*Corresponding Author *K. F.: *T. H.:

Size: px
Start display at page:

Download "*Corresponding Author *K. F.: *T. H.:"

Transcription

1 Theoretical Analysis of Activity Cliffs among Benzofuranone Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson-Boltzmann Surface Area (FMO+MM-PBSA) Approach Chiduru Watanabe,, Hirofumi Watanabe, Kaori Fukuzawa,*,, Lorien J. Parker,, # Yoshio Okiyama, Hitomi Yuki, Shigeyuki Yokoyama, Hirofumi Nakano, Shigenori Tanaka, and Teruki Honma*, RIKEN Center for Life Science Technologies, Suehiro-cho, Tsurumi-ku, Yokohama , Japan Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo , Japan Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Ebara, Shinagawa, Tokyo , Japan RIKEN Structural Biology Laboratory, Suehiro-cho, Tsurumi-ku, Yokohama , Japan # Department of Structural Biology, St. Vincent's Institute, 9 Princes St, Fitzroy, Victoria 3065, Australia Drug Discovery Initiative, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo , Japan Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe , Japan *Corresponding Author *K. F.: k-fukuzawa@hoshi.ac.jp. *T. H.: honma.teruki@riken.jp 1

2 A. Initial hit of the benzofuranone class inhibitor Structure formulas of the initial hit compound (IC 50 = 410 nm) of the benzofuranone class inhibitor and Cpd 1 (IC 50 = 2 nm) 1 are illustrated in Figure S1. Figure S1. Structure formulas of the initial hit and Cpd 1 of the benzofuranone class Pim1 inhibitors. 2

3 B. The CH- interaction analysis The CH- interactions were determined with the CHPI program. 2 6 The criteria for typical and weak CH- interactions, which are indicated by purple and orange lines in Figure 1, are described in Figure S2. Typical CH- interactions Weak CH- interactions D max 3.05 Å 3.30 Å max º º º º Figure S2. Method for exploring XH/π contacts. A six-membered aromatic ring is shown as an illustrative example. (A) O: center of the π-plane. A 1 and A 2 : nearest and second-nearest sp 2 -atoms, respectively, to the hydrogen atom H. : dihedral angle defined by the A 1 OA 2 and HA 1 A 2 planes. : X-H-I angle. D pln : perpendicular distance between H and the π-plane (H/I). D atm : HA 1 distance. D lin : distance between H and the line A 1 -A 2 (H/J). (B) Regions to be searched. Region 1: zone where H is above the ring. Regions 2 and 3: zones where H is outside of region 1 but may interact with the π-ring. Unless otherwise noted, the program was run to search for short H/π contacts with the following conditions: D pln < D max (region 1); D lin < D max (region 2); D atm < D max (region 3); max < < max ; < max. D hpi : H/ distance (D pln for region 1, D lin for region 2, D atm for region 3). 3

4 C. Structure preparation The X-ray crystal structures of Pim1 and inhibitor complexes are shown in Figure S3 and its data collection and refinement statistics (PDB-ID: 5VUC, 5VUA, and 5VUB) are listed in Table S1. The hydrogen bond network between Pim1 and ligand is shown in Figures 1B and 3. The hydrogen bond lengths obtained from X-ray, MM-opt, and QM/MM-opt are summarized in Table S2. Stable structures of ligands in complex and with solvation are shown in Figure S4. We confirmed that the indole/azaindole rings were preferred to the flip configuration in the solvent by QM calculation at the HF/6-31G* level with the PCM model. The entropy of ligands in the case of stable structure with water is listed in Table S3. Figure S3. Protein surface of Pim1 (A) and X-ray crystal structures of Pim1 and inhibitor complexes (B). Carbon atoms colored gray, yellow, green, and orange represent Cpds 1, 3, 5, and 6 (PDB-ID: 5VUC, 3UMW, 5VUA, and 5VUB), respectively. 4

5 Table S1. Data collection and refinement statistics. Compound PDB code 5VUC 5VUA 5VUB Wavelength Resolution range (Å) ( ) ( ) ( ) Space group P6 5 P6 5 P6 5 Unit cell 98.3, 98.3, , 98.1, , 98.1, , 90, , 90, , 90, 120 Total reflections (5913) (4476) (5718) Unique reflections (2987) (2236) (2973) Multiplicity 2.0 (2.0) 2.0 (2.0) 1.9 (1.9) Completeness (%) 100 (100) 100 (100) 100 (100) Mean I/sigma(I) 18.9 (5.00) 17.3 (5.1) 18.4 (4.7) Wilson B-factor R-meas (0.23) (0.236) (0.296) Reflections used in refinement (2987) (2238) (2974) Reflections used for R-free 1509 (169) 1122 (128) 1482 (145) R-work 17.5 (21.0) 16.9 (20.8) 17.5 (20.8) R-free 19.9 (24.3) 19.8 (25.4) 19.7 (24.7) Number of non-hydrogen atoms macromolecules ligands Protein residues RMS(bonds) RMS(angles) Ramachandran favored (%) Ramachandran outliers (%) Average B-factor macromolecules ligands solvent *Statistics for the highest-resolution shell are shown in parentheses. 5

6 Table S2. Bond lengths of hydrogen bond network between ligand and amino acid residues for X-ray, MM-opt, and QM/MM-opt structures, respectively. Hydrogen bond distance between ligand and amino acid residues, r 1, r 2, r 3 and r 4, are shown in Figure 3. r 1 between Fragment (1) and Glu121 (Å) r 2 between Fragment (1) and Lys67 (Å) Cpd IC 50 (nm) X-ray MM-opt QM/MM-opt X-ray MM-opt QM/MM-opt r 3 between Fragment (2) and Asp128 (Å) r 4 between Fragment (2) and Glu171 (Å) Cpd IC 50 (nm) X-ray MM-opt QM/MM-opt X-ray MM-opt QM/MM-opt

7 Figure S4. Stable structures of ligands in complex (A) and with solvation (B). In the most stable structures in water, the indole/azaindole ring is flipped. Table S3. The entropy of the six compounds (kcal/mol) calculated by the MM method using the most stable structures in water (the indole/azaindole ring is flipped). Entropy based on the MM method at T = K (kcal/mol) Cpd Max-Min Translational Rotational Vibrational Total

8 D. MM-PBSA results bind The MM-based binding free energies, G MM, between Pim1 and each inhibitor in the general MM-PBSA scheme are listed in Table S4 for X-ray, MM-opt, and QM/MM-opt results, where vdw def sol,,, and are the non-bonding ele E MM E MM E MM G MM-PBSA electrostatic interaction, van der Waals interaction, ligand deformation, and solvation energies between protein and a ligand, respectively. Table S4. The energies (kcal/mol) obtained with the MM-PBSA calculation of Pim1 and each inhibitor complex for three types of complex (X-ray, MM-opt, and QM/MM-opt). Structure Cpd IC 50 (nm) ele vdw MM-PBSA calculation def sol bind G MM-PBSA G MM X-ray Structure Cpd IC 50 (nm) R with pic R 2 with pic ele vdw def sol bind G MM-PBSA G MM MM-Opt Structure Cpd IC 50 (nm) R with pic R 2 with pic ele vdw def sol bind G MM-PBSA G MM QM/MM-Opt R with pic R 2 with pic

9 E. NPA charge analysis The natural population analysis (NPA) of the Pim1 and inhibitor complex obtained by QM/MM-opt structures was performed at the HF/6-31G* level. Figure S5 shows the NPA charges of Cpds 1 6. Figure S5. NPA charge analysis of complex structures for Cpds 1 6. Red color indicates positive charge, and blue color means negative charge. Sum of NPA charge in the indole/azaindole ring outlined by the pink dotted oval is indicated by q indole. 9

10 F. PIEDA For detailed analysis at the residue level, the ES and DI components between ligand Fragment (1) and surrounding fragments of amino acid residues are shown in Tables S5 and S6, respectively. Values of amino acid residue fragments within a distance of 4.5 Å from a ligand were selected. Table S5 Electrostatic (ES) contribution of IFIE between Fragment (1) of ligands and selected amino acid residues evaluated by PIEDA. Fragment residue Formal fragment charge a Distance E ES of Fragment (1) (kcal/mol) b Average c max-min d R Lys67 S Arg122 M Ile104 S Phe49 S Arg122 S Leu120 S Leu44 S Val52 S Val126 S Asp186 M Ser46 M Gly45 M Asp186 S Leu174 S Pro123 M Ala65 S Ile185 S Leu120 M Gly47 M Phe187 M Ala65 M Glu89 S Ile185 M Glu121 M Val52 M

11 Ile104 M Leu44 M Glu121 S e Summation of the selected residues Summation of all residues a Distance between atoms of ligand and one of each fragment. b Average of E ES among Cpds 1 and 6. c Difference between maximum and minimum values of E ES among Cpds 1 and 6. d Correlation between E ES and pic 50. e Residues within 4.5Å from atoms of ligand fragment (1) to its nearest neighbor atoms. Table S6. Dispersion interaction (DI) contribution of the IFIE between Fragment (1) of ligands and selected amino acid residues evaluated by the PIEDA. Fragment residue Formal fragment charge a Distance E DI of Fragment (1) (kcal/mol) b Average c max-min d R Lys67 S Arg122 M Ile104 S Phe49 S Arg122 S Leu120 S Leu44 S Val52 S Val126 S Asp186 M Ser46 M Gly45 M Asp186 S Leu174 S Pro123 M Ala65 S Ile185 S Leu120 M

12 Gly47 M Phe187 M Ala65 M Glu89 S Ile185 M Glu121 M Val52 M Ile104 M Leu44 M Glu121 S e Summation of the selected residues Summation of all residues a Distance between atoms of ligand and one of each fragment. b Average of E DI among Cpds 1 and 6. c Difference between maximum and minimum values of E DI among Cpds 1 and 6. d Correlation between E DI and pic 50. e Residues within 4.5Å from atoms of ligand fragment (1) to its nearest neighbor atoms. 12

13 G. FMO+MM-PBSA binding energy with QM-based ligand deformation energy. We compared the FMO+MM-PBSA energy values (eq 7) with those by the following eq 13 including QM-based ligand deformation energy. bind int def solv G E E G. (7) FMO FMO MM MM PBSA G bind FMO E int FMO E def MO G solv MM PBSA. (13) The recalculated FMO+MM-PBSA energy values using eq 13 are listed in Table S7. bind The correlation between pic 50 and the recalculated G FMO (R 2 (QM/MM opt): 0.67) was not improved in comparison to that based on eq 7 (R 2 (QM/MM opt): 0.85) in this dataset. Table S7. The FMO+MM-PBSA energy values (kcal/mol) calculated by eq 13 including QM-based ligand deformation energy using three types of complex structures (X-ray, MM-opt, and QM/MM-opt). Structure Cpd IC 50 (nm) E int FMO E def MO G solv MM-PBSA G bind FMO X-ray R with -pic R 2 with -pic Structure Cpd IC 50 (nm) E int FMO E def MO G solv MM-PBSA G bind FMO MM-opt R with -pic R 2 with -pic Structure Cpd IC 50 (nm) E int FMO E def MO G solv MM-PBSA G bind FMO QM/MM-opt

14 R with -pic R 2 with -pic

15 References 1. Nakano, H.; Saito, N.; Parker, L. J.; Tada, Y.; Abe, M.; Tsuganezawa, K., Yokoyama, S.; Tanaka, A.; Kojima, H.; Okabe, T.; Nagano, T. Rational Evolution of a Novel Type of Potent and Selective Proviral Integration Site in Moloney Murine Leukemia Virus Kinase 1 (PIM1) Inhibitor from a Screening-Hit Compound. J. Med. Chem. 2012, 55, Umezawa, Y.; Nishio, M. CH/ Interactions as Demonstrated in the Crystal structure of Guanine-nucleotide Binding Proteins, Src homology-2 Domains and Human Growth Hormone in Complex with their Specific Ligands. Bioorg. Med. Chem. 1998, 6, Umezawa, Y.; Nishio, M. CH/ Interactions in the Crystal Structure of Class I MHC Antigens and Their Complexes with Peptides. Bioorg. Med. Chem. 1998, 6, Umezawa, Y.; Nishio, M. CH/ Interactions in the Crystal Structure of TATA-box Binding Protein/DNA Complexes. Bioorg. Med. Chem. 2000, 8, Umezawa, Y.; Nishio, M. CH/ Hydrogen Bonds as Evidenced in the Substrate Specificity of Acetylcholine Esterase. Bioorg. Biopolymers. 2005, 79, Nishio, M. The CH/ Hydrogen Bond in Chemistry. Conformation, Supramolecules, Optical Resolution and Interactions Involving Carbohydrates. Phys. Chem. Chem. Phys. 2011, 13,

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 06:13 pm GMT PDB ID : 5G5C Title : Structure of the Pyrococcus furiosus Esterase Pf2001 with space group C2221 Authors : Varejao, N.; Reverter,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 14, 2018 02:00 pm GMT PDB ID : 3RRQ Title : Crystal structure of the extracellular domain of human PD-1 Authors : Lazar-Molnar, E.; Ramagopal, U.A.; Nathenson,

More information

Supplementary Information

Supplementary Information Supplementary Information Resveratrol Serves as a Protein-Substrate Interaction Stabilizer in Human SIRT1 Activation Xuben Hou,, David Rooklin, Hao Fang *,,, Yingkai Zhang Department of Medicinal Chemistry

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Results DNA binding property of the SRA domain was examined by an electrophoresis mobility shift assay (EMSA) using synthesized 12-bp oligonucleotide duplexes containing unmodified, hemi-methylated,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 14, 2019 11:10 AM EST PDB ID : 6GYW Title : Crystal structure of DacA from Staphylococcus aureus Authors : Tosi, T.; Freemont, P.S.; Grundling, A. Deposited

More information

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease

NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2009 NMR study of complexes between low molecular mass inhibitors and the West Nile

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 17, 2019 09:42 AM EST PDB ID : 6D3Z Title : Protease SFTI complex Authors : Law, R.H.P.; Wu, G. Deposited on : 2018-04-17 Resolution : 2.00 Å(reported)

More information

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27 Acta Cryst. (2014). D70, doi:10.1107/s1399004714021695 Supporting information Volume 70 (2014) Supporting information for article: Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase

More information

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells?

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells? ame 7.01 Problem Set 1 Section Question 1 a) What are the four major types of biological molecules discussed in lecture? Give one important function of each type of biological molecule in the cell? b)

More information

Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine. JAK2 Selective Mechanism Combined Molecular Dynamics Simulation

Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine. JAK2 Selective Mechanism Combined Molecular Dynamics Simulation Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is The Royal Society of Chemistry 2015 Supporting Information Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine

More information

What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces: Electronic Supplementary

What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces: Electronic Supplementary Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 21 What makes a good graphene-binding peptide? Adsorption of amino acids and

More information

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine Supplementary figure 1. Comparison of unbound and as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine GM-CSF (slate) with bound GM-CSF in the GIF:GM-CSF complex (GIF: green,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 08:34 pm GMT PDB ID : 1RUT Title : Complex of LMO4 LIM domains 1 and 2 with the ldb1 LID domain Authors : Deane, J.E.; Ryan, D.P.; Maher, M.J.;

More information

Virtual screening for drug discovery. Markus Lill Purdue University

Virtual screening for drug discovery. Markus Lill Purdue University Virtual screening for drug discovery Markus Lill Purdue University mlill@purdue.edu Lecture material http://people.pharmacy.purdue.edu/~mlill/teaching/eidelberg/ I.1 Drug discovery Cl N Disease I.1 Drug

More information

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two Supplementary Figure 1. Biopanningg and clone enrichment of Alphabody binders against human IL 23. Positive clones in i phage ELISA with optical density (OD) 3 times higher than background are shown for

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

Physiochemical Properties of Residues

Physiochemical Properties of Residues Physiochemical Properties of Residues Various Sources C N Cα R Slide 1 Conformational Propensities Conformational Propensity is the frequency in which a residue adopts a given conformation (in a polypeptide)

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 8, 2018 10:24 pm GMT PDB ID : 1A30 Title : HIV-1 PROTEASE COMPLEXED WITH A TRIPEPTIDE INHIBITOR Authors : Louis, J.M.; Dyda, F.; Nashed, N.T.; Kimmel,

More information

Unraveling the degradation of artificial amide bonds in Nylon oligomer hydrolase: From induced-fit to acylation processes

Unraveling the degradation of artificial amide bonds in Nylon oligomer hydrolase: From induced-fit to acylation processes Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information for Unraveling the degradation of artificial amide bonds

More information

FW 1 CDR 1 FW 2 CDR 2

FW 1 CDR 1 FW 2 CDR 2 Supplementary Figure 1 Supplementary Figure 1: Interface of the E9:Fas structure. The two interfaces formed by V H and V L of E9 with Fas are shown in stereo. The Fas receptor is represented as a surface

More information

Structure Investigation of Fam20C, a Golgi Casein Kinase

Structure Investigation of Fam20C, a Golgi Casein Kinase Structure Investigation of Fam20C, a Golgi Casein Kinase Sharon Grubner National Taiwan University, Dr. Jung-Hsin Lin University of California San Diego, Dr. Rommie Amaro Abstract This research project

More information

Oxygen Binding in Hemocyanin

Oxygen Binding in Hemocyanin Supporting Information for Quantum Mechanics/Molecular Mechanics Study of Oxygen Binding in Hemocyanin Toru Saito and Walter Thiel* Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470

More information

Supplement information

Supplement information Electronic Supplementary Material (ESI) for Physil Chemistry Chemil Physics. This journal is the Owner Societies 216 Supplement information Fullerenol C 6 (OH) 16 prevents amyloid fibrillization of Aβ

More information

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein

Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein Acta Cryst. (2015). D71, 274-282, doi:10.1107/s1399004714025243 Supporting information Volume 71 (2015) Supporting information for article: Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08

More information

Supplementary Figures

Supplementary Figures 1 Supplementary Figures Supplementary Figure 1 Type I FGFR1 inhibitors (a) Chemical structures of a pyrazolylaminopyrimidine inhibitor (henceforth referred to as PAPI; PDB-code of the FGFR1-PAPI complex:

More information

Protein Structure Bioinformatics Introduction

Protein Structure Bioinformatics Introduction 1 Swiss Institute of Bioinformatics Protein Structure Bioinformatics Introduction Basel, 27. September 2004 Torsten Schwede Biozentrum - Universität Basel Swiss Institute of Bioinformatics Klingelbergstr

More information

Biological Macromolecules

Biological Macromolecules Introduction for Chem 493 Chemistry of Biological Macromolecules Dr. L. Luyt January 2008 Dr. L. Luyt Chem 493-2008 1 Biological macromolecules are the molecules of life allow for organization serve a

More information

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues Programme 8.00-8.20 Last week s quiz results + Summary 8.20-9.00 Fold recognition 9.00-9.15 Break 9.15-11.20 Exercise: Modelling remote homologues 11.20-11.40 Summary & discussion 11.40-12.00 Quiz 1 Feedback

More information

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination

Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Lecture 9 M230 Feigon Sequential resonance assignments in (small) proteins: homonuclear method 2º structure determination Reading resources v Roberts NMR of Macromolecules, Chap 4 by Christina Redfield

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

Supplementary Information. Broad Spectrum Anti-Influenza Agents by Inhibiting Self- Association of Matrix Protein 1

Supplementary Information. Broad Spectrum Anti-Influenza Agents by Inhibiting Self- Association of Matrix Protein 1 Supplementary Information Broad Spectrum Anti-Influenza Agents by Inhibiting Self- Association of Matrix Protein 1 Philip D. Mosier 1, Meng-Jung Chiang 2, Zhengshi Lin 2, Yamei Gao 2, Bashayer Althufairi

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Central Dogma. modifications genome transcriptome proteome

Central Dogma. modifications genome transcriptome proteome entral Dogma DA ma protein post-translational modifications genome transcriptome proteome 83 ierarchy of Protein Structure 20 Amino Acids There are 20 n possible sequences for a protein of n residues!

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Jan 28, 2019 11:10 AM EST PDB ID : 6A5H Title : The structure of [4+2] and [6+4] cyclase in the biosynthetic pathway of unidentified natural product Authors

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11524 Supplementary discussion Functional analysis of the sugar porter family (SP) signature motifs. As seen in Fig. 5c, single point mutation of the conserved

More information

ENZYME MECHANISMS, PROTEASES, STRUCTURAL BIOLOGY

ENZYME MECHANISMS, PROTEASES, STRUCTURAL BIOLOGY Supplementary Information SUBJECT AREAS: ENZYME MECHANISMS, PROTEASES, STRUCTURAL BIOLOGY Correspondence and requests for materials should be addressed to N.T. (ntanaka@pharm.showa-u.ac.jp) or W.O. (owataru@vos.nagaokaut.ac.jp)

More information

----- Ver October 24, 2014 Bug about reading MOPAC2012 Ver.14 calculations of 1 atom and 2 atoms molecule was fixed.

----- Ver October 24, 2014 Bug about reading MOPAC2012 Ver.14 calculations of 1 atom and 2 atoms molecule was fixed. ***** Facio's Release History ***** ----- Ver.18.8.2 ----- October 24, 2014 Bug about reading MOPAC2012 Ver.14 calculations of 1 atom and 2 atoms molecule was fixed. ----- Ver.18.8.1 ----- August 14, 2014

More information

Ligand-receptor interactions

Ligand-receptor interactions University of Silesia, Katowice, Poland 11 22 March 2013 Ligand-receptor interactions Dr. Pavel Polishchuk A.V. Bogatsky Physico-Chemical Institute of National Academy of Sciences of Ukraine Odessa, Ukraine

More information

Toward an Understanding of GPCR-ligand Interactions. Alexander Heifetz

Toward an Understanding of GPCR-ligand Interactions. Alexander Heifetz Toward an Understanding of GPCR-ligand Interactions Alexander Heifetz UK QSAR and ChemoInformatics Group Conference, Cambridge, UK October 6 th, 2015 Agenda Fragment Molecular Orbitals (FMO) for GPCR exploration

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/5/243/ra68/dc1 Supplementary Materials for Superbinder SH2 Domains Act as Antagonists of Cell Signaling Tomonori Kaneko, Haiming Huang, Xuan Cao, Xing Li, Chengjun

More information

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions: Van der Waals Interactions

More information

Structural Perspectives on Drug Resistance

Structural Perspectives on Drug Resistance Structural Perspectives on Drug Resistance Irene Weber Departments of Biology and Chemistry Molecular Basis of Disease Program Georgia State University Atlanta, GA, USA What have we learned from 20 years

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Feb 17, 2018 01:16 am GMT PDB ID : 1IFT Title : RICIN A-CHAIN (RECOMBINANT) Authors : Weston, S.A.; Tucker, A.D.; Thatcher, D.R.; Derbyshire, D.J.; Pauptit,

More information

Supporting Information

Supporting Information Discovery of kinase inhibitors by high-throughput docking and scoring based on a transferable linear interaction energy model Supporting Information Peter Kolb, Danzhi Huang, Fabian Dey and Amedeo Caflisch

More information

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle.

Figure 1. Molecules geometries of 5021 and Each neutral group in CHARMM topology was grouped in dash circle. Project I Chemistry 8021, Spring 2005/2/23 This document was turned in by a student as a homework paper. 1. Methods First, the cartesian coordinates of 5021 and 8021 molecules (Fig. 1) are generated, in

More information

Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria

Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria Other Cells Hormones Viruses Toxins Cell Bacteria ΔH < 0 reaction is exothermic, tells us nothing about the spontaneity of the reaction Δ H > 0 reaction is endothermic, tells us nothing about the spontaneity

More information

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4.

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Field Desorption 5. MS MS techniques Matrix assisted

More information

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013 Hydration of protein-rna recognition sites Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India 1 st November, 2013 Central Dogma of life DNA

More information

Supporting Information. A Comprehensive Computational Study of the Interaction between Human Serum Albumin and Fullerenes

Supporting Information. A Comprehensive Computational Study of the Interaction between Human Serum Albumin and Fullerenes Supporting Information A Comprehensive Computational Study of the Interaction between Human Serum Albumin and Fullerenes Georgios Leonis, a Aggelos Avramopoulos, a Konstantinos D. Papavasileiou, a Heribert

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11054 Supplementary Fig. 1 Sequence alignment of Na v Rh with NaChBac, Na v Ab, and eukaryotic Na v and Ca v homologs. Secondary structural elements of Na v Rh are indicated above the

More information

Volume 12(2)

Volume 12(2) Open access www.bioinformation.net Volume 12(2) Hypothesis Insights from molecular modeling, docking and simulation of imidazole nucleus containing chalcones with EGFR kinase domain for improved binding

More information

Supporting Information

Supporting Information S-1 Supporting Information Flaviviral protease inhibitors identied by fragment-based library docking into a structure generated by molecular dynamics Dariusz Ekonomiuk a, Xun-Cheng Su b, Kiyoshi Ozawa

More information

C CH 3 N C COOH. Write the structural formulas of all of the dipeptides that they could form with each other.

C CH 3 N C COOH. Write the structural formulas of all of the dipeptides that they could form with each other. hapter 25 Biochemistry oncept heck 25.1 Two common amino acids are 3 2 N alanine 3 2 N threonine Write the structural formulas of all of the dipeptides that they could form with each other. The carboxyl

More information

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Course,Informa5on, BIOC%530% GraduateAlevel,discussion,of,the,structure,,func5on,,and,chemistry,of,proteins,and, nucleic,acids,,control,of,enzyma5c,reac5ons.,please,see,the,course,syllabus,and,

More information

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Introduction Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes The production of new drugs requires time for development and testing, and can result in large prohibitive costs

More information

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA

Bioengineering & Bioinformatics Summer Institute, Dept. Computational Biology, University of Pittsburgh, PGH, PA Pharmacophore Model Development for the Identification of Novel Acetylcholinesterase Inhibitors Edwin Kamau Dept Chem & Biochem Kennesa State Uni ersit Kennesa GA 30144 Dept. Chem. & Biochem. Kennesaw

More information

MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors

MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors MM-GBSA for Calculating Binding Affinity A rank-ordering study for the lead optimization of Fxa and COX-2 inhibitors Thomas Steinbrecher Senior Application Scientist Typical Docking Workflow Databases

More information

Solutions and Non-Covalent Binding Forces

Solutions and Non-Covalent Binding Forces Chapter 3 Solutions and Non-Covalent Binding Forces 3.1 Solvent and solution properties Molecules stick together using the following forces: dipole-dipole, dipole-induced dipole, hydrogen bond, van der

More information

Automated identification of functional dynamic contact networks from X-ray crystallography

Automated identification of functional dynamic contact networks from X-ray crystallography 1 Automated identification of functional dynamic contact networks from X-ray crystallography Henry van den Bedem, Gira Bhabha, Kun Yang, Peter E. Wright and James S. Fraser Supplementary Figure 1 Supplementary

More information

Supporting information to: Time-resolved observation of protein allosteric communication. Sebastian Buchenberg, Florian Sittel and Gerhard Stock 1

Supporting information to: Time-resolved observation of protein allosteric communication. Sebastian Buchenberg, Florian Sittel and Gerhard Stock 1 Supporting information to: Time-resolved observation of protein allosteric communication Sebastian Buchenberg, Florian Sittel and Gerhard Stock Biomolecular Dynamics, Institute of Physics, Albert Ludwigs

More information

Multi-scale approaches in description and design of enzymes

Multi-scale approaches in description and design of enzymes Multi-scale approaches in description and design of enzymes Anastassia Alexandrova and Manuel Sparta UCLA & CNSI Catalysis: it is all about the barrier The inside-out protocol: Big Aim: development of

More information

Potential Energy (hyper)surface

Potential Energy (hyper)surface The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = " d dx U(x) Conformation

More information

Structure-based maximal affinity model predicts small-molecule druggability

Structure-based maximal affinity model predicts small-molecule druggability Structure-based maximal affinity model predicts small-molecule druggability Alan Cheng alan.cheng@amgen.com IMA Workshop (Jan 17, 2008) Druggability prediction Introduction Affinity model Some results

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2 Table 1. Crystallographic data collection, phasing and refinement statistics Native Hg soaked Mn soaked 1 Mn soaked 2 Data collection Space group P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 P2 1 2 1 2 1 Cell

More information

Model Mélange. Physical Models of Peptides and Proteins

Model Mélange. Physical Models of Peptides and Proteins Model Mélange Physical Models of Peptides and Proteins In the Model Mélange activity, you will visit four different stations each featuring a variety of different physical models of peptides or proteins.

More information

Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information

Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information Amino Acids and Proteins at ZnO-water Interfaces in Molecular Dynamics Simulations: Electronic Supplementary Information Grzegorz Nawrocki and Marek Cieplak Institute of Physics, Polish Academy of Sciences,

More information

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole ONETEP PB/SA: Application to G-Quadruplex DNA Stability Danny Cole Introduction Historical overview of structure and free energy calculation of complex molecules using molecular mechanics and continuum

More information

Proteins: Characteristics and Properties of Amino Acids

Proteins: Characteristics and Properties of Amino Acids SBI4U:Biochemistry Macromolecules Eachaminoacidhasatleastoneamineandoneacidfunctionalgroupasthe nameimplies.thedifferentpropertiesresultfromvariationsinthestructuresof differentrgroups.thergroupisoftenreferredtoastheaminoacidsidechain.

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 10, 2018 01:44 am GMT PDB ID : 1MWP Title : N-TERMINAL DOMAIN OF THE AMYLOID PRECURSOR PROTEIN Authors : Rossjohn, J.; Cappai, R.; Feil, S.C.; Henry,

More information

Full wwpdb X-ray Structure Validation Report i

Full wwpdb X-ray Structure Validation Report i Full wwpdb X-ray Structure Validation Report i Mar 13, 2018 04:03 pm GMT PDB ID : 5NMJ Title : Chicken GRIFIN (crystallisation ph: 6.5) Authors : Ruiz, F.M.; Romero, A. Deposited on : 2017-04-06 Resolution

More information

Targeting protein-protein interactions: A hot topic in drug discovery

Targeting protein-protein interactions: A hot topic in drug discovery Michal Kamenicky; Maria Bräuer; Katrin Volk; Kamil Ödner; Christian Klein; Norbert Müller Targeting protein-protein interactions: A hot topic in drug discovery 104 Biomedizin Innovativ patientinnenfokussierte,

More information

Force Fields for Classical Molecular Dynamics simulations of Biomolecules. Emad Tajkhorshid

Force Fields for Classical Molecular Dynamics simulations of Biomolecules. Emad Tajkhorshid Force Fields for Classical Molecular Dynamics simulations of Biomolecules Emad Tajkhorshid Theoretical and Computational Biophysics Group, Beckman Institute Departments of Biochemistry and Pharmacology,

More information

Sequence Based Bioinformatics

Sequence Based Bioinformatics Structural and Functional Analysis of Inosine Monophosphate Dehydrogenase using Sequence-Based Bioinformatics Barry Sexton 1,2 and Troy Wymore 3 1 Bioengineering and Bioinformatics Summer Institute, Department

More information

Protein Fragment Search Program ver Overview: Contents:

Protein Fragment Search Program ver Overview: Contents: Protein Fragment Search Program ver 1.1.1 Developed by: BioPhysics Laboratory, Faculty of Life and Environmental Science, Shimane University 1060 Nishikawatsu-cho, Matsue-shi, Shimane, 690-8504, Japan

More information

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions BIRKBECK COLLEGE (University of London) Advanced Certificate in Principles in Protein Structure MSc Structural Molecular Biology Date: Thursday, 1st September 2011 Time: 3 hours You will be given a start

More information

Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery

Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery 21 th /June/2018@CUGM Progress of Compound Library Design Using In-silico Approach for Collaborative Drug Discovery Kaz Ikeda, Ph.D. Keio University Self Introduction Keio University, Tokyo, Japan (Established

More information

Chapter 4: Amino Acids

Chapter 4: Amino Acids Chapter 4: Amino Acids All peptides and polypeptides are polymers of alpha-amino acids. lipid polysaccharide enzyme 1940s 1980s. Lipids membrane 1960s. Polysaccharide Are energy metabolites and many of

More information

Structural Alignment of Proteins

Structural Alignment of Proteins Goal Align protein structures Structural Alignment of Proteins 1 2 3 4 5 6 7 8 9 10 11 12 13 14 PHE ASP ILE CYS ARG LEU PRO GLY SER ALA GLU ALA VAL CYS PHE ASN VAL CYS ARG THR PRO --- --- --- GLU ALA ILE

More information

Exam III. Please read through each question carefully, and make sure you provide all of the requested information.

Exam III. Please read through each question carefully, and make sure you provide all of the requested information. 09-107 onors Chemistry ame Exam III Please read through each question carefully, and make sure you provide all of the requested information. 1. A series of octahedral metal compounds are made from 1 mol

More information

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets

Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Supporting information Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas

More information

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Mathematics and Biochemistry University of Wisconsin - Madison 0 There Are Many Kinds Of Proteins The word protein comes

More information

Any protein that can be labelled by both procedures must be a transmembrane protein.

Any protein that can be labelled by both procedures must be a transmembrane protein. 1. What kind of experimental evidence would indicate that a protein crosses from one side of the membrane to the other? Regions of polypeptide part exposed on the outside of the membrane can be probed

More information

Computational Study of Gleevec and G6G Reveals Molecular Determinants of Kinase Inhibitor Selectivity

Computational Study of Gleevec and G6G Reveals Molecular Determinants of Kinase Inhibitor Selectivity This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. pubs.acs.org/jacs Computational

More information

Journal of Pharmacology and Experimental Therapy-JPET#172536

Journal of Pharmacology and Experimental Therapy-JPET#172536 A NEW NON-PEPTIDIC INHIBITOR OF THE 14-3-3 DOCKING SITE INDUCES APOPTOTIC CELL DEATH IN CHRONIC MYELOID LEUKEMIA SENSITIVE OR RESISTANT TO IMATINIB Manuela Mancini, Valentina Corradi, Sara Petta, Enza

More information

Ramachandran Plot. 4ysz Phi (degrees) Plot statistics

Ramachandran Plot. 4ysz Phi (degrees) Plot statistics B Ramachandran Plot ~b b 135 b ~b ~l l Psi (degrees) 5-5 a A ~a L - -135 SER HIS (F) 59 (G) SER (B) ~b b LYS ASP ASP 315 13 13 (A) (F) (B) LYS ALA ALA 315 173 (E) 173 (E)(A) ~p p ~b - -135 - -5 5 135 (degrees)

More information

High-resolution crystal structure of ERAP1 with bound phosphinic transition-state analogue inhibitor

High-resolution crystal structure of ERAP1 with bound phosphinic transition-state analogue inhibitor High-resolution crystal structure of ERAP1 with bound phosphinic transition-state analogue inhibitor Petros Giastas 1, Margarete Neu 2, Paul Rowland 2, and Efstratios Stratikos 1 1 National Center for

More information

Different conformations of the drugs within the virtual library of FDA approved drugs will be generated.

Different conformations of the drugs within the virtual library of FDA approved drugs will be generated. Chapter 3 Molecular Modeling 3.1. Introduction In this study pharmacophore models will be created to screen a virtual library of FDA approved drugs for compounds that may inhibit MA-A and MA-B. The virtual

More information

Conformational Analysis

Conformational Analysis Conformational Analysis C01 3 C C 3 is the most stable by 0.9 kcal/mole C02 K eq = K 1-1 * K 2 = 0.45-1 * 0.048 = 0.11 C04 The intermediate in the reaction of 2 has an unfavorable syn-pentane interaction,

More information

Peptides And Proteins

Peptides And Proteins Kevin Burgess, May 3, 2017 1 Peptides And Proteins from chapter(s) in the recommended text A. Introduction B. omenclature And Conventions by amide bonds. on the left, right. 2 -terminal C-terminal triglycine

More information

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration:

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration: PTEI STUTUE ydrolysis of proteins with aqueous acid or base yields a mixture of free amino acids. Each type of protein yields a characteristic mixture of the ~ 20 amino acids. AMI AIDS Zwitterion (dipolar

More information

MULTIDOCK V1.0. Richard M. Jackson Biomolecular Modelling Laboratory Imperial Cancer Research Fund 44 Lincoln s Inn Fields London WC2A 3PX

MULTIDOCK V1.0. Richard M. Jackson Biomolecular Modelling Laboratory Imperial Cancer Research Fund 44 Lincoln s Inn Fields London WC2A 3PX MULTIDOCK V1.0 Richard M. Jackson Biomolecular Modelling Laboratory Imperial Cancer Research Fund 44 Lincoln s Inn Fields London WC2A 3PX 1.0 Description The program MULTIDOCK was developed to provide

More information

3D-QSAR Studies on Angiotensin-Converting Enzyme (ACE) Inhibitors: a Molecular Design in Hypertensive Agents

3D-QSAR Studies on Angiotensin-Converting Enzyme (ACE) Inhibitors: a Molecular Design in Hypertensive Agents 952 Bull. Korean Chem. Soc. 2005, Vol. 26, No. 6 Amor A. San Juan and Seung Joo Cho 3D-QSAR Studies on Angiotensin-Converting Enzyme (ACE) Inhibitors: a Molecular Design in Hypertensive Agents Amor A.

More information

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1. PDZK1 constru cts Amino acids MW [kda] KD [μm] PEPT2-CT- FITC KD [μm] NHE3-CT- FITC KD [μm] PDZK1-CT-

More information

Molecular Modeling Study of Some Anthelmintic 2-phenyl Benzimidazole-1- Acetamides as β-tubulin Inhibitor

Molecular Modeling Study of Some Anthelmintic 2-phenyl Benzimidazole-1- Acetamides as β-tubulin Inhibitor Sawant et al : Molecular Modeling Study of Some Anthelmintic 2-phenyl Benzimidazole-1-Acetamides as -tubulin Inhibitor 1269 International Journal of Drug Design and Discovery Volume 5 Issue 1 January March

More information

Amino Acid Side Chain Induced Selectivity in the Hydrolysis of Peptides Catalyzed by a Zr(IV)-Substituted Wells-Dawson Type Polyoxometalate

Amino Acid Side Chain Induced Selectivity in the Hydrolysis of Peptides Catalyzed by a Zr(IV)-Substituted Wells-Dawson Type Polyoxometalate Amino Acid Side Chain Induced Selectivity in the Hydrolysis of Peptides Catalyzed by a Zr(IV)-Substituted Wells-Dawson Type Polyoxometalate Stef Vanhaecht, Gregory Absillis, Tatjana N. Parac-Vogt* Department

More information

Advanced in silico drug design

Advanced in silico drug design Advanced in silico drug design RNDr. Martin Lepšík, Ph.D. Lecture: Advanced scoring Palacky University, Olomouc 2016 1 Outline 1. Scoring Definition, Types 2. Physics-based Scoring: Master Equation Terms

More information

Knowledge-based structure prediction of MHC class I bound peptides: a study of 23 complexes Ora Schueler-Furman 1,2, Ron Elber 2 and Hanah Margalit 1

Knowledge-based structure prediction of MHC class I bound peptides: a study of 23 complexes Ora Schueler-Furman 1,2, Ron Elber 2 and Hanah Margalit 1 Research Paper 549 Knowledge-based structure prediction of MHC class I bound peptides: a study of 23 complexes Ora Schueler-Furman 1,2, Ron Elber 2 and Hanah Margalit 1 Background: The binding of T-cell

More information

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 215 Structural and mechanistic insight into the substrate binding from the conformational

More information

Supporting Information

Supporting Information Supporting Information Micelle-Triggered b-hairpin to a-helix Transition in a 14-Residue Peptide from a Choline-Binding Repeat of the Pneumococcal Autolysin LytA HØctor Zamora-Carreras, [a] Beatriz Maestro,

More information