraviolet rays Anyone who has ever suffered sunburn will know about the effects of too much ultraviolet (UV) radiation, in particular UV-B (from 280-315

More information

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate dehydrogenase from Escherichia coli [ICD, pdb 1PB1, Mesecar, A. D., and Koshland,

More information

Acta Crystallographica Section D

Acta Crystallographica Section D Supporting information Acta Crystallographica Section D Volume 70 (2014) Supporting information for article: Structural characterization of the virulence factor Nuclease A from Streptococcus agalactiae

More information

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site

Experimental and Computational Mutagenesis to Investigate the. Positioning of a General Base within an Enzyme Active Site Experimental and Computational Mutagenesis to Investigate the Positioning of a General Base within an Enzyme Active Site Jason P. Schwans, Philip Hanoian, Benjamin J. Lengerich, Fanny Sunden, Ana Gonzalez

More information

Supplemental Information. Molecular Basis of Spectral Diversity. in Near-Infrared Phytochrome-Based. Fluorescent Proteins

Supplemental Information. Molecular Basis of Spectral Diversity. in Near-Infrared Phytochrome-Based. Fluorescent Proteins Chemistry & Biology, Volume 22 Supplemental Information Molecular Basis of Spectral Diversity in Near-Infrared Phytochrome-Based Fluorescent Proteins Daria M. Shcherbakova, Mikhail Baloban, Sergei Pletnev,

More information

SI Text S1 Solution Scattering Data Collection and Analysis. SI references

SI Text S1 Solution Scattering Data Collection and Analysis. SI references SI Text S1 Solution Scattering Data Collection and Analysis. The X-ray photon energy was set to 8 kev. The PILATUS hybrid pixel array detector (RIGAKU) was positioned at a distance of 606 mm from the sample.

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Crystallization. a, Crystallization constructs of the ET B receptor are shown, with all of the modifications to the human wild-type the ET B receptor indicated. Residues interacting

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12045 Supplementary Table 1 Data collection and refinement statistics. Native Pt-SAD X-ray source SSRF BL17U SPring-8 BL41XU Wavelength (Å) 0.97947 1.07171 Space group P2 1 2 1 2 1 P2

More information

for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet

for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet SUPPLEMENTARY INFORMATION TO Structural basis for enzymatic excision of N -methyladenine and N 3 -methylcytosine from DNA Ingar Leiros,5, Marivi P. Nabong 2,3,5, Kristin Grøsvik 3, Jeanette Ringvoll 2,

More information

Supplementary Information. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

Supplementary Information. Structural basis for precursor protein-directed ribosomal peptide macrocyclization Supplementary Information Structural basis for precursor protein-directed ribosomal peptide macrocyclization Kunhua Li 1,3, Heather L. Condurso 1,3, Gengnan Li 1, Yousong Ding 2 and Steven D. Bruner 1*

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10955 Supplementary Figures Supplementary Figure 1. Electron-density maps and crystallographic dimer structures of the motor domain. (a f) Stereo views of the final electron-density maps

More information

Nature Structural and Molecular Biology: doi: /nsmb.2783

Nature Structural and Molecular Biology: doi: /nsmb.2783 Supplementary Figure 1: Crystallized chimera construct (mhv1cc). (a) Sequence alignment between mhv1cc and other VSDs. These sequences (mhv1cc, Kv1.2 Kv2.1; shaker family voltage gated potassium channel

More information

Impact of the crystallization condition on importin-β conformation

Impact of the crystallization condition on importin-β conformation Supporting information Volume 72 (2016) Supporting information for article: Impact of the crystallization condition on importin-β conformation Marcel J. Tauchert, Clément Hémonnot, Piotr Neumann, Sarah

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti Table S1. E. coli plasmids Plasmid Relevant features Source pdg680 T. reesei XynII AA 2-190 with C-terminal His 6 tag optimized for E. coli expression in pjexpress401 Wan et al. (in press) psbn44d psbn44h

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Data collection Supplementary Table 1 Statistics of data collection, phasing and refinement Native Se-MAD Space group P2 1 2 1 2 1 P2 1 2 1 2 1 Cell dimensions a, b, c (Å) 50.4, 94.2, 115.4 49.8, 94.2,

More information

Supplemental Data SUPPLEMENTAL FIGURES

Supplemental Data SUPPLEMENTAL FIGURES Supplemental Data CRYSTAL STRUCTURE OF THE MG.ADP-INHIBITED STATE OF THE YEAST F 1 C 10 ATP SYNTHASE Alain Dautant*, Jean Velours and Marie-France Giraud* From Université Bordeaux 2, CNRS; Institut de

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table 1: Data collection, phasing and refinement statistics ChbC/Ta 6 Br 12 Native ChbC Data collection Space group P4 3 2 1 2 P4 3 2 1 2 Cell dimensions a, c (Å) 132.75, 453.57 132.81, 452.95

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Supplementary Figure 1 Protein sequence alignment of Vibrionaceae with either a 40-residue insertion or a 44-residue insertion. Identical residues are indicated by red background.

More information

York University School of Medicine, 550 First Avenue, MSB 599, New York, New York 10016, USA.

York University School of Medicine, 550 First Avenue, MSB 599, New York, New York 10016, USA. SCF Fbxl3 Ubiquitin Ligase Targets Cryptochromes at Their Cofactor Pocket Weiman Xing 1,2, Luca Busino 3, Thomas R. Hinds 1, Samuel T. Marionni 4, Nabiha H. Saifee 1, Matthew F. Bush 4, Michele Pagano

More information

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine Supplementary figure 1. Comparison of unbound and as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine GM-CSF (slate) with bound GM-CSF in the GIF:GM-CSF complex (GIF: green,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11539 Supplementary Figure 1 Schematic representation of plant (A) and mammalian (B) P 2B -ATPase domain organization. Actuator (A-), nucleotide binding (N-),

More information

Supplemental Data for: Direct Observation of Translocation in Individual DNA Polymerase Complexes

Supplemental Data for: Direct Observation of Translocation in Individual DNA Polymerase Complexes Supplemental Data for: Direct Observation of Translocation in Individual DNA Polymerase Complexes Joseph M. Dahl 1, Ai H. Mai 1, Gerald M. Cherf 1, Nahid N. Jetha 4, Daniel R. Garalde 3, Andre Marziali

More information

Supporting Information

Supporting Information Supporting Information Oxaliplatin binding to human copper chaperone Atox1 and protein dimerization Benny D. Belviso, 1 Angela Galliani, 2 Alessia Lasorsa, 2 Valentina Mirabelli, 1,3 Rocco Caliandro, 1

More information

Supplementary Information

Supplementary Information Supplementary Information The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis Marta C. Marques a, Cristina Tapia b, Oscar Gutiérrez-Sanz b, Ana Raquel Ramos a, Kimberly L.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature12242 C. thermophilum 666 RPAVLDNVYIRPALE-GKRVPGKVEIHQNGIRYQSPLSTTQRVDVLFSNIRHLFFQPCQN S. pombe 659 RPAHINDVYVRPAID-GKRLPGFIEIHQNGIRYQSPLRSDSHIDLLFSNMKHLFFQPCEG

More information

Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R)

Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R) Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R) Shown in cyan and green are two adjacent tetramers from the crystallographic lattice of COP, forming the only unique inter-tetramer

More information

Part 8 Working with Nucleic Acids

Part 8 Working with Nucleic Acids Part 8 Working with Nucleic Acids http://cbm.msoe.edu/newwebsite/learntomodel Introduction Most Protein Databank files loaded into the CBM's Jmol Design Environment include protein structures and small

More information

Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme

Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme Volume 1 (2014) Supporting information for article: Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme Mirella Vivoli, Emily Ayres, Edward Beaumont, Michail N. Isupov and Nicholas

More information

Time-dependence of key H-bond/electrostatic interaction distances in the sirna5-hago2 complexes... Page S14

Time-dependence of key H-bond/electrostatic interaction distances in the sirna5-hago2 complexes... Page S14 Supporting Information Probing the Binding Interactions between Chemically Modified sirnas and Human Argonaute 2 Using Microsecond Molecular Dynamics Simulations S. Harikrishna* and P. I. Pradeepkumar*

More information

Procedure to Create NCBI KOGS

Procedure to Create NCBI KOGS Procedure to Create NCBI KOGS full details in: Tatusov et al (2003) BMC Bioinformatics 4:41. 1. Detect and mask typical repetitive domains Reason: masking prevents spurious lumping of non-orthologs based

More information

Supporting Information Comparative Molecular Dynamics Studies of Human DNA Polymerase η

Supporting Information Comparative Molecular Dynamics Studies of Human DNA Polymerase η Supporting Information Comparative Molecular Dynamics Studies of Human DNA Polymerase η Melek N. Ucisik and Sharon Hammes-Schiffer* Department of Chemistry, University of Illinois at Urbana-Champaign,

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Identification of the ScDcp2 minimal region interacting with both ScDcp1 and the ScEdc3 LSm domain. Pull-down experiment of untagged ScEdc3 LSm with various ScDcp1-Dcp2-His 6 fragments.

More information

Structure of the SPRY domain of human DDX1 helicase, a putative interaction platform within a DEAD-box protein

Structure of the SPRY domain of human DDX1 helicase, a putative interaction platform within a DEAD-box protein Supporting information Volume 71 (2015) Supporting information for article: Structure of the SPRY domain of human DDX1 helicase, a putative interaction platform within a DEAD-box protein Julian Kellner

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1: The HpUreI crystal used for collection of native diffraction data. The crystal belongs to spacegroup P4 2 2 1 2 and has an approximate maximal dimension of 0.25 mm. Supplementary

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Cryo-EM structure and model of the C. thermophilum 90S preribosome. a, Gold standard FSC curve showing the average resolution of the 90S preribosome masked and unmasked (left). FSC

More information

Supplementary information

Supplementary information Supplementary information The structural basis of modularity in ECF-type ABC transporters Guus B. Erkens 1,2, Ronnie P-A. Berntsson 1,2, Faizah Fulyani 1,2, Maria Majsnerowska 1,2, Andreja Vujičić-Žagar

More information

Supplementary Information

Supplementary Information 1 Supplementary Information Figure S1 The V=0.5 Harker section of an anomalous difference Patterson map calculated using diffraction data from the NNQQNY crystal at 1.3 Å resolution. The position of the

More information

Model Mélange. Physical Models of Peptides and Proteins

Model Mélange. Physical Models of Peptides and Proteins Model Mélange Physical Models of Peptides and Proteins In the Model Mélange activity, you will visit four different stations each featuring a variety of different physical models of peptides or proteins.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11991 Supplementary Figure 1 - Refinement strategy for PIC intermediate assemblies by negative stain EM. The cryo-negative stain structure of free Pol II 1 (a) was used as initial reference

More information

CH 3 CH 2 OH +H 2 O CHO. 2e + 2H + + O 2 H 2 O +HCOOH

CH 3 CH 2 OH +H 2 O CHO. 2e + 2H + + O 2 H 2 O +HCOOH 2 4 H CH 3 2e + 2H + + 2 H 2 2 H CH 2 H 2e + 2H + + 2 H 2 2 H +H 2 CH 2e + 2H + + 2 H 2 2 H +HCH Supplemental Figure S. The three-step 4DM reaction, each step requires two reducing equivalents from ADPH

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Supporting Information Lipid molecules can induce an opening of membrane-facing

More information

IgE binds asymmetrically to its B cell receptor CD23

IgE binds asymmetrically to its B cell receptor CD23 Supplementary Information IgE binds asymmetrically to its B cell receptor CD23 Balvinder Dhaliwal 1*, Marie O. Y. Pang 2, Anthony H. Keeble 2,3, Louisa K. James 2,4, Hannah J. Gould 2, James M. McDonnell

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10458 Active Site Remodeling in the Bifunctional Fructose-1,6- bisphosphate aldolase/phosphatase Juan Du, Rafael F. Say, Wei Lü, Georg Fuchs & Oliver Einsle SUPPLEMENTARY FIGURES Figure

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1737 Supplementary Table 1 variant Description FSEC - 2B12 a FSEC - 6A1 a K d (leucine) c Leucine uptake e K (wild-type like) K (Y18F) K (TS) K (TSY) K288A mutant, lipid facing side chain

More information

Cks1 CDK1 CDK1 CDK1 CKS1. are ice- lobe. conserved. conserved

Cks1 CDK1 CDK1 CDK1 CKS1. are ice- lobe. conserved. conserved Cks1 d CKS1 Supplementary Figure 1 The -Cks1 crystal lattice. (a) Schematic of the - Cks1 crystal lattice. -Cks1 crystallizes in a lattice that contains c 4 copies of the t - Cks1 dimer in the crystallographic

More information

Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ. 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan

Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ. 128 Academia Road Sec. 2, Nankang, Taipei, 115, Taiwan SUPPORTING INFORMATION Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ Mu-Sen Liu, 1,3 Hsin-Yue Tsai, 1,# Xiao-Xia Liu, 1,# Meng-Chiao Ho, 1,3 Wen-Jin Wu, 1,* and Ming-Daw Tsai 1,2,3,*

More information

Structural basis of PROTAC cooperative recognition for selective protein degradation

Structural basis of PROTAC cooperative recognition for selective protein degradation SUPPLEMENTARY INFORMATION Structural basis of PROTAC cooperative recognition for selective protein degradation Morgan S. Gadd 1, Andrea Testa 1, Xavier Lucas 1, Kwok-Ho Chan, Wenzhang Chen, Douglas J.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11085 Supplementary Tables: Supplementary Table 1. Summary of crystallographic and structure refinement data Structure BRIL-NOP receptor Data collection Number of crystals 23 Space group

More information

Structural insights into Aspergillus fumigatus lectin specificity - AFL binding sites are functionally non-equivalent

Structural insights into Aspergillus fumigatus lectin specificity - AFL binding sites are functionally non-equivalent Acta Cryst. (2015). D71, doi:10.1107/s1399004714026595 Supporting information Volume 71 (2015) Supporting information for article: Structural insights into Aspergillus fumigatus lectin specificity - AFL

More information

Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6 Supplementary Information for: Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6 Yawei Dai 1, 2, Markus Seeger 3, Jingwei Weng 4, Song Song 1, 2, Wenning Wang 4, Yan-Wen 1, 2,

More information

NB-DNJ/GCase-pH 7.4 NB-DNJ+/GCase-pH 7.4 NB-DNJ+/GCase-pH 4.5

NB-DNJ/GCase-pH 7.4 NB-DNJ+/GCase-pH 7.4 NB-DNJ+/GCase-pH 4.5 SUPPLEMENTARY TABLES Suppl. Table 1. Protonation states at ph 7.4 and 4.5. Protonation states of titratable residues in GCase at ph 7.4 and 4.5. Histidine: HID, H at δ-nitrogen; HIE, H at ε-nitrogen; HIP,

More information

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Supporting information Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas

More information

Pymol Practial Guide

Pymol Practial Guide Pymol Practial Guide Pymol is a powerful visualizor very convenient to work with protein molecules. Its interface may seem complex at first, but you will see that with a little practice is simple and powerful

More information

The structure of a nucleolytic ribozyme that employs a catalytic metal ion. Yijin Liu, Timothy J. Wilson and David M.J. Lilley

The structure of a nucleolytic ribozyme that employs a catalytic metal ion. Yijin Liu, Timothy J. Wilson and David M.J. Lilley SUPPLEMENTARY INFORMATION The structure of a nucleolytic ribozyme that employs a catalytic metal ion Yijin Liu, Timothy J. Wilson and David M.J. Lilley Cancer Research UK Nucleic Acid Structure Research

More information

Supplemental Information

Supplemental Information Supplemental Information Combinatorial Readout of Unmodified H3R2 and Acetylated H3K14 by the Tandem PHD Finger of MOZ Reveals a Regulatory Mechanism for HOXA9 Transcription Yu Qiu 1, Lei Liu 1, Chen Zhao

More information

Macromolecular assemblies in DNAassociated

Macromolecular assemblies in DNAassociated Macromolecular assemblies in DNAassociated functions DNA structures: Chromatin (nucleosome) Replication complexes: Initiation, progression Transcription complexes: Initiation, splicing, progression Voet

More information

Supplementary Figures

Supplementary Figures 1 Supplementary Figures Supplementary Figure 1 Type I FGFR1 inhibitors (a) Chemical structures of a pyrazolylaminopyrimidine inhibitor (henceforth referred to as PAPI; PDB-code of the FGFR1-PAPI complex:

More information

Detailed description of overall and active site architecture of PPDC- 3dThDP, PPDC-2HE3dThDP, PPDC-3dThDP-PPA and PPDC- 3dThDP-POVA

Detailed description of overall and active site architecture of PPDC- 3dThDP, PPDC-2HE3dThDP, PPDC-3dThDP-PPA and PPDC- 3dThDP-POVA Online Supplemental Results Detailed description of overall and active site architecture of PPDC- 3dThDP, PPDC-2HE3dThDP, PPDC-3dThDP-PPA and PPDC- 3dThDP-POVA Structure solution and overall architecture

More information

Full-length GlpG sequence was generated by PCR from E. coli genomic DNA. (with two sequence variations, D51E/L52V, from the gene bank entry aac28166),

Full-length GlpG sequence was generated by PCR from E. coli genomic DNA. (with two sequence variations, D51E/L52V, from the gene bank entry aac28166), Supplementary Methods Protein expression and purification Full-length GlpG sequence was generated by PCR from E. coli genomic DNA (with two sequence variations, D51E/L52V, from the gene bank entry aac28166),

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1. Secondary structure of CAP (in the camp 2 -bound state) 10. α-helices are shown as cylinders and β- strands as arrows. Labeling of secondary structure is indicated. CDB, DBD and the hinge are

More information

FW 1 CDR 1 FW 2 CDR 2

FW 1 CDR 1 FW 2 CDR 2 Supplementary Figure 1 Supplementary Figure 1: Interface of the E9:Fas structure. The two interfaces formed by V H and V L of E9 with Fas are shown in stereo. The Fas receptor is represented as a surface

More information

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition JBC Papers in Press. Published on November 1, 2000 as Manuscript M006502200 Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions Implicated in Dimerization and Autoinhibition 1 Copyright

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.108/nature11899 Supplementar Table 1. Data collection and refinement statistics (+TPMP, native) (-TPMP, native) (+TPMP, recombinant) (MgCl ) (MgSO ) Data collection Space group C P 1 C P 1 1 P 1

More information

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits AhpC and AhpF from Escherichia coli Phat Vinh Dip 1,#, Neelagandan Kamariah 2,#, Malathy Sony Subramanian Manimekalai

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

The structure of vanadium nitrogenase reveals an unusual bridging ligand

The structure of vanadium nitrogenase reveals an unusual bridging ligand SUPPLEMENTARY INFORMATION The structure of vanadium nitrogenase reveals an unusual bridging ligand Daniel Sippel and Oliver Einsle Lehrstuhl Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität

More information

Chemical Bonds, Molecular Models, and Molecular Shapes

Chemical Bonds, Molecular Models, and Molecular Shapes Chemical Bonds, Molecular Models, and Molecular Shapes PRELAB ASSINGMENT Read the entire laboratory write up and answer the following questions before coming to lab. Read the entire laboratory write up

More information

Purification, SDS-PAGE and cryo-em characterization of the MCM hexamer and Cdt1 MCM heptamer samples.

Purification, SDS-PAGE and cryo-em characterization of the MCM hexamer and Cdt1 MCM heptamer samples. Supplementary Figure 1 Purification, SDS-PAGE and cryo-em characterization of the MCM hexamer and Cdt1 MCM heptamer samples. (a-b) SDS-PAGE analysis of the hexamer and heptamer samples. The eluted hexamer

More information

Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b).

Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b). Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b). Crystal contacts at B-C loop are magnified and stereo view of A-weighted

More information

The structure of a nucleolytic ribozyme that employs a catalytic metal ion Liu, Yijin; Wilson, Timothy; Lilley, David

The structure of a nucleolytic ribozyme that employs a catalytic metal ion Liu, Yijin; Wilson, Timothy; Lilley, David University of Dundee The structure of a nucleolytic ribozyme that employs a catalytic metal ion Liu, Yijin; Wilson, Timothy; Lilley, David Published in: Nature Chemical Biology DOI: 10.1038/nchembio.2333

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/7/e1500263/dc1 Supplementary Materials for Newton s cradle proton relay with amide imidic acid tautomerization in inverting cellulase visualized by neutron

More information

SUPPLEMENTARY INFORMATION. Pistol Ribozyme Adopts a Pseudoknot Fold. Facilitating Site-specific In-line Cleavage

SUPPLEMENTARY INFORMATION. Pistol Ribozyme Adopts a Pseudoknot Fold. Facilitating Site-specific In-line Cleavage UPPLEMENTAY INFMATIN Pistol ibozyme Adopts a Pseudoknot Fold Facilitating ite-specific In-line Cleavage Aiming en 1,2,4, Nikola Vušurović 3,4, Jennifer Gebetsberger 3, Pu Gao 2, Michael Juen 3, Christoph

More information

Supplemental Information. The Mitochondrial Fission Receptor MiD51. Requires ADP as a Cofactor

Supplemental Information. The Mitochondrial Fission Receptor MiD51. Requires ADP as a Cofactor Structure, Volume 22 Supplemental Information The Mitochondrial Fission Receptor MiD51 Requires ADP as a Cofactor Oliver C. Losón, Raymond Liu, Michael E. Rome, Shuxia Meng, Jens T. Kaiser, Shu-ou Shan,

More information

Cell Growth and Genetics

Cell Growth and Genetics Cell Growth and Genetics Cell Division (Mitosis) Cell division results in two identical daughter cells. The process of cell divisions occurs in three parts: Interphase - duplication of chromosomes and

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Chemical structure of LPS and LPS biogenesis in Gram-negative bacteria. a. Chemical structure of LPS. LPS molecule consists of Lipid A, core oligosaccharide and O-antigen. The polar

More information

Prediction and refinement of NMR structures from sparse experimental data

Prediction and refinement of NMR structures from sparse experimental data Prediction and refinement of NMR structures from sparse experimental data Jeff Skolnick Director Center for the Study of Systems Biology School of Biology Georgia Institute of Technology Overview of talk

More information