An Introduction to Animal Diversity

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "An Introduction to Animal Diversity"

Transcription

1 Chapter 32 An Introduction to Animal Diversity PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero

2 Overview: Welcome to Your Kingdom The animal kingdom Extends far beyond humans and other animals we may encounter Figure 32.1

3 Concept 32.1: Animal are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Several characteristics of animals Sufficiently define the group

4 Nutritional Mode Animals are heterotrophs That ingest their food

5 Cell Structure and Specialization Animals are multicellular eukaryotes Their cells lack cell walls

6 Their bodies are held together By structural proteins such as collagen Nervous tissue and muscle tissue Are unique to animals

7 Reproduction and Development Most animals reproduce sexually With the diploid stage usually dominating the life cycle

8 After a sperm fertilizes an egg The zygote undergoes cleavage, leading to the formation of a blastula The blastula undergoes gastrulation Resulting in the formation of embryonic tissue layers and a gastrula

9 Early embryonic development in animals 1 The zygote of an animal undergoes a succession of mitotic cell divisions called cleavage. 2 Only one cleavage stage the eight-cell embryo is shown here. 3 In most animals, cleavage results in the formation of a multicellular stage called a blastula. The blastula of many animals is a hollow ball of cells. Blastocoel Cleavage Cleavage 6 The endoderm of the archenteron develops into the tissue lining the animal s digestive tract. Zygote Eight-cell stage Blastocoel Blastula Cross section of blastula Endoderm 5 The blind pouch formed by gastrulation, called the archenteron, opens to the outside via the blastopore. Gastrula Ectoderm Gastrulation Figure 32.2 Blastopore 4 Most animals also undergo gastrulation, a rearrangement of the embryo in which one end of the embryo folds inward, expands, and eventually fills the blastocoel, producing layers of embryonic tissues: the ectoderm (outer layer) and the endoderm (inner layer).

10 All animals, and only animals Have Hox genes that regulate the development of body form Although the Hox family of genes has been highly conserved It can produce a wide diversity of animal morphology

11 Concept 32.2: The history of animals may span more than a billion years The animal kingdom includes not only great diversity of living species But the even greater diversity of extinct ones as well

12 The common ancestor of living animals May have lived 1.2 billion 800 million years ago May have resembled modern choanoflagellates, protists that are the closest living relatives of animals Single cell Stalk Figure 32.3

13 Was probably itself a colonial, flagellated protist Somatic cells Digestive cavity Reproductive cells Colonial protist, an aggregate of identical cells Hollow sphere of unspecialized cells (shown in cross section) Beginning of cell specialization Infolding Gastrula-like protoanimal Figure 32.4

14 Neoproterozoic Era (1 Billion 524 Million Years Ago) Early members of the animal fossil record Include the Ediacaran fauna Figure 32.5a, b (a) (b)

15 Paleozoic Era ( Million Years Ago) The Cambrian explosion Marks the earliest fossil appearance of many major groups of living animals Is described by several current hypotheses Figure 32.6

16 Mesozoic Era ( Million Years Ago) During the Mesozoic era Dinosaurs were the dominant terrestrial vertebrates Coral reefs emerged, becoming important marine ecological niches for other organisms

17 Cenozoic Era (65.5 Million Years Ago to the Present) The beginning of this era Followed mass extinctions of both terrestrial and marine animals Modern mammal orders and insects Diversified during the Cenozoic

18 Concept 32.3: Animals can be characterized by body plans One way in which zoologists categorize the diversity of animals Is according to general features of morphology and development A group of animal species That share the same level of organizational complexity is known as a grade

19 The set of morphological and developmental traits that define a grade Are generally integrated into a functional whole referred to as a body plan

20 Symmetry Animals can be categorized According to the symmetry of their bodies, or lack of it

21 Some animals have radial symmetry Like in a flower pot (a) Radial symmetry. The parts of a radial animal, such as a sea anemone (phylum Cnidaria), radiate from the center. Any imaginary slice through the central axis divides the animal into mirror images. Figure 32.7a

22 Some animals exhibit bilateral symmetry Or two-sided symmetry (b) Bilateral symmetry. A bilateral animal, such as a lobster (phylum Arthropoda), has a left side and a right side. Only one imaginary cut divides the animal into mirror-image halves. Figure 32.7b

23 Bilaterally symmetrical animals have A dorsal (top) side and a ventral (bottom) side A right and left side Anterior (head) and posterior (tail) ends Cephalization, the development of a head

24 Tissues Animal body plans Also vary according to the organization of the animal s tissues Tissues Are collections of specialized cells isolated from other tissues by membranous layers

25 Animal embryos Form germ layers, embryonic tissues, including ectoderm, endoderm, and mesoderm Diploblastic animals Have two germ layers Triploblastic animals Have three germ layers

26 Body Cavities In triploblastic animals A body cavity may be present or absent

27 A true body cavity Is called a coelom and is derived from mesoderm Coelom Body covering (from ectoderm) (a) Coelomate. Coelomates such as annelids have a true coelom, a body cavity completely lined by tissue derived from mesoderm. Tissue layer lining coelom and suspending internal organs (from mesoderm) Digestive tract (from endoderm) Figure 32.8a

28 A pseudocoelom Is a body cavity derived from the blastocoel, rather than from mesoderm Body covering (from ectoderm) (b) Pseudocoelomate. Pseudocoelomates such as nematodes have a body cavity only partially lined by tissue derived from mesoderm. Pseudocoelom Muscle layer (from mesoderm) Digestive tract (from ectoderm) Figure 32.8b

29 Organisms without body cavities Are considered acoelomates (c) Acoelomate. Acoelomates such as flatworms lack a body cavity between the digestive tract and outer body wall. Body covering (from ectoderm) Tissuefilled region (from mesoderm) Digestive tract (from endoderm) Figure 32.8c

30 Protostome and Deuterostome Development Based on certain features seen in early development Many animals can be categorized as having one of two developmental modes: protostome development or deuterostome development

31 Cleavage In protostome development Cleavage is spiral and determinate In deuterostome development Cleavage is radial and indeterminate Protostome development (examples: molluscs, annelids, arthropods) Eight-cell stage Deuterostome development (examples: echinoderms, chordates) Eight-cell stage (a) Cleavage. In general, protostome development begins with spiral, determinate cleavage. Deuterostome development is characterized by radial, indeterminate cleavage. Spiral and determinate Radial and indeterminate Figure 32.9a

32 Coelom Formation In protostome development The splitting of the initially solid masses of mesoderm to form the coelomic cavity is called schizocoelous development In deuterostome development Formation of the body cavity is described as enterocoelous development Figure 32.9b Mesoderm Schizocoelous: solid masses of mesoderm split and form coelom Archenteron Coelom Blastopore Coelom Blastopore Mesoderm Enterocoelous: folds of archenteron form coelom (b) Coelom formation. Coelom formation begins in the gastrula stage. In protostome development, the coelom forms from splits in the mesoderm (schizocoelous development). In deuterostome development, the coelom forms from mesodermal outpocketings of the archenteron (enterocoelous development).

33 Fate of the Blastopore In protostome development The blastopore becomes the mouth In deuterostome development The blastopore becomes the anus Anus Mouth Digestive tube Figure 32.9c Mouth Mouth develops from blastopore Anus Anus develops from blastopore

34 Concept 32.4: Leading hypotheses agree on major features of the animal phylogenetic tree Zoologists currently recognize about 35 animal phyla The current debate in animal systematics Has led to the development of two phylogenetic hypotheses, but others exist as well

35 Porifera Cnidaria Ctenophora Phoronida Ectoprocta Brachiopoda Echinodermata Chordata Platyhelminthes Mollusca Annelida Arthropoda Rotifera Nemertea Nematoda One hypothesis of animal phylogeny based mainly on morphological and developmental comparisons Radiata Deuterostomia Protostomia Bilateria Eumetazoa Metazoa Figure Ancestral colonial flagellate

36 Calcarea Silicarea Ctenophora Cnidaria Echinodermata Chordata Brachiopoda Phoronida Ectoprocta Platyhelminthes Nemertea Mollusca Annelida Rotifera Nematoda Arthropoda One hypothesis of animal phylogeny based mainly on molecular data Radiata Porifera Deuterostomia Lophotrochozoa Ecdysozoa Bilateria Eumetazoa Metazoa Figure Ancestral colonial flagellate

37 Points of Agreement All animals share a common ancestor Sponges are basal animals Eumetazoa is a clade of animals with true tissues

38 Most animal phyla belong to the clade Bilateria Vertebrates and some other phyla belong to the clade Deuterostomia

39 Disagreement over the Bilaterians The morphology-based tree Divides the bilaterians into two clades: deuterostomes and protostomes In contrast, several recent molecular studies Generally assign two sister taxa to the protostomes rather than one: the ecdysozoans and the lophotrochozoans

40 Ecdysozoans share a common characteristic They shed their exoskeletons through a process called ecdysis Figure 32.12

41 Lophotrochozoans share a common characteristic Called the lophophore, a feeding structure Other phyla Go through a distinct larval stage called a trochophore larva Apical tuft of cilia Mouth Figure 32.13a, b Anus (a) An ectoproct, a lophophorate (b) Structure of trochophore larva

42 Future Directions in Animal Systematics Phylogenetic studies based on larger databases Will likely provide further insights into animal evolutionary history

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

Introduction to Animal Kingdom. Invertebrates and Vertebrates

Introduction to Animal Kingdom. Invertebrates and Vertebrates Introduction to Animal Kingdom Invertebrates and Vertebrates Introduction To Animals Vertebrate animal with a backbone. Invertebrate animal without a backbone; includes more than 95% of all animal species

More information

Animal Origins and Evolution

Animal Origins and Evolution Animal Origins and Evolution Common Features of Animals multicellular heterotrophic motile Sexual reproduction, embryo Evolution of Animals All animals are multicellular and heterotrophic, which means

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen What Is an Animal? Section 25.1 Typical Animal Characteristics Biology II Mrs. Michaelsen I. Characteristics of Animals A. All animals are eukaryotic, multicellular, have ways of moving to reproduce, obtain

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

1/30/2009. Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display.

1/30/2009. Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 9 Architectural Pattern of an Animal New Designs for Living Zoologists recognize 34 major phyla of living multicellular animals Survivors of around 100 phyla that appeared 600 million years ago

More information

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University The Evolution of Animal Diversity Dr. Stephen J. Salek Biology 130 Fayetteville State University Create your own animal? Start with a basic plant. Make the plant into a simple animal such as a worm. Consider:

More information

Kingdom Animalia - Evolution of Form and Function by Dana Krempels

Kingdom Animalia - Evolution of Form and Function by Dana Krempels Kingdom Animalia - Evolution of Form and Function by Dana Krempels A. Identification of synapomorphies defining major animal taxa Note the characters in the table below. Each should be placed on the phylogenetic

More information

The Radiata-Bilateria split. Second branching in the evolutionary tree

The Radiata-Bilateria split. Second branching in the evolutionary tree The Radiata-Bilateria split Second branching in the evolutionary tree Two very important characteristics are used to distinguish between the second bifurcation of metazoans Body symmetry Germinal layers

More information

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal?

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? Workshop: The Evolution of Animalia by Dana Krempels Perhaps even more than the other Eukarya, Animalia is characterized by a distinct progression of complexity in form and function as one moves from the

More information

Overview of Animal Diversity

Overview of Animal Diversity Chapter 32 CHAPTER Overview of Animal Diversity Chapter Outline 32.1 Some General Features of Animals 32.2 Evolution of the Animal Body Plan 32.3 The Classification of Animals 32.4 The Roots of the Animal

More information

Biology 340 Comparative Embryology Lecture 4 Dr. Stuart Sumida. Overview of Pre-Metazoan. and Protostome Development (Insects)

Biology 340 Comparative Embryology Lecture 4 Dr. Stuart Sumida. Overview of Pre-Metazoan. and Protostome Development (Insects) Biology 340 Comparative Embryology Lecture 4 Dr. Stuart Sumida Overview of Pre-Metazoan and Protostome Development (Insects) Plants Fungi Animals In1998 fossilized animal embryos were reported from the

More information

Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA. (More Similar to Fungi than Plants)

Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA. (More Similar to Fungi than Plants) Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA (More Similar to Fungi than Plants) ANIMAL SIMILARITIES PLANTS FUNGI Cell Walls - Immobile - Often need - substrate - Heterotrophs

More information

31.1 What Evidence Indicates the Animals Are Monophyletic?

31.1 What Evidence Indicates the Animals Are Monophyletic? 31.1 What Evidence Indicates the Animals Are Monophyletic? What traits distinguish the animals from the other groups of organisms? In contrast to the Bacteria, Archaea, and most microbial eukaryotes, all

More information

If done properly, is based on evolutionary relationships (at least to some extent). Kingdom -> Phylum -> Class -> Order -> Family -> Genus -> species

If done properly, is based on evolutionary relationships (at least to some extent). Kingdom -> Phylum -> Class -> Order -> Family -> Genus -> species Taxonomy. (Your text makes a real mess of this. Use these notes as a guide through the book.) Study of classifying and naming organisms. Founded by Linnaeus. If done properly, is based on evolutionary

More information

Questions in developmental biology. Differentiation Morphogenesis Growth/apoptosis Reproduction Evolution Environmental integration

Questions in developmental biology. Differentiation Morphogenesis Growth/apoptosis Reproduction Evolution Environmental integration Questions in developmental biology Differentiation Morphogenesis Growth/apoptosis Reproduction Evolution Environmental integration Representative cell types of a vertebrate zygote => embryo => adult differentiation

More information

What defines the zygote, the blastula, and the gastrula? Draw pictures.

What defines the zygote, the blastula, and the gastrula? Draw pictures. What makes a multicellular organism multicellular? a) Multiple cells b) Multiple cells that work together c) Specialized cells d) Multiple specialized cells that work together What defines the zygote,

More information

An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora. Reference: Chapter 33.1, 33.2

An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora. Reference: Chapter 33.1, 33.2 An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora Reference: Chapter 33.1, 33.2 Overview: Life Without a Backbone v Invertebrates are animals that lack a backbone

More information

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab)

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab) Kingdom Animalia Kingdom Animalia Cell Number: Multicellular with extensive specialization Cell Type: Eukaryotic Animal Cells (no cell wall) Food: Heterotrophic Carnivore (meat), Herbivore (plants), Omnivore

More information

An Introduction to the Invertebrates

An Introduction to the Invertebrates An Introduction to the Invertebrates Janet Moore New Hall, Cambridge niustrations by Raith Overhill Second Edition. :::.. CAMBRIDGE :: UNIVERSITY PRESS ~nts ao Paulo, Delhi rcss, New York._ MOO 586 List

More information

Class Webpage. Forms of Diversity. biol170/biol170syl.htm

Class Webpage. Forms of Diversity.  biol170/biol170syl.htm Class Webpage http://userwww.sfsu.edu/~efc/classes/ biol170/biol170syl.htm What is an animal? While there are exceptions, five criteria distinguish animals from other life forms. (1)Animals are multicellular,

More information

INTRODUCTION TO ANIMALS

INTRODUCTION TO ANIMALS CHAPTER 32 INTRODUCTION TO ANIMALS The diversity of animal life is staggering. Animals have adapted to Earth s lushest environments and to its harshest environments. This Sally Lightfoot crab, Grapsus

More information

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya Classification The three-domains Bacteria Archaea Eukarya The six-kingdom system Bacteria Archaea Protista Plantae Fungi Animalia The traditional five-kingdom system Monera Protista Plantae Fungi Animalia

More information

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015 What is an animal? Introduction to Animals Multicellular chemoorganoheterotrophs Eukaryotes that lack cell walls and chloroplasts Have mitochondria Are motile at some point in their lives Contain collagen

More information

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia What Is an Animal? What characteristics do all animals have? Animals come in many shapes, forms, and sizes. Scientists estimate that there are between 1 and 2 million species of animals! Some, like whales

More information

Ms. SASTRY 1 Chapter in class follow along lecture notes

Ms. SASTRY 1 Chapter in class follow along lecture notes Ms. SASTRY 1 Chapter 26 34 in class follow along lecture notes Chp 26 Origin of life: 1) When did earth form? 2) What is the order of evolution of life forms on earth? 3) What were their modes of nutrition

More information

Blastocoelomates. General Features. General Features. Phylogenetic Relationships. Phylogenetic Relationships

Blastocoelomates. General Features. General Features. Phylogenetic Relationships. Phylogenetic Relationships General Features Blastocoelomates 1. A large and heterogeneous group. a. also known as "Aschelminthes" - cavity worms. General Features b. Nearly any source you consult will have a different arrangement

More information

CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION. Section A: What is an animal?

CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION. Section A: What is an animal? CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION Section A: What is an animal? 1. Structure, nutrition, and life history define animals 2. The animal kingdom probably evolved from a colonial, flagellated protist

More information

Kingdom: Animals. AP Biology Common ancestor. Domain Eukarya. Domain Archaea. Domain Eubacteria

Kingdom: Animals. AP Biology Common ancestor. Domain Eukarya. Domain Archaea. Domain Eubacteria Kingdom: Animals Domain Eukarya Domain Eubacteria Domain Archaea Domain Eukarya 2007-2008 Common ancestor Animal Characteristics Heterotrophs must ingest others for nutrients Multicellular complex bodies

More information

Survey of the Phyla- Animalia, Invertebrates

Survey of the Phyla- Animalia, Invertebrates Survey of the Phyla- Animalia, Invertebrates The Kingdom Animalia is in the domain Eukarya and in the supergroup Unikonta. They are in the group Opisthkonta with fungi. Both groups have different unicellular

More information

THE EVOLUTION OF METAZOAN AXIAL PROPERTIES

THE EVOLUTION OF METAZOAN AXIAL PROPERTIES THE EVOLUTION OF METAZOAN AXIAL PROPERTIES Mark Q. Martindale Abstract Renewed interest in the developmental basis of organismal complexity, and the emergence of new molecular tools, is improving our ability

More information

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Animal Body Plans Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod Sponges Cnidaria, Ctenophora, Platyhelminthes Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Size Constraints

More information

Of all the kingdoms of organisms, the animal kingdom is the

Of all the kingdoms of organisms, the animal kingdom is the 26 1 Introduction to the Animal Kingdom Of all the kingdoms of organisms, the animal kingdom is the most diverse in appearance. Some animals are so small that they live on or inside the bodies of other

More information

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile Chapter 8 Key Concepts Sponges are asymmetric, sessile animals that filter food from the water circulating through their bodies. Sponges provide habitats for other animals. Cnidarians and ctenophores exhibit

More information

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria Protists Simple Eukaryotes Domain Bacteria Domain Archaebacteria Domain Eukaryotes Regents Biology 2006-2007 Common ancestor General characteristics Classification criteria eukaryotes not animal, plant

More information

Chapter 7. Marine Animals Without a Backbone

Chapter 7. Marine Animals Without a Backbone Chapter 7 Marine Animals Without a Backbone General Characteristics of Animals Multicellular, diploid organisms with tissues, organs or organ systems in most Heterotrophic Require oxygen for aerobic

More information

Developmental Biology Biology 4361

Developmental Biology Biology 4361 Developmental Biology Biology 4361 The Anatomical Tradition 2009 A hen is only an egg s way of making a new egg. Samuel Butler, 1885 The Anatomical Tradition - Overview What is developmental biology? How

More information

Classification: Evolution:

Classification: Evolution: Review for Final Exam Suggestions All material covered in the course is testable. The following are suggested topics to cover, but is not meant to be an exhaustive list. Topics that are not listed but

More information

Zoological Systematics & Taxonomy

Zoological Systematics & Taxonomy Name: PRE-LAB This lab is designed to introduce you to the basics of animal classification (systematics) and taxonomy of animals. This is a field that is constantly changing with the discovery of new animals,

More information

Lab 2 Phylum Porifera and phylum Cnidaria. Grantia. Phylum Porifera. Kingdom :- Animalia. Phylum:- Porifera. Class:- Calcarea. Order:- Leucosolenida

Lab 2 Phylum Porifera and phylum Cnidaria. Grantia. Phylum Porifera. Kingdom :- Animalia. Phylum:- Porifera. Class:- Calcarea. Order:- Leucosolenida Lab 2 Phylum Porifera and phylum Cnidaria Phylum Porifera Adults sessile and attached Radial symmetry or asymmetrical Multi-cellular ; loose aggregation of cells Skeleton made of collagen and spicules

More information

MOLLUSCAN AQUACULTURE - INTRODUCTION

MOLLUSCAN AQUACULTURE - INTRODUCTION 1 MOLLUSCAN AQUACULTURE - INTRODUCTION Mollusks have been cultured since the time of the Romans, who in particular, considered oysters a delicacy. The latest aquaculture production figures from FAO (see

More information

Chapter Study Guide Section 17-1 The Fossil Record (pages )

Chapter Study Guide Section 17-1 The Fossil Record (pages ) Name Class Date Chapter Study Guide Section 17-1 The Fossil Record (pages 417-422) Key Concepts What is the fossil record? What information do relative dating and radioactive dating provide about fossils?

More information

EVOLUTION OF COMPLEX LIFE FORMS

EVOLUTION OF COMPLEX LIFE FORMS 0.002 0.6 1.0 1.9 2.8 Ancestral humans Diversification of mammals Invasion of the land Diversification of animals Origin of the major eukaryotic groups Eukaryotic cells abundant Atmospheric oxygen plentiful

More information

Architectural Pattern of an animal. Chapter 9

Architectural Pattern of an animal. Chapter 9 Architectural Pattern of an animal Chapter 9 What is an animal? Levels of organization and organismal complexity 5 major levels of complexity Unicellular Metazoan? Tissue Organ Organ systems Levels of

More information

Kingdom. Phylum. Class. Order. Family. Genus. Species

Kingdom. Phylum. Class. Order. Family. Genus. Species 5.5 - Classification 5.5.1 - Outline the binomial system of nomenclature In this system, each species has two names - a noun and an adjective. The first is the genus, which starts with an upper case letter,

More information

The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17

The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17 Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) This section explains how fossils form and how they can be interpreted. It also describes the geologic time scale that is used

More information

Lab issue/rev. date 9/15/05. Evolving Trees. Title:

Lab issue/rev. date 9/15/05. Evolving Trees. Title: Copyright Cornell Institute for Biology Teachers, 2001. This work may be copied by the original recipient from CIBT to provide copies for users working under the direction of the original recipient. All

More information

Animal Phyla: A Summary. Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University

Animal Phyla: A Summary. Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University Animal Phyla: A Summary Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University Phylum Platyhelminthes The phylum consists of four classes Turbellaria

More information

History of Life on Earth The Geological Time- Scale

History of Life on Earth The Geological Time- Scale History of Life on Earth The Geological Time- Scale Agenda or Summary Layout The Geological Time-Scale 1 2 3 The Geological Time-Scale The Beginning of Life Cambrian Explosion The Geological Time-Scale

More information

Name Class Date. After you read this section, you should be able to answer these questions:

Name Class Date. After you read this section, you should be able to answer these questions: CHAPTER 14 3 Invertebrates SECTION Introduction to Animals BEFORE YOU READ After you read this section, you should be able to answer these questions: What structures and systems perform basic life functions

More information

DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO

DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO Name: Last KEY First ID# Lab. Date and Time Lab. TA Biological Sciences 1B Dr. Herrlinger Summer Sessions I 2000 Midterm 2 July 21, 2000 DO NOT OPEN EXAM UNTIL INSTRUCTED TO DO SO Multiple Choice Questions

More information

BIO 1130FF. Student Number: Seat Number. BIO 1130FF Final exam December 21, 2015 Multiple choice questions - Place your answers on the answer sheet

BIO 1130FF. Student Number: Seat Number. BIO 1130FF Final exam December 21, 2015 Multiple choice questions - Place your answers on the answer sheet BIO 1130FF Final exam December 21, 2015 Multiple choice questions - Place your answers on the answer sheet Student Number: Seat Number BIO 1130FF An Introduction to Organismal biology Final examination

More information

Chapter 18: Classification

Chapter 18: Classification Chapter 18: Classification Dichotomous Key A way to identify unknown organisms Contains major characteristics of groups of organisms Pairs of CONTRASTING descriptions 4. After each description key either

More information

Name: Date: ID: 3. What are some limitations to scientific models? - Most models include simplifications, approximations, and/or lack details

Name: Date: ID: 3. What are some limitations to scientific models? - Most models include simplifications, approximations, and/or lack details Name: Date: ID: 2 ND 9-WEEKS STUDY GUIDE Shared Answers Communication Skills 1. Define the term Scientific Model in your own terms. - A description of a system, theory, or phenomenon 2. List 5 things we

More information

What is a Cnidarian?

What is a Cnidarian? Invertebrate What is a Cnidarian? 9000 species of jellyfishes, corals, sea anemones, hydras Mostly marine animals Radially symmetrical One body opening Two layers of cells organized into tissues with specific

More information

Porifera Sponges Features:

Porifera Sponges Features: Porifera Sponges The Phylum Porifera consists only of sponges, which is unique since these animals are entirely aquatic; with 98% found only in marine environments and a small percentage found in freshwater

More information

PSI Biology Classification Classification

PSI Biology Classification Classification Classification Classification & Naming Classwork 1. What is the correct order of the current classification hierarchy, from most general to most specific? 2. Are two organisms in domain more or less closely

More information

Invertebrates 2. Cladograms. Cladograms. Cladograms. Cladistics example. Cladogram of Phyla covered in Bio 11

Invertebrates 2. Cladograms. Cladograms. Cladograms. Cladistics example. Cladogram of Phyla covered in Bio 11 Invertebrates 2 Cladogram of Phyla covered in Bio 11 Cladograms Cladograms are constructed using a method known as cladistics. This method analyzes a collection of heritable character data compiled by

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AP Exam Chapters 30, 31, 32 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A botanist discovers a new species of land plant with a dominant

More information

Kingdom Animalia: Phyla Porifera and Cnidaria

Kingdom Animalia: Phyla Porifera and Cnidaria Kingdom Animalia: Phyla Porifera and Cnidaria Essential Question(s): What are key characteristics to the animal kingdom? Objectives: 1. Students will be able to distinguish essential characteristics in

More information

Ph. Porifera and Ph. Cnidaria

Ph. Porifera and Ph. Cnidaria I. Phylum Porifera (sponges; pore bearer ) A. General characteristics 1. simplest animals 2. asymmetric 3. aquatic habitats a. typically marine 4. live alone or in colonies a. often members of reef habitats

More information

Science 316 Sample questions, exam 3. Sun

Science 316 Sample questions, exam 3. Sun Notes: This sample exam contains questions primarily relevant to the final 3 rd of the class (though some will also require remembering earlier material). Remember, however, that your final will be cumulative

More information

Dun dun dun dun dun watch out what may be lurking behind you, like a shark.its the AP Biology summer assignment! Name:

Dun dun dun dun dun watch out what may be lurking behind you, like a shark.its the AP Biology summer assignment! Name: Dun dun dun dun dun watch out what may be lurking behind you, like a shark.its the AP Biology summer assignment! Name: Due Date: September 10 th & 11 th, 2014 Mrs. Amanda J. Smith: Amanda.smith@lcps.org

More information

Chapter 10 Development and Differentiation

Chapter 10 Development and Differentiation Part III Organization of Cell Populations Chapter Since ancient times, people have wondered how organisms are formed during the developmental process, and many researchers have worked tirelessly in search

More information

introduction to the Animal Kingdom (pages $55-560) Formulating a Definition: Building Vocabulary Skills

introduction to the Animal Kingdom (pages $55-560) Formulating a Definition: Building Vocabulary Skills STUDY GUIDE CHAPTER Sponges, Cnidarians, and Unsegmented Worms Section 26-1 introduction to the Animal Kingdom (pages $55-560) SECTION REVIEW With this section you began your study of the animal kingdom.

More information

Bilateria. Radiata. Eumetazoa. Parazoa no true tissues. Multicellularity

Bilateria. Radiata. Eumetazoa. Parazoa no true tissues. Multicellularity Quiz 1. What does porifera mean? 2. Class Hexactinellida's skeletal structure is made out of what material? 3. Characterized as large openings where water comes out 4. Cells responsible for the circulating

More information

Invertebrates. Careers in Biology. Chapter 24 Introduction to Animals. Chapter 25 Worms and Mollusks

Invertebrates. Careers in Biology. Chapter 24 Introduction to Animals. Chapter 25 Worms and Mollusks Invertebrates Chapter 24 Introduction to Animals Animal phylogeny is determined in part by animal body plans and adaptations. Chapter 25 Worms and Mollusks Worms and mollusks have evolved to have a variety

More information

Chapter 33 Invertebrates

Chapter 33 Invertebrates Chapter 33 Invertebrates Multiple-Choice Questions 1) Which cells in a sponge are primarily responsible for trapping and removing food particles from circulating water? A) choanocytes B) mesoglea cells

More information

Unit 9: Animals & Plants Guided Reading Questions (100 pts total)

Unit 9: Animals & Plants Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

Diversity in Living Organisms

Diversity in Living Organisms Chapter-7 Diversity in Living Organisms Biodiversity means the diversity of life forms. It is a word commonly used to refer to the variety of life forms found in a particular region. Classification helps

More information

Chapter 12. Life of the Paleozoic

Chapter 12. Life of the Paleozoic Chapter 12 Life of the Paleozoic Paleozoic Invertebrates Representatives of most major invertebrate phyla were present during Paleozoic, including sponges, corals, bryozoans, brachiopods, mollusks, arthropods,

More information

1. If a eukaryotic cell has a single set of chromosomes, it is called A. haploid B. diploid C. polypoid

1. If a eukaryotic cell has a single set of chromosomes, it is called A. haploid B. diploid C. polypoid Reproduction 1. If a eukaryotic cell has a single set of chromosomes, it is called A. haploid B. diploid C. polypoid 2. Which of the following cell functions are maintained by cell division? A. growth,

More information

Bell Work. identify the phylum that each character belongs to. Tuesday, February 19, 13

Bell Work. identify the phylum that each character belongs to. Tuesday, February 19, 13 Bell Work identify the phylum that each character belongs to Bell Work identify the phylum that each character belongs to Porifera Bell Work identify the phylum that each character belongs to Porifera

More information

Evolution and diversity of organisms

Evolution and diversity of organisms Evolution and diversity of organisms Competency Levels - 7 3.1.1 Uses the theories of origin of life and natural selection to analyze the process of evolution of life 3.2.1 Constructs hierarchy of taxa

More information

Biology B. There are no objectives for this lesson.

Biology B. There are no objectives for this lesson. Biology B Course Summary This is the second of two courses that comprise Biology. This course is designed to prepare the student to confidently enter and complete college-level biology courses. The Glencoe

More information

Using A Dichotomous Key For Invertebrate Phyla

Using A Dichotomous Key For Invertebrate Phyla Using A Dichotomous Key For Phyla Free PDF ebook Download: Using A Dichotomous Key For Phyla Download or Read Online ebook using a dichotomous key for invertebrate phyla in PDF Format From The Best User

More information

9/4/2015 INDUCTION CHAPTER 1. Neurons are similar across phyla Thus, many different model systems are used in developmental neurobiology. Fig 1.

9/4/2015 INDUCTION CHAPTER 1. Neurons are similar across phyla Thus, many different model systems are used in developmental neurobiology. Fig 1. INDUCTION CHAPTER 1 Neurons are similar across phyla Thus, many different model systems are used in developmental neurobiology Fig 1.1 1 EVOLUTION OF METAZOAN BRAINS GASTRULATION MAKING THE 3 RD GERM LAYER

More information

1. In regards to shoot systems, which of the following is NOT TRUE?

1. In regards to shoot systems, which of the following is NOT TRUE? General Biology Summer 2014 Exam I Sample Questions 1. In regards to shoot systems, which of the following is NOT TRUE? a. Leaves attach to stems at nodes b. Elongation of the internodes accounts for most

More information

1. by far, the largest and most diverse kingdom. more mitochondria than cells of any other kingdom need much more energy, much more active

1. by far, the largest and most diverse kingdom. more mitochondria than cells of any other kingdom need much more energy, much more active What is an Animal? Animals: General Characteristics 1. by far, the largest and most diverse kingdom 2. eukaryote cells eucaryotic heterotrophs no chloroplasts lack cell walls around cells aerobic require

More information

GENERAL BIOLOGY II - BIOLOGY units (UC:CSU transferable) Section 0410 Fall 2015 Professor: Patricia Zuk, PhD

GENERAL BIOLOGY II - BIOLOGY units (UC:CSU transferable) Section 0410 Fall 2015 Professor: Patricia Zuk, PhD GENERAL BIOLOGY II - BIOLOGY 007 5.00 units (UC:CSU transferable) Section 0410 Fall 2015 Professor: Patricia Zuk, PhD email: zukp@wlac.edu LECTURE: MSA Rm. 303 TTH 9:35am 11:00 am LABORATORY: MSA Rm. 303

More information

Study Guide. Biology 2101B. Science. Biodiversity. Adult Basic Education. Biology 2101A. Prerequisite: Credit Value: 1

Study Guide. Biology 2101B. Science. Biodiversity. Adult Basic Education. Biology 2101A. Prerequisite: Credit Value: 1 Adult Basic Education Science Biodiversity Prerequisite: Biology 2101A Credit Value: 1 Text: Biology. Bullard, Chetty, et al; McGraw-Hill Ryerson, 2003. Biology Concentration Biology 1101 Biology 2101A

More information

Section 17 1 The Fossil Record (pages )

Section 17 1 The Fossil Record (pages ) Name Class Date Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) This section explains how fossils form and how they can be interpreted. It also describes the geologic time

More information

Chapter 10. Classification and Phylogeny of Animals. Order in Diversity. Hierarchy of taxa. Table Linnaeus introduced binomial nomenclature

Chapter 10. Classification and Phylogeny of Animals. Order in Diversity. Hierarchy of taxa. Table Linnaeus introduced binomial nomenclature Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 10 Classification and Phylogeny of Animals Order in Diversity History Systematic zoologists have three

More information

Chapter 1 Biology: Exploring Life

Chapter 1 Biology: Exploring Life Chapter 1 Biology: Exploring Life PowerPoint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Figure 1.0_1 Chapter 1:

More information

BIOLOGY. Classification & Phylogeny. Slide 1 / 92. Slide 2 / 92. Slide 3 / 92. Vocabulary Click on each word below to go to the definition.

BIOLOGY. Classification & Phylogeny. Slide 1 / 92. Slide 2 / 92. Slide 3 / 92. Vocabulary Click on each word below to go to the definition. Slide 1 / 92 Slide 2 / 92 BIOLOGY Classification & Phylogeny April 2013 www.njctl.org Vocabulary Click on each word below to go to the definition. Slide 3 / 92 acoelomate angiosperm bilateral symmetry

More information

Invertebrates. Chapter 33. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Invertebrates. Chapter 33. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 33 Invertebrates PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Fig.

More information

C. Body is platelike, no symmetry, organs, muscular or nervous systems present. D. 2-3 mm E. marine F. glide over food and secrete digestive enzyme an

C. Body is platelike, no symmetry, organs, muscular or nervous systems present. D. 2-3 mm E. marine F. glide over food and secrete digestive enzyme an Chapter 9 (multicellularity) I. Similarities A. cells are grouped B. groups of cells are specialized for various functions C. All cells in an organism is interdependent. II. Multicelled life appeared ~

More information

Sponge and Cnidarian Review

Sponge and Cnidarian Review Name Period Date Sponge and Cnidarian Review Matching On the lines provided, write the letter of the definition that matches each term. 1. Invertebrate 2. Filter feeder 3. Asymmetry 4. Radial 5. Medusa

More information

Meiosis and Sexual Life Cycles

Meiosis and Sexual Life Cycles Chapter 13 Meiosis and Sexual Life Cycles PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Development. 27 April 2017

Development. 27 April 2017 Development 27 April 2017 Development Development in multicellular organisms allow for cells and organ structures with specialized functions Development occurs at many points in the life cycle of an animal

More information

Protist Classification the Saga Continues

Protist Classification the Saga Continues Protist Classification the Saga Continues Learning Objectives Explain what a protist is. Describe how protists are related to other eukaryotes. What Are Protists? Photosynthetic Motile Unicellular Multicellular

More information

10.2 Sexual Reproduction and Meiosis

10.2 Sexual Reproduction and Meiosis 10.2 Sexual Reproduction and Meiosis There are thousands of different species of organisms. Each species produces more of its own. A species of bacteria splits to make two identical bacteria. A eucalyptus

More information

Chapter 13- Reproduction, Meiosis, and Life Cycles. Many plants and other organisms depend on sexual reproduction.

Chapter 13- Reproduction, Meiosis, and Life Cycles. Many plants and other organisms depend on sexual reproduction. Chapter 13- Reproduction, Meiosis, and Life Cycles Many plants and other organisms depend on sexual reproduction. Flowers are the sexual reproductive organ systems of angiosperms. Sexual reproduction gametes

More information

5/4/05 Biol 473 lecture

5/4/05 Biol 473 lecture 5/4/05 Biol 473 lecture animals shown: anomalocaris and hallucigenia 1 The Cambrian Explosion - 550 MYA THE BIG BANG OF ANIMAL EVOLUTION Cambrian explosion was characterized by the sudden and roughly simultaneous

More information

Arthropoda ARTHRO JOINTED PODA FEET

Arthropoda ARTHRO JOINTED PODA FEET Arthropoda ARTHRO JOINTED PODA FEET The arthropods are a group of animals which has attained the greatest biological success largest number of species and individuals and occupy the greatest number of

More information

Biodiversity. The Road to the Six Kingdoms of Life

Biodiversity. The Road to the Six Kingdoms of Life Biodiversity The Road to the Six Kingdoms of Life How the 6 kingdoms came about At first, only two kingdoms were recognized Then Haeckel proposed a third kingdom Protista (where protists had both plant

More information

BIOLOGY II (BIO1201) SYLLABUS

BIOLOGY II (BIO1201) SYLLABUS New York City College of Technology School of Arts and Sciences Department of Biological Sciences BIOLOGY II (BIO1201) SYLLABUS Course Information Course Title: Biology II (Lecture and Laboratory) Course

More information

The Origin of Species

The Origin of Species Chapter 24 The Origin of Species PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information