PLL Arrays First Slides

Size: px
Start display at page:

Download "PLL Arrays First Slides"

Transcription

1 Space ad Naval Warfare Systems Commad PLL Arrays First Slides Prof. obert A. YOK James D. BUCKWALTE Paolo F. MACCAINI Uiversity of Califoria, Sata Barbara

2 Outlie Dave, here you will fid: he Theoretical Calculatio for the Phase elatioship we are Lockig For The Desig ad Simulatio esults for the L Array (.6 GHz) The Picture of the 2.45 GHz Uit PLL Cell for the Array (Some meas. Still eed to be performed) The Picture ad Meas. of the 75 MHz PLL

3 Coupled Oscillator Arrays Ijectio Lockig Model Ijectio-Locked Oscillator: Ijectio port Aij cos( ω ijt +ψ ) Tuig port (adjust ω ) VCO Adler s equatio: dφ dt = m Output port Acos t ( ω +φ ) ω ω ij + ω si( ψ φ ) Lockig rage ω ω m = 2Q A ij A g rees e,d φ) φ) (ψ ce re D ife e P has elative Ijected Frequecy, (ω -ω)/ ω ij m ψ φ = si ω ij ω ωm

4 Phase-Locked Loop Arrays Sigle Elemet Desig Voltage Cotrolled Oscillator ~ VCos V C DC Offset Tuig ( ω t θ ) O O O B Output Sigal I-Phase Power Divider A Double Balaced Mixer Variable Gai Amplifier Loop Equatios: VC = VOCos( ωot + θo) VIjCos( ωijt + θij ) A+ B 4 ω = ω + K V O O C Ijectio Sigal AβV V Cos ω ω + θ θ 2 2 V Cos ( ) t ( ) O Ij O Ij O Ij Phase Differece i adias.8.6 ( ω t θ ) Ij Ij Ij Steady State Equatios: Lockig age SS Frequecy VV O Ij ωo = ωij = ωo + K VC = ( ω ) ( ) SS O + K B + K A Cos θo θij ωij ωo VC = AV ( ) SS OVIjCos θo θij + B θo θij = ArcCos B 2 A VV O Ij K For Ijectio at the tuig ceter ωij = ωo : π AVOVIj θo θij = ± B = ad θo θij = B = Same phase dyamics as Coupled-Oscillator System B

5 PLL System Modelig: d φ = β dt dy = ωfy dt + C [ y 2y y ] + ω f C + 2 Phase-Locked Loop Arrays Theoretical esults for the Array Implemetatio si ( φ ), where φ = φ C = VCO tuig sesitivity C 2 = Coversio loss φ = Phase gradiet β = Frequecy gradiet φ atea i = N The free ruig frequecies satisfy > β = C ω [ si( φ ) si( φ ) + si( )] C φ+ Thus: φ mixer φ φ 2 φ N- φ N Couplig stregth > C C 2 (loop gai) > ehaced lockig rage Also with ijectio > ω lock > ω Thus -> ω lock Σ + - sca cotrol x LPF y Σ two-way combier x 2 LPF VCO y Σ Σ x N LPF y N Same phase dyamics as Coupled-Oscillator System Less amplitude fluctuatio Larger Lockig rage Σ + sca cotrol

6 .6 GHz PLL Schematics Bias = TOhm VtStep BiasPos Vlow= V Vhigh=5 V Delay=. sec ise=. sec VtStep GaiCtrl Vlow= V Vhigh=. V Delay=.4 sec ise=. sec VGai <.5 Tra StartupToLock StopTime=2 sec MaxTimeStep=. sec VtSie FSource Amplitude=.22 V Freq=575 MHz Delay=.5 sec Phase= VtS tep FreqCtrl Vlow= V Vhigh= V Delay=.9 sec ise=. sec PwrSplit2 P owerdivider VMult Mixer AmplifierVC VariableG aiamplifier Gai=(+4*_v3) out=5 Ohm TrasitioAalyzer =5 Ohm I2 =5 kohm I = kohm Fb =5 kohm OpAmpIdeal GaiOffsetSummer Gai= Freq3db=5 MHz TrasitioAalyzer2 =5 Ohm VCO VoltageCotrolledOs cilla tor Kv=7 MHz Freq=575 MHz P=-j*dbmtow() Delay= times tep P wrs plit2 PowerDivider3 P wrs plit2 PowerDivider2 SpectrumAalyzer =5 Ohm Output Sigal Voltage Cotrolled Oscillator Double Balaced Mixer ~ V C DC Offset Tuig B I-Phase Power Divider A Variable Gai Amplifier Ijectio F Sigal

7 .6 GHz PLL Simulatio ( ) 2 Lock Aalysis (FLo=475Mhz, Phase Diff. = ) Lockig f & Lo [m V] Frequecy & Feedback [V] Locked f & Lo [mv]

8 .6 GHz PLL Simulatio (9 ) 2 Lock Aalysis (FLo=Ff=575Mhz, Phase Diff. = 9 ) Lockig f & Lo [m V] Frequecy & Feedback [V] Locked f & Lo [mv]

9 .6 GHz PLL Simulatio (8 ) 2 Lock Aalysis (FLo=675Mhz, Phase Diff. = 8 ) Lockig f & Lo [m V] Frequecy & Feedback [V] Locked f & Lo [mv]

10 2.45 GHz PLL Uit Cell Goal: PLL Array Large Lockig/capture age Adjustable Ceter Frequecy Multiple F Iputs F F IF Summig Juctio i Feedback for Mutual Couplig PLL LF PLL LF PLL F Out (to ext PLL) To Calibratio To Atea X F i (from eighborig)pll F F2 Tuig Ports FN 4-way Splitter VCA Gai Adjust VCO ~ Σ LF Out LF I LF I Top View DC Voff (frequecy tuig)

11 2.45 GHz PLL Uit Cell Ijectio OUT Power Dividers Mixer Ijectio IN F2 Out VCO F Out Low Frequecy Feedback Bias Module 2 MHz Lockig age i Closed Loop versus Few KHz i Ope Phase varies from to 8 Degrees (Capture age to be Measured)

12 75 MHz PLL Mixer Out Low Frequecy Feedback Mixer VCO Ijectio IN F Out

13 75 MHz PLL 78 Measured Lockig ad Capture age MHz] 77 F OUT [MHz] Ope Loop Close Loop F Ijectio [MHz] 25 MHz Lockig age i Closed Loop versus Few KHz i Ope 5. MHz Capture age

Voltage controlled oscillator (VCO)

Voltage controlled oscillator (VCO) Voltage cotrolled oscillator (VO) Oscillatio frequecy jl Z L(V) jl[ L(V)] [L L (V)] L L (V) T VO gai / Logf Log 4 L (V) f f 4 L(V) Logf / L(V) f 4 L (V) f (V) 3 Lf 3 VO gai / (V) j V / V Bi (V) / V Bi

More information

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi)

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi) High-Speed Serial Iterface Circuit ad Sytem Lect. 4 Phae-Locked Loop (PLL) Type 1 (Chap. 8 i Razavi) PLL Phae lockig loop A (egative-feedback) cotrol ytem that geerate a output igal whoe phae (ad frequecy)

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: etwork Theory Broadbad Circuit Deig Fall 04 Lecture 3: PLL Aalyi Sam Palermo Aalog & Mixed-Sigal Ceter Texa A&M Uiverity Ageda & Readig PLL Overview & Applicatio PLL Liear Model Phae & Frequecy

More information

Synthesis procedure for microwave resonant circuits.

Synthesis procedure for microwave resonant circuits. Synthesis procedure for microwave resonant circuits. The design equations of a series ideal circuit can be derived if it is known a value for the reflection coefficient at a frequency value note equal

More information

Sinusoidal Steady-state Analysis

Sinusoidal Steady-state Analysis Siusoidal Steady-state Aalysis Complex umber reviews Phasors ad ordiary differetial equatios Complete respose ad siusoidal steady-state respose Cocepts of impedace ad admittace Siusoidal steady-state aalysis

More information

Butterworth LC Filter Designer

Butterworth LC Filter Designer Butterworth LC Filter Desiger R S = g g 4 g - V S g g 3 g R L = Fig. : LC filter used for odd-order aalysis g R S = g 4 g V S g g 3 g - R L = useful fuctios ad idetities Uits Costats Table of Cotets I.

More information

Jitter Transfer Functions For The Reference Clock Jitter In A Serial Link: Theory And Applications

Jitter Transfer Functions For The Reference Clock Jitter In A Serial Link: Theory And Applications Jitter Trasfer Fuctios For The Referece Clock Jitter I A Serial Lik: Theory Ad Applicatios Mike Li, Wavecrest Ady Martwick, Itel Gerry Talbot, AMD Ja Wilstrup, Teradye Purposes Uderstad various jitter

More information

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter Time Respose & Frequecy Respose d -Order Dyamic System -Pole, Low-Pass, Active Filter R 4 R 7 C 5 e i R 1 C R 3 - + R 6 - + e out Assigmet: Perform a Complete Dyamic System Ivestigatio of the Two-Pole,

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 301 Sigals & Systems Prof. Mark Fowler Note Set #8 D-T Covolutio: The Tool for Fidig the Zero-State Respose Readig Assigmet: Sectio 2.1-2.2 of Kame ad Heck 1/14 Course Flow Diagram The arrows here

More information

CDS 101: Lecture 8.2 Tools for PID & Loop Shaping

CDS 101: Lecture 8.2 Tools for PID & Loop Shaping CDS : Lecture 8. Tools for PID & Loop Shapig Richard M. Murray 7 November 4 Goals: Show how to use loop shapig to achieve a performace specificatio Itroduce ew tools for loop shapig desig: Ziegler-Nichols,

More information

2 nd Order PLL Design and Analysis

2 nd Order PLL Design and Analysis nd Order PLL Design and Analysis S REF Phase Detector Σ K f Loop Filter VCO K V s R C Loop Divider Fig. : nd Order PLL with Current-Mode Phase Detector useful functions and identities Units Constants Table

More information

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C)

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C) Aswer: (A); (C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 0(A); (A); (C); 3(C). A two loop positio cotrol system is show below R(s) Y(s) + + s(s +) - - s The gai of the Tacho-geerator iflueces maily the

More information

ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY ANALYSIS WITH THE METHOD OF MOMENTS

ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY ANALYSIS WITH THE METHOD OF MOMENTS ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY ANALYSIS WITH THE METHOD OF MOMENTS N.K. Georgieva, S. Glavic, M.H. Bakr ad J.W. Badler, CRL223, 1280 Mai Street West, Hamilto, ON L8S 4K1, Caada e-mail:

More information

EE Control Systems

EE Control Systems Copyright FL Lewis 7 All rights reserved Updated: Moday, November 1, 7 EE 4314 - Cotrol Systems Bode Plot Performace Specificatios The Bode Plot was developed by Hedrik Wade Bode i 1938 while he worked

More information

732 Appendix E: Previous EEE480 Exams. Rules: One sheet permitted, calculators permitted. GWC 352,

732 Appendix E: Previous EEE480 Exams. Rules: One sheet permitted, calculators permitted. GWC 352, 732 Aedix E: Previous EEE0 Exams EEE0 Exam 2, Srig 2008 A.A. Rodriguez Rules: Oe 8. sheet ermitted, calculators ermitted. GWC 32, 9-372 Problem Aalysis of a Feedback System Cosider the feedback system

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Metamaterial-Based. Sungjoon Lim, Christophe Caloz and Tatsuo Itoh University of California, Los Angeles OUTLINE

Metamaterial-Based. Sungjoon Lim, Christophe Caloz and Tatsuo Itoh University of California, Los Angeles OUTLINE Metamaterial-Based Electroically-Cotrolled Leaky-Wave Atea Sugjoo Lim, Christophe Caloz ad Tatsuo Itoh Uiversity of Califoria, Los Ageles OUTLINE Left-Haded Metamaterial (LHM) Approaches Composite Right/Left-Haded

More information

Antenna Engineering Lecture 8: Antenna Arrays

Antenna Engineering Lecture 8: Antenna Arrays Atea Egieerig Lecture 8: Atea Arrays ELCN45 Sprig 211 Commuicatios ad Computer Egieerig Program Faculty of Egieerig Cairo Uiversity 2 Outlie 1 Array of Isotropic Radiators Array Cofiguratios The Space

More information

Phase-error Correction by Single-phase Phase-Locked Loops based on Transfer Delay

Phase-error Correction by Single-phase Phase-Locked Loops based on Transfer Delay Global Summit on Electronics and Electrical Engineering Valencia - Spain Phase-error Correction by Single-phase Phase-Locked Loops based on Transfer Delay Main research Project: Distributed Harmonics Compensation

More information

Microwave Oscillators Design

Microwave Oscillators Design Microwave Oscillators Design Oscillators Classification Feedback Oscillators β Α Oscillation Condition: Gloop = A β(jω 0 ) = 1 Gloop(jω 0 ) = 1, Gloop(jω 0 )=2nπ Negative resistance oscillators Most used

More information

Fundamentals of PLLs (III)

Fundamentals of PLLs (III) Phase-Locked Loops Fundamentals of PLLs (III) Ching-Yuan Yang National Chung-Hsing University Department of Electrical Engineering Phase transfer function in linear model i (s) Kd e (s) Open-loop transfer

More information

Formation of A Supergain Array and Its Application in Radar

Formation of A Supergain Array and Its Application in Radar Formatio of A Supergai Array ad ts Applicatio i Radar Tra Cao Quye, Do Trug Kie ad Bach Gia Duog. Research Ceter for Electroic ad Telecommuicatios, College of Techology (Coltech, Vietam atioal Uiversity,

More information

Synthesis for Idle Speed Control of an Automotive Engine

Synthesis for Idle Speed Control of an Automotive Engine Sythesis for Idle Speed Cotrol of a Automotive Egie A. Balluchi (1), F. Di Natale (1), A. Sagiovai-Vicetelli (1,2) ad J.H. va Schuppe (3) (1) PARADES GEIE, Rome, I (2) Dept. of EECS., Uiv. of Califoria

More information

Inducing Chaos in the p/n Junction

Inducing Chaos in the p/n Junction Inducing Chaos in the p/n Junction Renato Mariz de Moraes, Marshal Miller, Alex Glasser, Anand Banerjee, Ed Ott, Tom Antonsen, and Steven M. Anlage CSR, Department of Physics MURI Review 14 November, 2003

More information

Lecture 8. Nonlinear Device Stamping

Lecture 8. Nonlinear Device Stamping PRINCIPLES OF CIRCUIT SIMULATION Lecture 8. Noliear Device Stampig Guoyog Shi, PhD shiguoyog@ic.sjtu.edu.c School of Microelectroics Shaghai Jiao Tog Uiversity Fall -- Slide Outlie Solvig a oliear circuit

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

Signals & Systems Chapter3

Signals & Systems Chapter3 Sigals & Systems Chapter3 1.2 Discrete-Time (D-T) Sigals Electroic systems do most of the processig of a sigal usig a computer. A computer ca t directly process a C-T sigal but istead eeds a stream of

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Sigal & Sytem Prof. Mark Fowler Note Set #8 C-T Sytem: Laplace Traform Solvig Differetial Equatio Readig Aigmet: Sectio 6.4 of Kame ad Heck / Coure Flow Diagram The arrow here how coceptual flow

More information

ELEG3503 Introduction to Digital Signal Processing

ELEG3503 Introduction to Digital Signal Processing ELEG3503 Itroductio to Digital Sigal Processig 1 Itroductio 2 Basics of Sigals ad Systems 3 Fourier aalysis 4 Samplig 5 Liear time-ivariat (LTI) systems 6 z-trasform 7 System Aalysis 8 System Realizatio

More information

Coherent control of Rydberg atoms

Coherent control of Rydberg atoms Coheret cotrol of Rydberg atoms Haruka Maeda Departmet of Phys. & Math., Aoyama Gakui Uiversity Why Rydberg atom? Multilevel ladder system What ca we study with Rydberg atom? Microwave multiphoto ioizatio

More information

6.003: Signals and Systems. Feedback, Poles, and Fundamental Modes

6.003: Signals and Systems. Feedback, Poles, and Fundamental Modes 6.003: Sigals ad Systems Feedback, Poles, ad Fudametal Modes February 9, 2010 Last Time: Multiple Represetatios of DT Systems Verbal descriptios: preserve the ratioale. To reduce the umber of bits eeded

More information

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5 Sigals ad Systems Sigals ad Systems Sigals are variables that carry iformatio Systemstake sigals as iputs ad produce sigals as outputs The course deals with the passage of sigals through systems T-6.4

More information

EE 505. Lecture 28. ADC Design SAR

EE 505. Lecture 28. ADC Design SAR EE 505 Lecture 28 ADC Desig SAR Review from Last Lecture Elimiatio of Iput S/H C LK X IN S/H Stage 1 r 1 Stage 2 r 2 Stage k r k Stage m r m 1 2 k m Pipelied Assembler (Shift Register

More information

Dallas Semiconductor 17

Dallas Semiconductor 17 2 3 8 11 Dallas Semiconductor 17 15 KEITHLEY MODEL 2304 6.0V, 750mA (SOURCE) A B KEITHLEY MODEL 2304 (LOAD) 150Ω 100Ω 4.7kΩ 1kΩ CC V IN 1400mAh Li-POLYMER CELL PC 100Ω DQ V DD 5.1V 0.1µF SNS V SS 0.1µF

More information

Difference Equation Construction (1) ENGG 1203 Tutorial. Difference Equation Construction (2) Grow, baby, grow (1)

Difference Equation Construction (1) ENGG 1203 Tutorial. Difference Equation Construction (2) Grow, baby, grow (1) ENGG 03 Tutorial Differece Equatio Costructio () Systems ad Cotrol April Learig Objectives Differece Equatios Z-trasform Poles Ack.: MIT OCW 6.0, 6.003 Newto s law of coolig states that: The chage i a

More information

ADVANCED DIGITAL SIGNAL PROCESSING

ADVANCED DIGITAL SIGNAL PROCESSING ADVANCED DIGITAL SIGNAL PROCESSING PROF. S. C. CHAN (email : sccha@eee.hku.hk, Rm. CYC-702) DISCRETE-TIME SIGNALS AND SYSTEMS MULTI-DIMENSIONAL SIGNALS AND SYSTEMS RANDOM PROCESSES AND APPLICATIONS ADAPTIVE

More information

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser FIR Filters Lecture #7 Chapter 5 8 What Is this Course All About? To Gai a Appreciatio of the Various Types of Sigals ad Systems To Aalyze The Various Types of Systems To Lear the Skills ad Tools eeded

More information

ECE594I Notes set 13: Two-port Noise Parameters

ECE594I Notes set 13: Two-port Noise Parameters C594 otes, M. Rodwell, copyrighted C594 Notes set 13: Two-port Noise Parameters Mark Rodwell Uiversity of Califoria, Sata Barbara rodwell@ece.ucsb.edu 805-893-3244, 805-893-3262 fax Refereces ad Citatios:

More information

Stochastic Modeling of Phase Noise in Distributed Coherent Passive Radar Systems

Stochastic Modeling of Phase Noise in Distributed Coherent Passive Radar Systems Stochastic Modelig of Phase Noise i Distributed Coheret Passive Radar Systems Adrew Morabito Prof. Joh Sahr Zac Berkowitz, Laura Vertatschitsch Dept. of Electrical Egieerig Seattle, WA USA Supported by

More information

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform Sigal Processig i Mechatroics Summer semester, 1 Lecture 3, Covolutio, Fourier Series ad Fourier rasform Dr. Zhu K.P. AIS, UM 1 1. Covolutio Covolutio Descriptio of LI Systems he mai premise is that the

More information

Signal Processing in Mechatronics

Signal Processing in Mechatronics Sigal Processig i Mechatroics Zhu K.P. AIS, UM. Lecture, Brief itroductio to Sigals ad Systems, Review of Liear Algebra ad Sigal Processig Related Mathematics . Brief Itroductio to Sigals What is sigal

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design V. Voltage Controlled Oscillators Fall 2012, Prof. JianJun Zhou V-1 Outline Phase Noise and Spurs Ring VCO LC VCO Frequency Tuning (Varactor, SCA) Phase Noise Estimation Quadrature Phase Generator Fall

More information

CS161 Design and Analysis of Algorithms. Administrative

CS161 Design and Analysis of Algorithms. Administrative CS161 Desig ad Aalysis of Algorithms Da Boeh 1 Admiistrative Lecture 1, April 3, 1 Web page http://theory.staford.edu/~dabo/cs161» Hadouts» Aoucemets» Late breakig ews Gradig ad course requiremets» Midterm/fial/hw»

More information

ITEC 360 Data Structures and Analysis of Algorithms Spring for n 1

ITEC 360 Data Structures and Analysis of Algorithms Spring for n 1 ITEC 360 Data Structures ad Aalysis of Algorithms Sprig 006 1. Prove that f () = 60 + 5 + 1 is Θ ( ). 60 + 5 + 1 60 + 5 + = 66 for 1 Take C 1 = 66 f () = 60 + 5 + 1 is O( ) Sice 60 + 5 + 1 60 for 1 If

More information

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations Geeraliig the DTFT The Trasform M. J. Roberts - All Rights Reserved. Edited by Dr. Robert Akl 1 The forward DTFT is defied by X e jω = x e jω i which = Ω is discrete-time radia frequecy, a real variable.

More information

Lectures on APPLICATIONS

Lectures on APPLICATIONS APP0 University of alifornia Berkeley ollege of Engineering Department of Electrical Engineering and omputer Science obert W. Brodersen EES40 Analog ircuit Design t ISE Lectures on APPLIATINS t FALL.0V

More information

CS:3330 (Prof. Pemmaraju ): Assignment #1 Solutions. (b) For n = 3, we will have 3 men and 3 women with preferences as follows: m 1 : w 3 > w 1 > w 2

CS:3330 (Prof. Pemmaraju ): Assignment #1 Solutions. (b) For n = 3, we will have 3 men and 3 women with preferences as follows: m 1 : w 3 > w 1 > w 2 Shiyao Wag CS:3330 (Prof. Pemmaraju ): Assigmet #1 Solutios Problem 1 (a) Cosider iput with me m 1, m,..., m ad wome w 1, w,..., w with the followig prefereces: All me have the same prefereces for wome:

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B206 bmcnair@stevens.edu 201-216-5549 Lecture 18 379 Signal Generators and Waveform-shaping Circuits Ch 17 380 Stability in feedback systems Feedback system Bounded

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistor (JT) was iveted i 948 at ell Telephoe Laboratories Sice 97, the high desity ad low power advatage of the MOS techology steadily eroded the JT s early domiace.

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 UNIVERSITY OF BOLTON TW30 SCHOOL OF ENGINEERING BENG (HONS) IN MECHANICAL ENGINEERING SEMESTER EXAMINATION 06/07 ADVANCED THERMOFLUIDS & CONTROL SYSTEMS MODULE NO: AME6005 Date: Thursday Jauary 07 Time:

More information

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1 Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V O-dm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V O-dm is the differential output offset

More information

Chapter 9 - CD companion 1. A Generic Implementation; The Common-Merge Amplifier. 1 τ is. ω ch. τ io

Chapter 9 - CD companion 1. A Generic Implementation; The Common-Merge Amplifier. 1 τ is. ω ch. τ io Chapter 9 - CD compaio CHAPTER NINE CD-9.2 CD-9.2. Stages With Voltage ad Curret Gai A Geeric Implemetatio; The Commo-Merge Amplifier The advaced method preseted i the text for approximatig cutoff frequecies

More information

Algorithms Design & Analysis. Divide & Conquer

Algorithms Design & Analysis. Divide & Conquer Algorithms Desig & Aalysis Divide & Coquer Recap Direct-accessible table Hash tables Hash fuctios Uiversal hashig Perfect Hashig Ope addressig 2 Today s topics The divide-ad-coquer desig paradigm Revised

More information

Mixed Signal IC Design Notes set 7: Electrical device noise models.

Mixed Signal IC Design Notes set 7: Electrical device noise models. C145C /18C otes, M. owell, copyrighte 007 Mixe Sigal C Desig Notes set 7: lectrical evice oise moels. Mark owell Uiversity of Califoria, Sata Barbara rowell@ece.ucsb.eu 805-893-344, 805-893-36 fax Topics

More information

Elastic Plastic Behavior of Geomaterials: Modeling and Simulation Issues

Elastic Plastic Behavior of Geomaterials: Modeling and Simulation Issues Elastic Plastic Behavior of Geomaterials: Modelig ad Simulatio Issues Boris Zhaohui Yag (UA), Zhao Cheg (EarthMechaics Ic.), Mahdi Taiebat (UBC) Departmet of Civil ad Evirometal Egieerig Uiversity of Califoria,

More information

Dynamic Response of Linear Systems

Dynamic Response of Linear Systems Dyamic Respose of Liear Systems Liear System Respose Superpositio Priciple Resposes to Specific Iputs Dyamic Respose of st Order Systems Characteristic Equatio - Free Respose Stable st Order System Respose

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

Introduction to Phase Locked Loop (PLL) DIGITAVID, Inc. Ahmed Abu-Hajar, Ph.D.

Introduction to Phase Locked Loop (PLL) DIGITAVID, Inc. Ahmed Abu-Hajar, Ph.D. Introduction to Phase Locked Loop (PLL) DIGITAVID, Inc. Ahmed Abu-Hajar, Ph.D. abuhajar@digitavid.net Presentation Outline What is Phase Locked Loop (PLL) Basic PLL System Problem of Lock Acquisition Phase/Frequency

More information

School of Electrical Engineering. EI2400 Applied Antenna Theory Lecture 9: Broadband antennas

School of Electrical Engineering. EI2400 Applied Antenna Theory Lecture 9: Broadband antennas School of Electrical Egieerig EI2400 Applied Atea Theory Lecture 9: Broadbad ateas Questio 1 What is the badwidth of a atea? It is the rage of frequecies withi which the performace of the atea with respect

More information

Crash course part 2. Frequency compensation

Crash course part 2. Frequency compensation Crash course part Frequecy compesatio Ageda Frequecy depedace Feedback amplifiers Frequecy depedace of the Trasistor Frequecy Compesatio Phatom Zero Examples Crash course part poles ad zeros I geeral a

More information

IDEAL OP AMP ANALYSIS

IDEAL OP AMP ANALYSIS EXECSE No.1 Assuming ideal op amps, determine for each and every circuit shown below. A) 1,8k B) V 30k 1k 0,1V k 1k C) D) k K 0,5V 1V 3k 1,5V K k 4k E) F) 15V V 14k 15k 5V 3.9K 1,5k 5,1k 8V 3k 16k 15k

More information

Lecture 2. Dopant Compensation

Lecture 2. Dopant Compensation Lecture 2 OUTLINE Bac Semicoductor Phycs (cot d) (cotd) Carrier ad uo PN uctio iodes Electrostatics Caacitace Readig: Chater 2.1 2.2 EE105 Srig 2008 Lecture 1, 2, Slide 1 Prof. Wu, UC Berkeley oat Comesatio

More information

FIR Filter Design: Part II

FIR Filter Design: Part II EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we cosider how we might go about desigig FIR filters with arbitrary frequecy resposes, through compositio of multiple sigle-peak

More information

MEM 255 Introduction to Control Systems: Analyzing Dynamic Response

MEM 255 Introduction to Control Systems: Analyzing Dynamic Response MEM 55 Itroductio to Cotrol Systems: Aalyzig Dyamic Respose Harry G. Kwaty Departmet of Mechaical Egieerig & Mechaics Drexel Uiversity Outlie Time domai ad frequecy domai A secod order system Via partial

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

Homework Assignment No. 3 - Solutions

Homework Assignment No. 3 - Solutions ECE 6440 Summer 2003 Page 1 Homework Aignment o. 3 Problem 1 (10 point) Aume an LPLL ha F() 1 and the PLL parameter are 0.8V/radian, K o 100 MHz/V, and the ocillation frequency, f oc 500MHz. Sketch the

More information

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences A Uiversity of Califoria at Berkeley College of Egieerig Departmet of Electrical Egieerig ad Computer Scieces U N I V E R S T H E I T Y O F LE T TH E R E B E LI G H T C A L I F O R N 8 6 8 I A EECS : Sigals

More information

ECE 145A / 218 C, notes set 13: Very Short Summary of Noise

ECE 145A / 218 C, notes set 13: Very Short Summary of Noise class otes, M. odwell, copyrighted 009 C 45A / 8 C, otes set 3: Very hort ummary o Noise Mark odwell Uiversity o Calioria, ata Barbara rodwell@ece.ucsb.edu 805-893-344, 805-893-36 ax Backgroud / tet class

More information

Complex Algorithms for Lattice Adaptive IIR Notch Filter

Complex Algorithms for Lattice Adaptive IIR Notch Filter 4th Iteratioal Coferece o Sigal Processig Systems (ICSPS ) IPCSIT vol. 58 () () IACSIT Press, Sigapore DOI:.7763/IPCSIT..V58. Complex Algorithms for Lattice Adaptive IIR Notch Filter Hog Liag +, Nig Jia

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

EE 505. Lecture 29. ADC Design. Oversampled

EE 505. Lecture 29. ADC Design. Oversampled EE 505 Lecture 29 ADC Desig Oversampled Review from Last Lecture SAR ADC V IN Sample Hold C LK V REF DAC DAC Cotroller DAC Cotroller stores estimates of iput i Successive Approximatio Register (SAR) At

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

Feedback and Oscillator Circuits

Feedback and Oscillator Circuits and Oscillator Circuits The input signal, Vs, is applied to a mixer network Here it is combined with a feedback signal V f Difference (or sum) of signals, V i, is then the input voltage to the amplifier

More information

Exponential Moving Average Pieter P

Exponential Moving Average Pieter P Expoetial Movig Average Pieter P Differece equatio The Differece equatio of a expoetial movig average lter is very simple: y[] x[] + (1 )y[ 1] I this equatio, y[] is the curret output, y[ 1] is the previous

More information

Chapter 2 Feedback Control Theory Continued

Chapter 2 Feedback Control Theory Continued Chapter Feedback Cotrol Theor Cotiued. Itroductio I the previous chapter, the respose characteristic of simple first ad secod order trasfer fuctios were studied. It was show that first order trasfer fuctio,

More information

Quiz #3 Practice Problem Set

Quiz #3 Practice Problem Set Name: Studet Number: ELEC 3908 Physical Electroics Quiz #3 Practice Problem Set? Miutes March 11, 2016 - No aids excet a o-rogrammable calculator - ll questios must be aswered - ll questios have equal

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE Geeral e Image Coder Structure Motio Video (s 1,s 2,t) or (s 1,s 2 ) Natural Image Samplig A form of data compressio; usually lossless, but ca be lossy Redudacy Removal Lossless compressio: predictive

More information

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture EE C45 ME C8 Itroductio to MEMS Desig Fall 003 Roger Howe ad Thara Sriiasa Lecture 3 Capacitie Positio Sesig: Electroic ad Mechaical Noise EE C45 ME C8 Fall 003 Lecture 3 Today s Lecture Basic CMOS buffer

More information

Time-Domain Representations of LTI Systems

Time-Domain Representations of LTI Systems 2.1 Itroductio Objectives: 1. Impulse resposes of LTI systems 2. Liear costat-coefficiets differetial or differece equatios of LTI systems 3. Bloc diagram represetatios of LTI systems 4. State-variable

More information

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741 (Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

More information

CHM 424 EXAM 2 - COVER PAGE FALL

CHM 424 EXAM 2 - COVER PAGE FALL CHM 44 EXAM - COVER PAGE FALL 007 There are six umbered pages with five questios. Aswer the questios o the exam. Exams doe i ik are eligible for regrade, those doe i pecil will ot be regraded. coulomb

More information

EE 435. Lecture 25. Data Converters

EE 435. Lecture 25. Data Converters EE 435 Lecture 5 Data Coverters . Review from last lecture. Basic Operatio of CMFB Block V DD V FB V O1 V O CMFB Circuit V FB V OUT C L M 3 M 4 V OUT V IN M 1 M V IN C L V OXX CMFB Circuit V B M 9 V OXX

More information

1. pn junction under bias 2. I-Vcharacteristics

1. pn junction under bias 2. I-Vcharacteristics Lecture 10 The p Juctio (II) 1 Cotets 1. p juctio uder bias 2. I-Vcharacteristics 2 Key questios Why does the p juctio diode exhibit curret rectificatio? Why does the juctio curret i forward bias icrease

More information

MM4 System s Poles and Feedback Characteristics

MM4 System s Poles and Feedback Characteristics MM4 System s Poles ad Feedback Characteristics Readigs: Sectio 3.3 (resose & ole locatios.118-16); Sectio 4.1 (basic roerties of feedback.167-179); Extra readigs (feedback characterisitcs) 9/6/011 Classical

More information

Solution of EECS 315 Final Examination F09

Solution of EECS 315 Final Examination F09 Solutio of EECS 315 Fial Examiatio F9 1. Fid the umerical value of δ ( t + 4ramp( tdt. δ ( t + 4ramp( tdt. Fid the umerical sigal eergy of x E x = x[ ] = δ 3 = 11 = ( = ramp( ( 4 = ramp( 8 = 8 [ ] = (

More information

CHAPTER XI DATAPATH ELEMENTS

CHAPTER XI DATAPATH ELEMENTS CHAPTER XI- CHAPTER XI CHAPTER XI READ REE-DOC ON COURSE WEBPAGE CHAPTER XI-2 INTRODUCTION -INTRODUCTION So far we have discussed may small compoets ad buildig blocks. Oe fial step i our buildig blocks

More information

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University. Sigal Processig Lecture 02: Discrete Time Sigals ad Systems Ahmet Taha Koru, Ph. D. Yildiz Techical Uiversity 2017-2018 Fall ATK (YTU) Sigal Processig 2017-2018 Fall 1 / 51 Discrete Time Sigals Discrete

More information

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, Anti-Logarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

Modeling of Plasmas and Neutrals Including Plasma-Wall Interaction for Long Term Tokamak Operation

Modeling of Plasmas and Neutrals Including Plasma-Wall Interaction for Long Term Tokamak Operation odelig of Plasmas ad Neutrals Icludig Plasma-Wall Iteractio for Log Term Tokamak Operatio Akiyoshi Hatayama 1, Kousuke Okamoto 1, Ryoko Tatsumi 1, Kazuhiro. Abe 1, ad Kazuaki Haada 2 1. Backgroud/otivatio

More information

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed)

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed) Exam February 8th, 8 Sigals & Systems (5-575-) Prof. R. D Adrea Exam Exam Duratio: 5 Mi Number of Problems: 5 Number of Poits: 5 Permitted aids: Importat: Notes: A sigle A sheet of paper (double sided;

More information

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there. ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages -9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit

More information

ECE 145B / 218B, notes set 3: Electrical device noise models.

ECE 145B / 218B, notes set 3: Electrical device noise models. class otes, M. owell, copyrighte 2012 C 145B / 218B, otes set 3: lectrical evice oise moels. Mark owell Uiversity of Califoria, Sata Barbara rowell@ece.ucsb.eu 805-893-3244, 805-893-3262 fax class otes,

More information

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is:

The aim of the course is to give an introduction to semiconductor device physics. The syllabus for the course is: Semicoductor evices Prof. Rb Robert tat A. Taylor The aim of the course is to give a itroductio to semicoductor device physics. The syllabus for the course is: Simple treatmet of p- juctio, p- ad p-i-

More information

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B.

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B. Amme 3500 : System Dyamics ad Cotrol Root Locus Course Outlie Week Date Cotet Assigmet Notes Mar Itroductio 8 Mar Frequecy Domai Modellig 3 5 Mar Trasiet Performace ad the s-plae 4 Mar Block Diagrams Assig

More information

DIGITAL MEASUREMENT OF POWER SYSTEM HARMONIC MAGNITUDE AND PHASE ANGLE

DIGITAL MEASUREMENT OF POWER SYSTEM HARMONIC MAGNITUDE AND PHASE ANGLE DIGIL MESUREMEN OF POWER SYSEM HRMONIC MGNIUDE ND PHSE NGLE R Micheletti (, R Pieri ( ( Departmet of Electrical Systems ad utomatio, Uiversity of Pisa, Via Diotisalvi, I-566 Pisa, Italy Phoe +39 5 565,

More information

Corrections to A Guide to Experiments in Quantum Optics

Corrections to A Guide to Experiments in Quantum Optics Corrections to A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy Ralph September 23, 2009 The following are corrections to errata within the Second Edition of A Guide to Experiments in

More information

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω -j 8 30 o I j 4 j 4 I 2 -j2v For loop, 8 30 = (2 j4)i ji 2

More information

Simulation of Dynamic BAN Channel for Navel to Arm Links Based on Antenna Motion

Simulation of Dynamic BAN Channel for Navel to Arm Links Based on Antenna Motion Simulatio of Dyamic BAN Chael for Navel to Arm Liks Based o Atea Motio Iswadi, Miseok Kim, Ju-ichi Takada, Takahiro Aoyagi Graduate School of Sciece ad Egieerig Tokyo Istitute of Techology Outlie Itroductio

More information

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals Itroductio to Digital Sigal Processig Chapter : Itroductio Aalog ad Digital Sigals aalog = cotiuous-time cotiuous amplitude digital = discrete-time discrete amplitude cotiuous amplitude discrete amplitude

More information