Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?"

Transcription

1 Animals What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

2 What synapomorphies unite Animals Multicellular Heterotrophs (Metazoans)? Obtain organic & inorganic compounds by ingestion Move under their own power at some point in their life cycle

3 Animals were assembled! Evolved from a diverse, paraphyletic group: PROTISTS Protists evolved from Archaeans, and acquired some useful bacteria along the way.

4 Phylogeny of Eukarya & Protists Based on a few important morphological synapomorphies & growing DNA synapomorphies

5 How did Endomembrane system develop from prokaryotes? Invagination of plasma membrane Nuclear envelope ER Golgi Transport vessicles This continues to happen in Protist groups today

6 How did other organelles Cooperating Prokaryotes Endosymbionts Mitochondria Only organelles with: Their own genome Their own replication & transcription machinery Reproduction via fission, independent of cell cycle Double membrane develop?

7 Bacterial lineages Mitochondria

8 Phylogeny of Eukarya & Protists Based on a few important morphological synapomorphies & growing DNA synapomorphies

9 Where do Animals belong? DNA synapomorphies unite Animals & Fungi Both synthesize chitin Single, posterior Flagella of fungi gametes is similar to that of Animal gametes Use same energy storage molecule: glycogen What do plants use to store energy?

10 Clicker Q Which node indicates the MRCA of Land Plants & Fungi?

11 Probable evolution of Animals From single celled or colonial Choanoflagellate ancestor Formation of colonies Specialization of cells Interdependence of cells

12 DNA sequence; Animal specific proteins (collagen; adherins) found in choanoflagellates Synapomorphies Morphologically identical to Sponge collar cells Collar cells also found in basal Animals; never in Protists, Plants or Fungi

13 Typical Animal Life Cycle Most are 2n & reproduce sexually Diploid (2n) stage is dominant Tissue differentiation Ectoderm Endoderm Structures that produce gametes are contained within sporophyte

14 Main avenues of diversification Changes of body plan Number & type of tissue layers (specialized cells) Plane of symmetry Presence & type of body cavity Early developmental changes Increased cephalization & organ system complexity

15 Animal Phylogeny

16 Body plan shifts Symmetry Asymmetry -> Radial symmetry -> Bilateral symmetry

17 True Tissues True tissues (specialization of cells) 1. Simple epithelial tissue - Porifera 2. Diploblasts ( two sprouts ) - Cnidaria, Ctenophore Ectoderm Endoderm 3. Triploblasts - Bilateralia Addition of mesoderm (Becomes muscle & organs)

18 Evolution of the Body Cavity Coelom Creates internal chamber for nutrient & O 2 circulation Allows organs to move independently of each other Allows body movement via manipulation of hydrostatic pressure

19 Acoelomic No Body Cavity 3 tissue types, addition of mesoderm No body cavity; no space between digestive tube and specialized organs E.g. Flatworms

20 Pseudo body cavity Pseudocoelom: incomplete lining of body cavity by mesoderm E.g. Nematodes (round worms)

21 True Body Cavity True Coelom (Eucoelom) E.g. Annelids, Echinoderms, Chordates, Molluscs, Arthropods

22 Developmental differences Cell cleavage pattern Spiral - P Radial - D Gastrulation: gut formation Pore becomes mouth - P Pore becomes anus - D Coelom formation As independent block of tissue - P As eversion of endoderm - D

23 Diverse feeding modes Suspension Deposit Mass Fluid

24 Diverse food choices Adaptations for food acquisition Herbivores Carnivores Omnivores Detritivores Predators Parasites Endo & ecto

25 Animal Phylogeny

26 Protostome groups Ecdysozoa - growth by molting (ecdysis) Lophotrochozoa - growth by incremental additions

27 Defining characters Ecdysozoa - growth by molting Lophotrochozoa use cilia Lophophore: specialized feeding structure Trocophore larva: feeding & dispersal stage

28 Most Animals are Protostomes Arthropoda Insecta Chelicerates Crustaceans Mollusca

29 Coelom is reduced & reinvented Primary function: hydrostatic skeleton & space for circulating fluids In speciose groups, these jobs are absorbed by novel structures Arthropods: exoskeleton & muscles; hemocoel Molluscs: foot; visceral mass contains organs & circulates fluids

30 Water to Land Protostomes made the transition, but did so many times (many lineages) Necessary adaptations: Exchange gases in air vs. water Avoid desiccation Move in high gravity environment Once these appeared, diversification was rapid. Why? Protostomes move to land ~ 465 Mya, but first Vertebrates don t invade land until 360 Mya ~ 100 My of ecological opportunity on land

31 Further diversification Feeding adaptations for food gathering or capture Moving musculoskeletal systems Reproducing dispersing gametes protecting gametes & offspring preventing desiccation

32 Feeding Modification of mouthparts or appendages Allow all types of feeding Ecdysis allows juveniles & adults to specialize on different foods

33 Moving Determined by type of skeleton & appendages: Hydrostatic Ecto Endo

34 Sexual Reproduction External (sessile adults) or internal (mobile adults) Asexual (parthenogenic, fragmenting, splitting lengthwise) Metamorphosis Typical of taxa with sessile adults; dispersal stage Desiccation-resistant eggs membrane-bound (multiple terrestrial Arthropoda)

35 Porifera (Sponges) No symmetry No true tissues No nerves, no muscle, no body cavity, no skeleton; mixed layer of specialized cells Suspension feeders Hermaphrodites (most are sequential)

36 Cnidarians & Ctenophores Corals, jellyfish, anemones Radial symmetry True Tissues! Cnidocytes for prey capture Gastrovascular cavity In & out tubes are same Hydrostatic skeleton Reproductive system Gonads (testes, ovaries)

37 Lophotrochozoans

38 Ecdysozoans

39 Arthropoda

40 Nematoda

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Welcome to Your Kingdom The animal kingdom

More information

Animal Origins and Evolution

Animal Origins and Evolution Animal Origins and Evolution Common Features of Animals multicellular heterotrophic motile Sexual reproduction, embryo Evolution of Animals All animals are multicellular and heterotrophic, which means

More information

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University The Evolution of Animal Diversity Dr. Stephen J. Salek Biology 130 Fayetteville State University Create your own animal? Start with a basic plant. Make the plant into a simple animal such as a worm. Consider:

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya Classification The three-domains Bacteria Archaea Eukarya The six-kingdom system Bacteria Archaea Protista Plantae Fungi Animalia The traditional five-kingdom system Monera Protista Plantae Fungi Animalia

More information

Chapter 32 Intro to Animals. Image from:

Chapter 32 Intro to Animals. Image from: Chapter 32 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Animals Invertebrates (animals without a backbone) Porifera Cnidaria Worms Mollusks Echinoderms Arthropods Animals

More information

Chapter 8-9 Intro to Animals. Image from:

Chapter 8-9 Intro to Animals. Image from: Chapter 8-9 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Zoology Definition: the scientific study of the behavior, structure, physiology, classification, and distribution

More information

3. Choanoflagellates resemble what? What is the significance of this resemblance?

3. Choanoflagellates resemble what? What is the significance of this resemblance? I. Animal Diversity 1. What are some basic characteristics of the animal kingdom? What characteristics make them different from plants? - Eukaryotic, heterotrophic (we don t make our own food), we store

More information

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata Eukaryote Phylogeny most protozoans, brown algae, & water molds Excavata Chromalveolata Rhizaria Plantae Amoebozoa Animalia Fungi cpsts. w/ 2 memb. chitin, hyphae glycogen eukaryotic cells (nucleus, etc.)

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015 What is an animal? Introduction to Animals Multicellular chemoorganoheterotrophs Eukaryotes that lack cell walls and chloroplasts Have mitochondria Are motile at some point in their lives Contain collagen

More information

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen What Is an Animal? Section 25.1 Typical Animal Characteristics Biology II Mrs. Michaelsen I. Characteristics of Animals A. All animals are eukaryotic, multicellular, have ways of moving to reproduce, obtain

More information

Introduction to Animal Kingdom. Invertebrates and Vertebrates

Introduction to Animal Kingdom. Invertebrates and Vertebrates Introduction to Animal Kingdom Invertebrates and Vertebrates Introduction To Animals Vertebrate animal with a backbone. Invertebrate animal without a backbone; includes more than 95% of all animal species

More information

Chapter 33: Invertebrates

Chapter 33: Invertebrates Name Period Chapters 31, 32, and 33 should be considered as a single unit, and you should try to put all of them together in a single conceptual framework. Due to the scope of our course, you are likely

More information

An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora. Reference: Chapter 33.1, 33.2

An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora. Reference: Chapter 33.1, 33.2 An Introduction to the Invertebrates, Part One Phyla Placozoa, Porifera, Cnidaria, Ctenophora Reference: Chapter 33.1, 33.2 Overview: Life Without a Backbone v Invertebrates are animals that lack a backbone

More information

31.1 What Evidence Indicates the Animals Are Monophyletic?

31.1 What Evidence Indicates the Animals Are Monophyletic? 31.1 What Evidence Indicates the Animals Are Monophyletic? What traits distinguish the animals from the other groups of organisms? In contrast to the Bacteria, Archaea, and most microbial eukaryotes, all

More information

Chapter 7. Marine Animals Without a Backbone

Chapter 7. Marine Animals Without a Backbone Chapter 7 Marine Animals Without a Backbone General Characteristics of Animals Multicellular, diploid organisms with tissues, organs or organ systems in most Heterotrophic Require oxygen for aerobic

More information

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab)

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab) Kingdom Animalia Kingdom Animalia Cell Number: Multicellular with extensive specialization Cell Type: Eukaryotic Animal Cells (no cell wall) Food: Heterotrophic Carnivore (meat), Herbivore (plants), Omnivore

More information

What defines the zygote, the blastula, and the gastrula? Draw pictures.

What defines the zygote, the blastula, and the gastrula? Draw pictures. What makes a multicellular organism multicellular? a) Multiple cells b) Multiple cells that work together c) Specialized cells d) Multiple specialized cells that work together What defines the zygote,

More information

Chapter 24 Introduction to Animals

Chapter 24 Introduction to Animals 1 Chapter 24 Introduction to Animals I. Animal characteristics A. General Animal Features Multicellular B. Feeding and Digestion a. acquire nutrients from various sources obtaining nutrients unique to

More information

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile Chapter 8 Key Concepts Sponges are asymmetric, sessile animals that filter food from the water circulating through their bodies. Sponges provide habitats for other animals. Cnidarians and ctenophores exhibit

More information

Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA. (More Similar to Fungi than Plants)

Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA. (More Similar to Fungi than Plants) Natural Sciences 360 Legacy of Life Lecture 07 Dr. Stuart S. Sumida ANIMALIA (More Similar to Fungi than Plants) ANIMAL SIMILARITIES PLANTS FUNGI Cell Walls - Immobile - Often need - substrate - Heterotrophs

More information

The Animals, or Metazoa. Approximate proportions of animal species presently known; The true diversity of animals may be more than 90% Arthropods

The Animals, or Metazoa. Approximate proportions of animal species presently known; The true diversity of animals may be more than 90% Arthropods The Animals, or Metazoa Are some of the best-studied organisms Comprise over a million known species Originated c. the Cambrian (~550 MYA) Most animal phyla are marine; however, due to the diversity of

More information

introduction to the Animal Kingdom (pages $55-560) Formulating a Definition: Building Vocabulary Skills

introduction to the Animal Kingdom (pages $55-560) Formulating a Definition: Building Vocabulary Skills STUDY GUIDE CHAPTER Sponges, Cnidarians, and Unsegmented Worms Section 26-1 introduction to the Animal Kingdom (pages $55-560) SECTION REVIEW With this section you began your study of the animal kingdom.

More information

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Animal Body Plans Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod Sponges Cnidaria, Ctenophora, Platyhelminthes Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Size Constraints

More information

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal?

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? Workshop: The Evolution of Animalia by Dana Krempels Perhaps even more than the other Eukarya, Animalia is characterized by a distinct progression of complexity in form and function as one moves from the

More information

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? II. Germ Layers

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? II. Germ Layers Workshop: The Evolution of Animalia by Dana Krempels Perhaps even more than the other Eukarya, Animalia is characterized by a distinct progression of complexity in form and function as one moves from the

More information

1/30/2009. Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display.

1/30/2009. Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 9 Architectural Pattern of an Animal New Designs for Living Zoologists recognize 34 major phyla of living multicellular animals Survivors of around 100 phyla that appeared 600 million years ago

More information

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Chps 23-26: Animals Chps. 23-27: Animals Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Animal Characteristics Forms of symmetry: Radial Bilateral

More information

Invertebrate Survey Lab

Invertebrate Survey Lab Answer these questions before lab. 1. What kingdom do all animals fall into? a. Protist b. Animalia c. Eukarya 2. How many phyla of invertebrates are in appendix E on pages 1074-1076? a. 9 b. 7 c. 8 3.

More information

Kingdom: Animals. AP Biology Common ancestor. Domain Eukarya. Domain Archaea. Domain Eubacteria

Kingdom: Animals. AP Biology Common ancestor. Domain Eukarya. Domain Archaea. Domain Eubacteria Kingdom: Animals Domain Eukarya Domain Eubacteria Domain Archaea Domain Eukarya 2007-2008 Common ancestor Animal Characteristics Heterotrophs must ingest others for nutrients Multicellular complex bodies

More information

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional Introduction to Animal Diversity Chapter 23.1, 23.2 and additional 1 Think of an Animal... Does your choice have hair or fur? Does it have a skeleton? Over a million species of animals described 95% have

More information

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia What Is an Animal? What characteristics do all animals have? Animals come in many shapes, forms, and sizes. Scientists estimate that there are between 1 and 2 million species of animals! Some, like whales

More information

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria

Protists. Simple Eukaryotes. Regents Biology Common ancestor. Domain Archaebacteria. Domain Eukaryotes. Domain Bacteria Protists Simple Eukaryotes Domain Bacteria Domain Archaebacteria Domain Eukaryotes Regents Biology 2006-2007 Common ancestor General characteristics Classification criteria eukaryotes not animal, plant

More information

Third and Ten Part B Chapters 26-30

Third and Ten Part B Chapters 26-30 Third and Ten Part hapters 26-30 What a plant needs: arbon (O 2 ) Hydrogen (H 2 O) Oxygen (O 2, O 2 & H 2 0) Other nutrients are absorbed through the roots -- phosphorous, potassium, nitrogen, sulfur,

More information

Animals are in Domain Eukarya

Animals are in Domain Eukarya The Diversity of Animals 1: invertebrates Chapter 23 Animals are in Domain Eukarya Immediate ancestors are a type of Protista Key features Multicellular Kingdom Animalia Heterotrophic: gain energy by consuming

More information

Porifera Sponges Features:

Porifera Sponges Features: Porifera Sponges The Phylum Porifera consists only of sponges, which is unique since these animals are entirely aquatic; with 98% found only in marine environments and a small percentage found in freshwater

More information

BI 101: Invertebrate Animals Announcements

BI 101: Invertebrate Animals Announcements BI 101: Invertebrate Animals Announcements Quiz #6 Friday Plants: Gymnosperms & Angiosperms Don t forget the prelab just the front page I have another lab to substitute the one in the packet--- food web

More information

Classification: Evolution:

Classification: Evolution: Review for Final Exam Suggestions All material covered in the course is testable. The following are suggested topics to cover, but is not meant to be an exhaustive list. Topics that are not listed but

More information

Kingdom Animalia - Evolution of Form and Function by Dana Krempels

Kingdom Animalia - Evolution of Form and Function by Dana Krempels Kingdom Animalia - Evolution of Form and Function by Dana Krempels A. Identification of synapomorphies defining major animal taxa Note the characters in the table below. Each should be placed on the phylogenetic

More information

Unit 10: Animals Guided Reading Questions (80 pts total)

Unit 10: Animals Guided Reading Questions (80 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

Sponge and Cnidarian Review

Sponge and Cnidarian Review Name Period Date Sponge and Cnidarian Review Matching On the lines provided, write the letter of the definition that matches each term. 1. Invertebrate 2. Filter feeder 3. Asymmetry 4. Radial 5. Medusa

More information

Questions in developmental biology. Differentiation Morphogenesis Growth/apoptosis Reproduction Evolution Environmental integration

Questions in developmental biology. Differentiation Morphogenesis Growth/apoptosis Reproduction Evolution Environmental integration Questions in developmental biology Differentiation Morphogenesis Growth/apoptosis Reproduction Evolution Environmental integration Representative cell types of a vertebrate zygote => embryo => adult differentiation

More information

Overview of Animal Diversity

Overview of Animal Diversity Chapter 32 CHAPTER Overview of Animal Diversity Chapter Outline 32.1 Some General Features of Animals 32.2 Evolution of the Animal Body Plan 32.3 The Classification of Animals 32.4 The Roots of the Animal

More information

The Radiata-Bilateria split. Second branching in the evolutionary tree

The Radiata-Bilateria split. Second branching in the evolutionary tree The Radiata-Bilateria split Second branching in the evolutionary tree Two very important characteristics are used to distinguish between the second bifurcation of metazoans Body symmetry Germinal layers

More information

What is a Cnidarian?

What is a Cnidarian? Invertebrate What is a Cnidarian? 9000 species of jellyfishes, corals, sea anemones, hydras Mostly marine animals Radially symmetrical One body opening Two layers of cells organized into tissues with specific

More information

Architectural Pattern of an animal. Chapter 9

Architectural Pattern of an animal. Chapter 9 Architectural Pattern of an animal Chapter 9 What is an animal? Levels of organization and organismal complexity 5 major levels of complexity Unicellular Metazoan? Tissue Organ Organ systems Levels of

More information

AP: CHAPTER 18: the Genetics of VIRUSES p What makes microbes good models to study molecular mechanisms? 4. What is a bacteriophage?

AP: CHAPTER 18: the Genetics of VIRUSES p What makes microbes good models to study molecular mechanisms? 4. What is a bacteriophage? AP: CHAPTER 18: the Genetics of VIRUSES p328-340 1. What makes microbes good models to study molecular mechanisms? Name Per 2. How were viruses first discovered? 3. What are the two basic components of

More information

An Introduction to the Invertebrates

An Introduction to the Invertebrates An Introduction to the Invertebrates Janet Moore New Hall, Cambridge niustrations by Raith Overhill Second Edition. :::.. CAMBRIDGE :: UNIVERSITY PRESS ~nts ao Paulo, Delhi rcss, New York._ MOO 586 List

More information

Ph. Porifera and Ph. Cnidaria

Ph. Porifera and Ph. Cnidaria I. Phylum Porifera (sponges; pore bearer ) A. General characteristics 1. simplest animals 2. asymmetric 3. aquatic habitats a. typically marine 4. live alone or in colonies a. often members of reef habitats

More information

Biology 340 Comparative Embryology Lecture 4 Dr. Stuart Sumida. Overview of Pre-Metazoan. and Protostome Development (Insects)

Biology 340 Comparative Embryology Lecture 4 Dr. Stuart Sumida. Overview of Pre-Metazoan. and Protostome Development (Insects) Biology 340 Comparative Embryology Lecture 4 Dr. Stuart Sumida Overview of Pre-Metazoan and Protostome Development (Insects) Plants Fungi Animals In1998 fossilized animal embryos were reported from the

More information

Name Class Date. After you read this section, you should be able to answer these questions:

Name Class Date. After you read this section, you should be able to answer these questions: CHAPTER 14 3 Invertebrates SECTION Introduction to Animals BEFORE YOU READ After you read this section, you should be able to answer these questions: What structures and systems perform basic life functions

More information

Blastocoelomates. General Features. General Features. Phylogenetic Relationships. Phylogenetic Relationships

Blastocoelomates. General Features. General Features. Phylogenetic Relationships. Phylogenetic Relationships General Features Blastocoelomates 1. A large and heterogeneous group. a. also known as "Aschelminthes" - cavity worms. General Features b. Nearly any source you consult will have a different arrangement

More information

I n t roduction to Phy l a

I n t roduction to Phy l a I n t roduction to Phy l a Earth carries millions of animal species that come in a spectacular array of shapes and sizes. Some even challenge our conceptions about animals. Despite this wealth of species,

More information

Of all the kingdoms of organisms, the animal kingdom is the

Of all the kingdoms of organisms, the animal kingdom is the 26 1 Introduction to the Animal Kingdom Of all the kingdoms of organisms, the animal kingdom is the most diverse in appearance. Some animals are so small that they live on or inside the bodies of other

More information

Invertebrates 2. Cladograms. Cladograms. Cladograms. Cladistics example. Cladogram of Phyla covered in Bio 11

Invertebrates 2. Cladograms. Cladograms. Cladograms. Cladistics example. Cladogram of Phyla covered in Bio 11 Invertebrates 2 Cladogram of Phyla covered in Bio 11 Cladograms Cladograms are constructed using a method known as cladistics. This method analyzes a collection of heritable character data compiled by

More information

Kingdom. Phylum. Class. Order. Family. Genus. Species

Kingdom. Phylum. Class. Order. Family. Genus. Species 5.5 - Classification 5.5.1 - Outline the binomial system of nomenclature In this system, each species has two names - a noun and an adjective. The first is the genus, which starts with an upper case letter,

More information

Classification Chapter 18

Classification Chapter 18 Classification Chapter 18 The domain system Prokaryotic domains Bacteria and Archaea Eukaryotes Are in the domain Eukarya Bacteria Archaea Eukarya Earliest organisms Prokaryotes Eukoryotes Figure 15.10B

More information

Biology B. There are no objectives for this lesson.

Biology B. There are no objectives for this lesson. Biology B Course Summary This is the second of two courses that comprise Biology. This course is designed to prepare the student to confidently enter and complete college-level biology courses. The Glencoe

More information

Phylum Cnidaria Test True/False Indicate whether the sentence or statement is true or false. Mark a for true and b for false.

Phylum Cnidaria Test True/False Indicate whether the sentence or statement is true or false. Mark a for true and b for false. PLEASE WRITE YOUR NAME HERE: 1 Phylum Cnidaria Test True/False Indicate whether the sentence or statement is true or false. Mark a for true and b for false. 1. Polyps are a body form of cnidarians that

More information

If done properly, is based on evolutionary relationships (at least to some extent). Kingdom -> Phylum -> Class -> Order -> Family -> Genus -> species

If done properly, is based on evolutionary relationships (at least to some extent). Kingdom -> Phylum -> Class -> Order -> Family -> Genus -> species Taxonomy. (Your text makes a real mess of this. Use these notes as a guide through the book.) Study of classifying and naming organisms. Founded by Linnaeus. If done properly, is based on evolutionary

More information

Arthropoda ARTHRO JOINTED PODA FEET

Arthropoda ARTHRO JOINTED PODA FEET Arthropoda ARTHRO JOINTED PODA FEET The arthropods are a group of animals which has attained the greatest biological success largest number of species and individuals and occupy the greatest number of

More information

CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION. Section A: What is an animal?

CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION. Section A: What is an animal? CHAPTER 32 INTRODUCTION TO ANIMAL EVOLUTION Section A: What is an animal? 1. Structure, nutrition, and life history define animals 2. The animal kingdom probably evolved from a colonial, flagellated protist

More information

1. If a eukaryotic cell has a single set of chromosomes, it is called A. haploid B. diploid C. polypoid

1. If a eukaryotic cell has a single set of chromosomes, it is called A. haploid B. diploid C. polypoid Reproduction 1. If a eukaryotic cell has a single set of chromosomes, it is called A. haploid B. diploid C. polypoid 2. Which of the following cell functions are maintained by cell division? A. growth,

More information

Developmental Biology Biology 4361

Developmental Biology Biology 4361 Developmental Biology Biology 4361 The Anatomical Tradition 2009 A hen is only an egg s way of making a new egg. Samuel Butler, 1885 The Anatomical Tradition - Overview What is developmental biology? How

More information

protein synthesis cell theory Centrioles specialization. unicellular ribosomes. mitochondria cell interdependence prokaryotes

protein synthesis cell theory Centrioles specialization. unicellular ribosomes. mitochondria cell interdependence prokaryotes All cells must generate proteins. Cells make protein through a process called protein synthesis All living things are made of cells, Cells are the basic units of structure and function in all organisms,

More information

Kingdom Animalia: Phyla Porifera and Cnidaria

Kingdom Animalia: Phyla Porifera and Cnidaria Kingdom Animalia: Phyla Porifera and Cnidaria Essential Question(s): What are key characteristics to the animal kingdom? Objectives: 1. Students will be able to distinguish essential characteristics in

More information

Unit 2. The pellicle acts as a membrane It maintains the shape of the protozoan but remains flexible Ectoplasm

Unit 2. The pellicle acts as a membrane It maintains the shape of the protozoan but remains flexible Ectoplasm Kingdom Protista A polyphyletic group containing: Unit 2 Polyphyletic- The Protozoans (Unicellular - can be very complex) Individuals may group together to form colonies Colony Specialized organelles Pellicle

More information

Z361 Final Fall 2000 Multiple Choice Section

Z361 Final Fall 2000 Multiple Choice Section Name: Z361 Final Fall 2000 Multiple Choice Section Answer all 32 questions using a No. 2 pencil to fill in a scantron form provided. Except for question #32, there is only one correct answer to each question.

More information

I. Protostomia - Pseudocoelom

I. Protostomia - Pseudocoelom Z202-Unit3 Chapter 15 Pseudocoelomate Animals I. Protostomia - Pseudocoelom A. Structure - Embryonic blastocoel persist as a space or cavity - Pseudocoel internal cavity surrounding the gut, lacks mesoderm

More information

CELL THEORY & FUNCTION

CELL THEORY & FUNCTION UNIT 1- THE CELL CELL THEORY & FUNCTION A Word From Bill Record your observations about the picture to the right. What do you think you are you looking at? Describe the structure with as much detail

More information

basal animalia porifera, cnidaria

basal animalia porifera, cnidaria basal animalia porifera, cnidaria PHYLUM PORIFERA porifera Sponges, no tissues or organs, cellular level of organization outer layer is made of cells called pinacocytes choanocytes (collar cells) Flagella

More information

Unit 10: Animals Guided Reading Questions (100 pts total)

Unit 10: Animals Guided Reading Questions (100 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 32 An Introduction to Animal Diversity 1. Define the following

More information

Chapter 13. Radiate Animals. Biological Contributions. Biological Contributions. Phylum Cnidaria. Definition. Position in Animal Kingdom

Chapter 13. Radiate Animals. Biological Contributions. Biological Contributions. Phylum Cnidaria. Definition. Position in Animal Kingdom Copyright The McGraw Hill Companies, Inc. Permission required for reproduction or display. Chapter 13 Radiate Animals Position in Animal Kingdom Both phyla Cnidaria and Ctenophora make up the radiate animals.

More information

Cells and Genetics. Life Science. Cell parts. Cell parts cont. Cell processes. Cell Division 5/4/2015

Cells and Genetics. Life Science. Cell parts. Cell parts cont. Cell processes. Cell Division 5/4/2015 Cells and Genetics Life Science SOL Review Hooke was 1 st person to observe cells Cells Basic Unit of structure and function of life Prokaryote: bacteria/no nucleus Eukaryote: membrane structures; everything

More information

NAME: PERIOD: DATE: A View of the Cell. Use Chapter 8 of your book to complete the chart of eukaryotic cell components.

NAME: PERIOD: DATE: A View of the Cell. Use Chapter 8 of your book to complete the chart of eukaryotic cell components. NAME: PERIOD: DATE: A View of the Cell Use Chapter 8 of your book to complete the chart of eukaryotic cell components. Cell Part Cell Wall Centriole Chloroplast Cilia Cytoplasm Cytoskeleton Endoplasmic

More information

Characteristics of Life

Characteristics of Life Characteristics of Life All living things share some basic characteristics: 1. Organization 2. Movement 3. Made up of cells 4. Reproduce 5. Grow and / or develop 6. Obtain and use energy 7. Respond to

More information

Introduction to Animals (Chapter 32) Identify what type of body symmetry is being exhibited by each of the following organisms

Introduction to Animals (Chapter 32) Identify what type of body symmetry is being exhibited by each of the following organisms NAME Introduction to Animals (Chapter 32) Identify what type of body symmetry is being exhibited by each of the following organisms. 1. 2. 3. 4. What view is Figure A giving of the human body? 5. Which

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell Prokaryotic Cells No nucleus Archaea & Eubacteria One circular chromosome Extremely small Eukaryotic Cells Has a nucleus!!! Membrane-bound organelles Plants, Animals, Fungi, &

More information

Microbiology: A Systems Approach

Microbiology: A Systems Approach Microbiology: A Systems Approach First Edition Cowan &Talaro Chapter 5 Eucaryotic cells and microorganisms Chapter 5 2 3 Eucaryotic cells 3 Flagella 4 Cilia similar in overall structure to flagella, but

More information

Characteristics and Classification of Living Organism (IGCSE Biology Syllabus )

Characteristics and Classification of Living Organism (IGCSE Biology Syllabus ) Characteristics and Classification of Living Organism (IGCSE Biology Syllabus 2016-2018) Characteristics of Living Organisms o Movement o Respiration o Sensitivity o Growth o Reproduction o Excretion o

More information

Unit 5. Organisms C H A P T E R 1 5. Bacteria: Unicellular R E A D P

Unit 5. Organisms C H A P T E R 1 5. Bacteria: Unicellular R E A D P Unit 5 Bacteria: Unicellular Organisms C H A P T E R 1 5 R E A D P. 2 9 3-305 Bacterial Cell Structure: Prokaryotic Single cellular no membrane bound organelles primitive Parts of Bacteria 1. Cell membrane

More information

Bell Work. identify the phylum that each character belongs to. Tuesday, February 19, 13

Bell Work. identify the phylum that each character belongs to. Tuesday, February 19, 13 Bell Work identify the phylum that each character belongs to Bell Work identify the phylum that each character belongs to Porifera Bell Work identify the phylum that each character belongs to Porifera

More information

Biology: Life on Earth

Biology: Life on Earth Biology: Life on Earth Eighth Edition Lecture for Chapter 1 An Introduction to Life on Earth Section 1.3 Outline 1.3 What Are the Characteristics of Living Things? Living Things Are Both Complex, Organized,

More information

Lab 2 Phylum Porifera and phylum Cnidaria. Grantia. Phylum Porifera. Kingdom :- Animalia. Phylum:- Porifera. Class:- Calcarea. Order:- Leucosolenida

Lab 2 Phylum Porifera and phylum Cnidaria. Grantia. Phylum Porifera. Kingdom :- Animalia. Phylum:- Porifera. Class:- Calcarea. Order:- Leucosolenida Lab 2 Phylum Porifera and phylum Cnidaria Phylum Porifera Adults sessile and attached Radial symmetry or asymmetrical Multi-cellular ; loose aggregation of cells Skeleton made of collagen and spicules

More information

BOOK 3 OUR PLANET SECTION 2 WORLD OF LIFE

BOOK 3 OUR PLANET SECTION 2 WORLD OF LIFE BOOK 3 OUR PLANET SECTION 2 WORLD OF LIFE ANIMAL AND PLANT CELLS There are two general types of cell - the animal cell and the plant cell. The animal cell is the most basic with the fewest parts. The plant

More information

copyright cmassengale Kingdoms and Classification

copyright cmassengale Kingdoms and Classification 1 Kingdoms and Classification 2 Domains Broadest, most inclusive taxon Three domains Archaea and Eubacteria are unicellular prokaryotes (no nucleus or membrane-bound organelles) Eukarya are more complex

More information

Invertebrate Zoology. Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora

Invertebrate Zoology. Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora Invertebrate Zoology Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora Objective 1: Differentiate between the 3 types of Poriferians (Asconoids, Syconoids, and Leuconoids) and the three main classes

More information

Hierarchies can be represented as trees:

Hierarchies can be represented as trees: Diversity of Life Classification - an organized scheme for grouping organisms - a tool for communication - Hierarchical - a series of successive and inclusive rankings Domain - the highest rank - contains

More information

McDougal Littell Science, Cells and Heredity MAZER PDF. IL Essential Lesson. IL Extend Lesson. Program Planning Guide LP page.

McDougal Littell Science, Cells and Heredity MAZER PDF. IL Essential Lesson. IL Extend Lesson. Program Planning Guide LP page. s7an-ppg-pc-il-002-012.indd 2 7/18/05 2:46:40 PM 2 McDougal Littell Science, Cells and Heredity Chapter 1: The Cell, pp. 6 37 1.1 The cell is the basic unit of living things. pp. 9 17 Explore: Activity

More information

Symbiosis. Symbiosis is a close association between of two or more organisms. Endosymbiosis living within another

Symbiosis. Symbiosis is a close association between of two or more organisms. Endosymbiosis living within another PROTISTS Protists constitute several kingdoms within the domain Eukarya Protists obtain their nutrition in a variety of ways Algae are autotrophic protists Protozoans are heterotrophic protists Fungus

More information

(A) Heterotrophs produce some organic nutrients, and must absorb inorganic nutrients from the environment.

(A) Heterotrophs produce some organic nutrients, and must absorb inorganic nutrients from the environment. MCAT Biology - Problem Drill 09: Prokaryotes and Fungi Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully; (2) Work the problems on paper as needed; (3) Pick the correct

More information

Dearolf BIOL 220. Freshwater Brackish water Marine Terrestrial Parasitic

Dearolf BIOL 220. Freshwater Brackish water Marine Terrestrial Parasitic CLADE METAZOA Phylum Porifera Hickman Chapter 12 The Origins of Multicellularity Phylum Porifera: Sponges Characteristics of Phylum Porifera (page 248) Figure 12.2 (page 248) Form and Function Figure 12.5

More information

INTRODUCTION TO ANIMALS

INTRODUCTION TO ANIMALS CHAPTER 32 INTRODUCTION TO ANIMALS The diversity of animal life is staggering. Animals have adapted to Earth s lushest environments and to its harshest environments. This Sally Lightfoot crab, Grapsus

More information

THE CELL THEORY (R+R+R+E+G+N+T+S) 3).

THE CELL THEORY (R+R+R+E+G+N+T+S) 3). CELL BIOLOGY All living things are made up of small individual units called cells. Cells are the smallest functioning living unit. Cells can not normally be seen with the naked eye. To usually observe

More information

Cell Structure and Function

Cell Structure and Function Cell Structure and Function Cell size comparison Animal cell Bacterial cell What jobs do cells have to do for an organism to live Gas exchange CO 2 & O 2 Eat (take in & digest food) Make energy ATP Build

More information

A. Why Classify? 1. organization makes it easier to understand and find information 2. taxonomy scientists classify organisms and assign each

A. Why Classify? 1. organization makes it easier to understand and find information 2. taxonomy scientists classify organisms and assign each Classification A. Why Classify? 1. organization makes it easier to understand and find information 2. taxonomy scientists classify organisms and assign each organism a universally accepted name by using

More information