Microwave Oscillators Design

Size: px
Start display at page:

Download "Microwave Oscillators Design"

Transcription

1 Microwave Oscillators Design

2 Oscillators Classification Feedback Oscillators β Α Oscillation Condition: Gloop = A β(jω 0 ) = 1 Gloop(jω 0 ) = 1, Gloop(jω 0 )=2nπ Negative resistance oscillators Most used at microwave frequencies Passive Network Z p Z A Active Network ( ω), ( ω) Z = R + j X Z = R + j X A A A p p p Oscillation Condition : ( ω ) ( ω ) R = R, X + X = 0 A p A 0 p 0

3 Characteristic Parameters Generated power at output Shape of the signal generated Amplitude/Phase stability Sensitivity of the oscillation frequency to the circuit components and to the bias sources Dependence of amplitude and frequency on the external loads (load pulling) Initial start-up

4 Main parameters definition Stability of the oscillation frequency: it is referred as Indirect Stability Coefficient S F : dφ d X A( ω) + X p ( ω) Gloop SFX, = ω SF, Φ = ωo o dω dω ω= ω 0 A change Φ of the Gloop phase (or X of overall reactance) produces a variation of the oscillation radian frequency given by: ω = ω0 φ S F, Φ Harmonic distortion: it is an index of how close is the produced waveshape to the ideal sinusoid. It defines numerically the amplitude of the harmonic referred to the fundamental (ω o ). Phase and Amplitude Noise: it defines the random fluctuations of amplitude and phase of the generated signal. While the noise amplitude can be removed (or limited) with a suitable circuitry, the phase noise can not be removed from the output signal and is the most important drawback introduced by the oscillators in communication systems ω= ω 0

5 Graphical representation of indirect stability Gloop 2π S F,Φ φ 0 0 φ ω = ω 1+ S F, Φ ω 0 ω0 φ = ω S 0 F, Φ The larger is S F, the lower is the frequency shift (ω 0 -ω 0 ) for a phase drift φ ω 0 ω 0 f

6 General configuration of a microwave oscillator Z A, Γ A Z B, Γ B Network A Network B R 0 Z in, Γ in Active Device Z out, Γ out In order to produce a sinusoidal signal, it is necessary that a negative resistance is observed at input and output of the active device (that is an input/output reflection coefficient with magnitude larger that one). As a consequence, the active device must be potentially instable (K<1), so, given Γ A and Γ B, we must have (at the oscillation frequency): Γ > 1, Γ > 1 in out

7 Increase the instability of active devices To increment the instability we must decrease the K parameter of the device. This can be obtained by changing the reference terminal or by introducing positive feedback: L C a

8 Oscillation Conditions (regime) Γ out Γ B Γ A Γ in Z A Z B A B Γin ( jω0) Γ A ( jω0) = 1 ( Z Z ) ( Y Y ) + = 0 or + = 0 in A in A Γ ( jω ) Γ ( jω ) = ( Zout ZB ) ( Yout YB ) out 0 B = 0 or + = 0 These condition apply in steady-state, i.e. when the output voltage amplitude is stabilized; it can be shown that in this condition only one of the equations above is required (the other is implied).

9 Oscillation Conditions (start-up) To guarantee the start of the oscillation the poles must be in the right-hand plane, then: Γ ( jω ) Γ ( jω ) > ( Z Z ) ( Y Y ) in 0 A 0 1 Re + < 0 or Re + < 0 in A in A Γ ( jω ) Γ ( jω ) > ( Z Z ) ( Y Y ) out 0 B 0 1 Re + < 0 or Re + < 0 out B out B In this case both conditions must be verified in order to guarantee the oscillation start-up. After the start-up the oscillation grows and the poles must move towards the left-hand plane (it is produced by the non-linearity of the active device). Once the poles reach the imaginary axis the oscillation remains with constant amplitude and the transient is concluded.

10 Frequency of oscillation The oscillation frequency is determined by the regime condition. Combining with the start-up requirement: ( jω0) ( jω0 ) 1, ( jω0) ( jω0) Γ ( jω ) Γ ( jω ) = 0 Γ Γ > Γ Γ > 1 in A out B ( in 0 A 0 ) To increase the oscillation stability, only the phase of Γ A should determine ω 0. This is obtained by imposing the slope of Γ A (ω 0 ) much large than that of Γ in (ω 0 ) (by using resonating components for which Γ A 1). Note that once ω 0 is imposed at section A, it is also verified (at regime) at section B. If the impedances are considered the equations become: ( ω ) ( ω ) ( ω0) B ( ω0) X ( jω ) + X ( jω ) = 0 R j 0 + R j 0 < 0, R j + R j < 0 in A out in 0 A 0

11 Mapping Circles Smith Chart is useful also for oscillators design. Specifically, we can draw on the Γ s plane the locus of points where the value of Γ out has been assigned. This locus is a circle with the following center and radius: Γ S Γ out C s * 2 * 22 Γout s s = Γ out s 11 Γ s s S Γ out = s22 + = ( 1 ΓS s11) cost r s s s Γ = Γ out out s 11

12 General design procedure (1) The design goal is to get Γ A e Γ B allowing the start of oscillation. The active device is characterized by the scattering parameters S at the oscillation frequency f 0. Usually Γ A =1 is imposed (in order to have the network A made of reactive components). Γ A (phase) and Γ B (magnitude and phase) are therefore the unknowns of the design Evaluation of Γ A Γ out > 1 is assigned (compatibly with the used active device). The relative mapping circle is drawn on the Smith Chart Mapping Circle Γ out >1 Plane of Γ s

13 General design procedure (2) The intersections of the mapping circle with the one delimiting the Smith Chart ( Γ s =1) are identified; if there are not intersections, a different value of Γ out must be assigned and another mapping circle drawn on the chart Intersections Plane of Γ S One of the intersection points is selected: Γ s =Γ A,opt ; network A is then synthesized as a reactive 1-port network presenting Γ A,opt at input

14 General design procedure (3) s21s12 Γ A, opt From Γ A,opt the ouput Γ is computed: Γ out = s s11 Γ A, opt Z out (o Y out ) is then evaluated from Γ out ; this impedance (admittance) has a negative real part Γ A,opt Γ out Γ B Rout (<0) Z out Z B R B (>0) X out X B Z B,opt (o Y B,opt ) is computed by imposing the following condition (start of oscillation): Z B,opt = R out /3-jX out or Y B,opt = G out /3-jB out This produces an overall impedance (admittance) real and negative

15 General design procedure (4) Z in and Y in are computed from Z B,opt (o Y B,opt ); one of the conditions (R in +R A,opt )<0 or (G in +G A,opt )<0 must be confirmed; otherwise a different value of Z B,opt (or Γ out ) must be selected and the design procedure repeated again Ζ A,opt Ζ in Ζ B,opt Network B Note: (R in +R A,opt )<0 is equivalent to: Γ in. Γ A,opt >1 Γ B,opt is finally evaluated from Z B,opt (o Y B,opt ) and the network B is synthesized by imposing the impedance transformation from the load

16 Notes on the design choices Besides the start of oscillations, the choice of (Γ A,opt, Γ B,opt ) must take into account all the other figure of merit of the oscillator (delivered power to load, harmonic distortion, load pulling...). Here are some general guidelines for the design: The loaded Q of the output network must be at least 10 (to suppress the harmonics) The reactance (or the susceptance) of one of the networks (A, B) should have a large derivative respect to the frequency for increasing the stability To limit the harmonic distortion, the active device should be biased in class A To increase the output power and efficiency the active device should be biased in class B or C

17 Design example: Oscillator at 6 GHz Biased Active device: MESFET GaAs DCVS ID=V2 V=Vds V Vds=3 Vgs=-0.3 S Parameters at 6 GHz: S 11 = S 21 = S 12 = S 22 = DCVS ID=V1 V=Vgs V 2 3 DC DC RF 1 RF & 2 PORT P=2 Z=50 Ohm PORT P=1 Z=50 Ohm 2 RF 3 DC BIASTEE ID=X1 DC RF & BIASTEE ID=X2 SUBCKT ID=S1 NET="NE76000_CEL" Stability Coeffcient: 0.227

18 Evaluation of Γ A,opt and Γ B,opt Γ out =1.3 Γ A,opt We assign Γ out =1.3. From the intersections of the mapping circle with Γ s =1 we select Γ A,opt = Piano dei Γ S We compute Γ out = From Γ out we obtain Y out = j mho. The start of oscillation is then imposed: Y B,opt =0.0733/3-j0.0716= j Γ B,opt = Verification of the condition on Γ in : Γ in, is computed from Γ B,opt : Γ in = Being Γ in >1 the condition is met.

19 Linear simulation Rete A Γ A,opt Γ B,opt Rete B TLIN ID=TL1 Z0=50 Ohm EL=Elin Deg F0=6 GHz ( A, opt ) Elin = 180 Γ 2 = SUBCKT ID=S1 NET="NE76000POL" 1 2 Γ out TLIN ID=TL2 Z0=50 Ohm EL= Deg F0=6 GHz LOAD ID=Z1 Z 50 Oh Y tot =Y out +Y B,opt

20 Magnitude of Γ out GammaOut 6 GHz S(1,1) Small Signal Input Frequency (GHz)

21 Total admittance at output Y tot Ammettenza totale (uscita del FET) Re(Y(1,1)) Oscill_smallsignal Im(Y(1,1)) Oscill_smallsignal GHz GHz Frequency (GHz)

22 Large Signal Analysis in MWO (Harmonic Balance) Connect a source V s (ω p ) to an arbitrary node of the oscillator circuit. Assume the following source impedance: 0 for ω = ω Z ( ω) = for p ω ω If the circuit oscillates and V s coincides with V x (magnitude and phase at ω p ) the current of the source (at ω p ) must be zero. The steady-state solution can be then found following these steps: p Connect the probe source (OSCAPROBE) to a convenient node Numerically search the frequency ω p and the phasor amplitude V s (ω p ) that determine I(ω p ) =0 (analysis is performed with harmonic balance, assuming the fundamental tone ω p with n harmonics)

23 Oscillation frequency: GHz Output Power at fundamental 9.11 dbm Example

24 Noise in oscillators The existence of noise in electric circuits determines fluctuations of the instantaneous phase of the generated signal. Power Spectrum of phase fluctuations This fluctuation can be assumed as a modulation of the sinusoid produced by noise; the resultant spectral density L(f) depends on the power spectrum of the fluctuations ( Φ 2 ). It is found that L(f) has the same shape of Φ 2 (for small modulation angle)

25 Phasorial description of noise + oscillation φ(t) V 0 n ( t) V, V V s u u V u n(t) 0 n c (t) n s (t) n(t) is a phasor with random magnitude and phase. n c (t) and n s (t) are the in phase and quadrature components. Half of the overall power density is associated to each of them n () t n () t n () t φ( t) = sin Vu Vu V0 1 s s s The spectrum of the phase fluctuations is proportional to the spectrum of added noise: Sφ ( f ) N( f ) = 2 P o

26 Typical Noise Spectrum N(f) 10 db/decade Noise 1/f White Noise f c f

27 Noise generated inside the feedback loop n(t) A + V u (t) β(ω) Noise is not simply summed to the output signal (it is instead injected into the feedback loop). The noise frequency components close to the oscillation frequency are amplified by the positive feedback. Ultimately, a broadening of the ideal spectral line characterizing the ideal oscillator is produced; the width of the spectrum depends on both the noise and the Gloop.

28 Leeson s Model for the Phase Noise This model relates the power spectrum of the phase fluctuations with the noise spectrum and the indirect stability of the oscillator: S φ f S 0 F 2 N( f ) 2 2 ( f ) N(f ) is the power spectrum of the noise; f is the deviation with respect the oscillation frequency f 0 ; S F is the indirect stability. For what said before, the spectrum of the signal generated by the oscillator around f 0 has the same shape of S φ. The model is accurate for small values of f

29 S φ ( f) distant from f 0 The Leeson s model holds true for the noise components inside the band of Gloop. This band (B) is the frequency interval within of which the oscillation condition are about satisfied. B is mainly determined by the selectivity of the feedback network (β). We can relate the value of B to the quality factor Q 0 of the feedback network through the well know relationship: B f = 0 Q0 Outside the band B the noise is simply added to the signal and the spectrum results proportional to the noise spectrum (white, density N).

30 Typical phase noise spectrum S φ 30 db/decade White noise + 1/f S φ f S 0 F 2 N( f ) 2 2 ( f ) S φ N( f ) 20 db/decade White noise White noise f c f 0 /2Q 0 f

31 Spectrum of oscillation voltage The spectrum of V u (t) around f 0 is proportional to S φ (f ) The spectrum of V u (t) is symmetric if only phase noise is present The"Carrier to noise ratio (CNR) is defined as: CNR( f ) = P0 S f f = P ( + ) S ( f ) V0 0 φ 0 CNR is the main figure of merit of an oscillator concerning the phase noise; it is typically specified (in db) for small deviations with respect f 0 (from few Hz to several MHz). Typical values in microwave amplifiers span from 80 dbc to over 120 dbc (for f = 100 KHz).

Nonlinear Circuit Analysis in Time and Frequency-domain Example: A Pure LC Resonator

Nonlinear Circuit Analysis in Time and Frequency-domain Example: A Pure LC Resonator Nonlinear Circuit Analysis in Time and Frequency-domain Example: A Pure LC Resonator AWR Microwave Office Application Note INTRODUCTION Nonlinear circuits are known to have multiple mathematical solutions

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 14 Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current

More information

Lecture 14 Date:

Lecture 14 Date: Lecture 14 Date: 18.09.2014 L Type Matching Network Examples Nodal Quality Factor T- and Pi- Matching Networks Microstrip Matching Networks Series- and Shunt-stub Matching L Type Matching Network (contd.)

More information

ECE 5260 Microwave Engineering University of Virginia. Some Background: Circuit and Field Quantities and their Relations

ECE 5260 Microwave Engineering University of Virginia. Some Background: Circuit and Field Quantities and their Relations ECE 5260 Microwave Engineering University of Virginia Lecture 2 Review of Fundamental Circuit Concepts and Introduction to Transmission Lines Although electromagnetic field theory and Maxwell s equations

More information

RF Amplifier Design. RF Electronics Spring, 2018 Robert R. Krchnavek Rowan University

RF Amplifier Design. RF Electronics Spring, 2018 Robert R. Krchnavek Rowan University RF Amplifier Design RF Electronics Spring, 2018 Robert R. Krchnavek Rowan University Objectives Be able to bias an RF amplifier Understand the meaning of various parameters used to describe RF amplifiers

More information

Annexure-I. network acts as a buffer in matching the impedance of the plasma reactor to that of the RF

Annexure-I. network acts as a buffer in matching the impedance of the plasma reactor to that of the RF Annexure-I Impedance matching and Smith chart The output impedance of the RF generator is 50 ohms. The impedance matching network acts as a buffer in matching the impedance of the plasma reactor to that

More information

Frequency Dependent Aspects of Op-amps

Frequency Dependent Aspects of Op-amps Frequency Dependent Aspects of Op-amps Frequency dependent feedback circuits The arguments that lead to expressions describing the circuit gain of inverting and non-inverting amplifier circuits with resistive

More information

Imaginary Impedance Axis. Real Impedance Axis. Smith Chart. The circles, tangent to the right side of the chart, are constant resistance circles

Imaginary Impedance Axis. Real Impedance Axis. Smith Chart. The circles, tangent to the right side of the chart, are constant resistance circles The Smith Chart The Smith Chart is simply a graphical calculator for computing impedance as a function of reflection coefficient. Many problems can be easily visualized with the Smith Chart The Smith chart

More information

Introduction to CMOS RF Integrated Circuits Design

Introduction to CMOS RF Integrated Circuits Design V. Voltage Controlled Oscillators Fall 2012, Prof. JianJun Zhou V-1 Outline Phase Noise and Spurs Ring VCO LC VCO Frequency Tuning (Varactor, SCA) Phase Noise Estimation Quadrature Phase Generator Fall

More information

General Topology of a single stage microwave amplifier

General Topology of a single stage microwave amplifier General Topology of a ingle tage microwave amplifier Tak of MATCH network (in and out): To preent at the active device uitable impedance Z and Z S Deign Step The deign of a mall ignal microwave amplifier

More information

Chapter 10: Sinusoids and Phasors

Chapter 10: Sinusoids and Phasors Chapter 10: Sinusoids and Phasors 1. Motivation 2. Sinusoid Features 3. Phasors 4. Phasor Relationships for Circuit Elements 5. Impedance and Admittance 6. Kirchhoff s Laws in the Frequency Domain 7. Impedance

More information

Refinements to Incremental Transistor Model

Refinements to Incremental Transistor Model Refinements to Incremental Transistor Model This section presents modifications to the incremental models that account for non-ideal transistor behavior Incremental output port resistance Incremental changes

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

Basics of Electric Circuits

Basics of Electric Circuits António Dente Célia de Jesus February 2014 1 Alternating Current Circuits 1.1 Using Phasors There are practical and economic reasons justifying that electrical generators produce emf with alternating and

More information

Chapter 10 Feedback. PART C: Stability and Compensation

Chapter 10 Feedback. PART C: Stability and Compensation 1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

More information

Lecture 9. The Smith Chart and Basic Impedance-Matching Concepts

Lecture 9. The Smith Chart and Basic Impedance-Matching Concepts ecture 9 The Smith Chart and Basic Impedance-Matching Concepts The Smith Chart: Γ plot in the Complex Plane Smith s chart is a graphical representation in the complex Γ plane of the input impedance, the

More information

Linear Phase-Noise Model

Linear Phase-Noise Model Linear Phase-Noise Model 41 Sub-Outline Generic Linear Phase-Noise Model Circuit-Specific Linear Phase-Noise Model 4 Generic Linear Phase-Noise Model - Outline Linear Oscillator Model LC-Tank noise active

More information

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1 Module 4 Single-phase A ircuits ersion EE IIT, Kharagpur esson 4 Solution of urrent in -- Series ircuits ersion EE IIT, Kharagpur In the last lesson, two points were described:. How to represent a sinusoidal

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 11 Sinusoidal Steady-State Analysis Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 11.1

More information

) Rotate L by 120 clockwise to obtain in!! anywhere between load and generator: rotation by 2d in clockwise direction. d=distance from the load to the

) Rotate L by 120 clockwise to obtain in!! anywhere between load and generator: rotation by 2d in clockwise direction. d=distance from the load to the 3.1 Smith Chart Construction: Start with polar representation of. L ; in on lossless lines related by simple phase change ) Idea: polar plot going from L to in involves simple rotation. in jj 1 ) circle

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

Black Box Modelling of Power Transistors in the Frequency Domain

Black Box Modelling of Power Transistors in the Frequency Domain Jan Verspecht bvba Mechelstraat 17 B-1745 Opwijk Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Black Box Modelling of Power Transistors in the Frequency Domain Jan Verspecht

More information

Berkeley. The Smith Chart. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2017 by Ali M. Niknejad. September 14, 2017

Berkeley. The Smith Chart. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2017 by Ali M. Niknejad. September 14, 2017 Berkeley The Smith Chart Prof. Ali M. Niknejad U.C. Berkeley Copyright c 17 by Ali M. Niknejad September 14, 17 1 / 29 The Smith Chart The Smith Chart is simply a graphical calculator for computing impedance

More information

Chapter 8: Converter Transfer Functions

Chapter 8: Converter Transfer Functions Chapter 8. Converter Transfer Functions 8.1. Review of Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right half-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.

More information

Load-pull measurement of transistor negative input impedance

Load-pull measurement of transistor negative input impedance Jan Verspecht bvba Gertrudeveld 15 1840 Steenhuffel Belgium email: contact@janverspecht.com web: http://www.janverspecht.com Load-pull measurement of transistor negative input impedance Fabien De Groote,

More information

Lowpass L Matching Network Designer

Lowpass L Matching Network Designer Lowpass L Matching Network Designer V S L V L I S j*x S C j*x L Table of Contents I. General Impedance Matching II. Impedance Transformation for Power Amplifiers III. Inputs IV. Calculations V. Outputs

More information

Lecture 12 Date:

Lecture 12 Date: Lecture 12 Date: 09.02.2017 Microstrip Matching Networks Series- and Shunt-stub Matching Quarter Wave Impedance Transformer Microstrip Line Matching Networks In the lower RF region, its often a standard

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase circuits ersion EE T, Kharagpur esson 6 Solution of urrent in Parallel and Seriesparallel ircuits ersion EE T, Kharagpur n the last lesson, the following points were described:. How

More information

TRANSMISSION LINES AND MATCHING

TRANSMISSION LINES AND MATCHING TRANSMISSION LINES AND MATCHING for High-Frequency Circuit Design Elective by Michael Tse September 2003 Contents Basic models The Telegrapher s equations and solutions Transmission line equations The

More information

Lecture 24. Impedance of AC Circuits.

Lecture 24. Impedance of AC Circuits. Lecture 4. Impedance of AC Circuits. Don t forget to complete course evaluations: https://sakai.rutgers.edu/portal/site/sirs Post-test. You are required to attend one of the lectures on Thursday, Dec.

More information

AC Circuit Analysis and Measurement Lab Assignment 8

AC Circuit Analysis and Measurement Lab Assignment 8 Electric Circuit Lab Assignments elcirc_lab87.fm - 1 AC Circuit Analysis and Measurement Lab Assignment 8 Introduction When analyzing an electric circuit that contains reactive components, inductors and

More information

Lecture 13 Date:

Lecture 13 Date: ecture 3 Date: 6.09.204 The Signal Flow Graph (Contd.) Impedance Matching and Tuning Tpe Matching Network Example Signal Flow Graph (contd.) Splitting Rule Now consider the three equations SFG a a b 2

More information

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o ----------- ----------- w L =Q - w o πf o w h =Qw o w L ~ RC w h w L f(l) w h f(c) B. Construction from T(s) Asymptotes

More information

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ 27 Frequency Response Before starting, review phasor analysis, Bode plots... Key concept: small-signal models for amplifiers are linear and therefore, cosines and sines are solutions of the linear differential

More information

Problem 1 Γ= = 0.1λ = max VSWR = 13

Problem 1 Γ= = 0.1λ = max VSWR = 13 Smith Chart Problems 1. The 0:1 length line shown has a characteristic impedance of 50 and is terminated with a load impedance of Z =5+j25. (a) ocate z = Z Z 0 =0:1+j0:5 onthe Smith chart. See the point

More information

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel esson 6 Solution of urrent in Parallel and Seriesparallel ircuits n the last lesson, the following points were described:. How to compute the total impedance/admittance in series/parallel circuits?. How

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such

More information

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Introduction 11.1. DCM Averaged Switch Model 11.2. Small-Signal AC Modeling of the DCM Switch Network 11.3. High-Frequency

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

Sinusoidal Steady State Analysis (AC Analysis) Part I

Sinusoidal Steady State Analysis (AC Analysis) Part I Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Sinusoidal Steady-State Analysis Mauro Forti October 27, 2018 Constitutive Relations in the Frequency Domain Consider a network with independent voltage and current sources at the same angular frequency

More information

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) = 3 Electrical Circuits 3. Basic Concepts Electric charge coulomb of negative change contains 624 0 8 electrons. Current ampere is a steady flow of coulomb of change pass a given point in a conductor in

More information

Sinusoids and Phasors

Sinusoids and Phasors CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are time-varying. In this chapter, we are particularly interested in sinusoidally time-varying

More information

Voltage reflection coefficient Γ. L e V V. = e. At the load Γ (l = 0) ; Γ = V V

Voltage reflection coefficient Γ. L e V V. = e. At the load Γ (l = 0) ; Γ = V V of 3 Smith hart Tutorial Part To begin with we start with the definition of SWR, which is the ratio of the reflected voltage over the incident voltage. The Reflection coefficient Γ is simply the complex

More information

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS 1. Introduction A sinusoidal current has the following form: where I m is the amplitude value; ω=2 πf is the angular frequency; φ is the phase shift. i (t )=I m.sin

More information

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42 EE 05 Dr. A. Zidouri Electric Circuits Two-Port Circuits Two-Port Parameters Lecture #4-1 - EE 05 Dr. A. Zidouri The material to be covered in this lecture is as follows: o ntroduction to two-port circuits

More information

Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response

Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response Frequency response XE3EO2 Lecture Pavel Máša - Frequency response INTRODUCTION Frequency response describe frequency dependence of output to input voltage magnitude ratio and its phase shift as a function

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

EE221 Circuits II. Chapter 14 Frequency Response

EE221 Circuits II. Chapter 14 Frequency Response EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active

More information

E08 Gyroscope Drive Design

E08 Gyroscope Drive Design POLITECNICO DI MILANO MSC COURSE - MEMS AND MICROSENSORS - 207/208 E08 Gyroscope Drive Design Paolo Minotti 26/0/207 PROBLEM We have to design the electronic circuit needed to sustain the oscillation of

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators

More information

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 14 Oscillators Let us consider sinusoidal oscillators.

More information

Module 13: Network Analysis and Directional Couplers

Module 13: Network Analysis and Directional Couplers Module 13: Network Analysis and Directional Couplers 13.2 Network theory two port networks, S-parameters, Z-parameters, Y-parameters The study of two port networks is important in the field of electrical

More information

ECE137B Final Exam. Wednesday 6/8/2016, 7:30-10:30PM.

ECE137B Final Exam. Wednesday 6/8/2016, 7:30-10:30PM. ECE137B Final Exam Wednesday 6/8/2016, 7:30-10:30PM. There are7 problems on this exam and you have 3 hours There are pages 1-32 in the exam: please make sure all are there. Do not open this exam until

More information

Classic Linear Methods Provisos Verification for Oscillator Design Using NDF and Its Use as Oscillators Design Tool

Classic Linear Methods Provisos Verification for Oscillator Design Using NDF and Its Use as Oscillators Design Tool Circuits and Systems, 2013, 4, 89-96 http://dx.doi.org/10.4236/cs.2013.41014 Published Online January 2013 (http://www.scirp.org/journal/cs) Classic Linear Methods Provisos Verification for Oscillator

More information

KH600. 1GHz, Differential Input/Output Amplifier. Features. Description. Applications. Typical Application

KH600. 1GHz, Differential Input/Output Amplifier. Features. Description. Applications. Typical Application KH 1GHz, Differential Input/Output Amplifier www.cadeka.com Features DC - 1GHz bandwidth Fixed 1dB (V/V) gain 1Ω (differential) inputs and outputs -7/-dBc nd/3rd HD at MHz ma output current 9V pp into

More information

Three Phase Circuits

Three Phase Circuits Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE Previously on ELCN102 Three Phase Circuits Balanced

More information

Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1. Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω.

Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1. Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Homework 2 SJTU233 Problem 1 Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Express Zab in polar form. Enter your answer using polar notation. Express argument in degrees.

More information

GHz 6-Bit Digital Phase Shifter

GHz 6-Bit Digital Phase Shifter 180 90 45 22.5 11.25 5.625 ASL 2004P7 3.1 3.5 GHz 6-Bit Digital Phase Shifter Features Functional Diagram Frequency Range: 3.1 to 3.5 GHz RMS Error < 2 deg. 5 db Insertion Loss TTL Control Inputs 0.5-um

More information

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Physics 142 A ircuits Page 1 A ircuits I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Alternating current: generators and values It is relatively easy to devise a source (a generator

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

Chapter 8: Converter Transfer Functions

Chapter 8: Converter Transfer Functions Chapter 8. Converter Transer Functions 8.1. Review o Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right hal-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.

More information

Conventional Paper-I Part A. 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy

Conventional Paper-I Part A. 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy EE-Conventional Paper-I IES-01 www.gateforum.com Conventional Paper-I-01 Part A 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy impedance for a lossy dielectric

More information

1 Unified Power Flow Controller (UPFC)

1 Unified Power Flow Controller (UPFC) Power flow control with UPFC Rusejla Sadikovic Internal report 1 Unified Power Flow Controller (UPFC) The UPFC can provide simultaneous control of all basic power system parameters ( transmission voltage,

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Lecture 17 Date:

Lecture 17 Date: Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A

More information

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications: 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

More information

ECE145A/218A Course Notes

ECE145A/218A Course Notes ECE145A/218A Course Notes Last note set: Introduction to transmission lines 1. Transmission lines are a linear system - superposition can be used 2. Wave equation permits forward and reverse wave propagation

More information

ANTENNAS and MICROWAVES ENGINEERING (650427)

ANTENNAS and MICROWAVES ENGINEERING (650427) Philadelphia University Faculty of Engineering Communication and Electronics Engineering ANTENNAS and MICROWAVES ENGINEERING (65427) Part 2 Dr. Omar R Daoud 1 General Considerations It is a two-port network

More information

Microwave Circuits Design

Microwave Circuits Design The Smith Chart: The Smith chart is a graphical aide used to simplify the solution of Tx-line problems More importantly, the Smith chart allows us to visualize the periodic nature of the line impedance

More information

Measurement of S-Parameters. Transfer of the Reference Plane. Power Waves. Graphic Representation of Waves in Circuits

Measurement of S-Parameters. Transfer of the Reference Plane. Power Waves. Graphic Representation of Waves in Circuits Lecture 6 RF Amplifier Design Johan Wernehag Electrical and Information Technology Lecture 6 Amplifier Design Toughest week in the course, hang S-Parameters in there Definitions Power Waves Applications

More information

Chapter 5 Impedance Matching and Tuning

Chapter 5 Impedance Matching and Tuning 3/25/29 section 5_1 Match with umped Elements 1/3 Chapter 5 Impedance Match and Tun One of the most important and fundamental two-port networks that microwave eneers des is a lossless match network (otherwise

More information

Circuit Topologies & Analysis Techniques in HF ICs

Circuit Topologies & Analysis Techniques in HF ICs Circuit Topologies & Analysis Techniques in HF ICs 1 Outline Analog vs. Microwave Circuit Design Impedance matching Tuned circuit topologies Techniques to maximize bandwidth Challenges in differential

More information

Introduction. A microwave circuit is an interconnection of components whose size is comparable with the wavelength at the operation frequency

Introduction. A microwave circuit is an interconnection of components whose size is comparable with the wavelength at the operation frequency Introduction A microwave circuit is an interconnection of components whose size is comparable with the wavelength at the operation frequency Type of Components: Interconnection: it is not an ideal connection

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company Basic C m ш ircuit Theory Charles A. Desoer and Ernest S. Kuh Department of Electrical Engineering and Computer Sciences University of California, Berkeley McGraw-Hill Book Company New York St. Louis San

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory Session 2

More information

Power system modelling under the phasor approximation

Power system modelling under the phasor approximation ELEC0047 - Power system dynamics, control and stability Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 16 Electromagnetic transient vs. phasor-mode simulations

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

Chapter 2 Circuit Elements

Chapter 2 Circuit Elements Chapter Circuit Elements Chapter Circuit Elements.... Introduction.... Circuit Element Construction....3 Resistor....4 Inductor...4.5 Capacitor...6.6 Element Basics...8.6. Element Reciprocals...8.6. Reactance...8.6.3

More information

11. AC Circuit Power Analysis

11. AC Circuit Power Analysis . AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous

More information

Solutions to Problems in Chapter 6

Solutions to Problems in Chapter 6 Appendix F Solutions to Problems in Chapter 6 F.1 Problem 6.1 Short-circuited transmission lines Section 6.2.1 (book page 193) describes the method to determine the overall length of the transmission line

More information

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there. ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages -9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit

More information

y(d) = j

y(d) = j Problem 2.66 A 0-Ω transmission line is to be matched to a computer terminal with Z L = ( j25) Ω by inserting an appropriate reactance in parallel with the line. If f = 800 MHz and ε r = 4, determine the

More information

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines TC 412 Microwave Communications Lecture 6 Transmission lines problems and microstrip lines RS 1 Review Input impedance for finite length line Quarter wavelength line Half wavelength line Smith chart A

More information

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7.

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7. Name Section Short Answer Questions 1. (20 Pts) 2. (10 Pts) 3. (5 Pts). (10 Pts) 5. (10 Pts) Regular Questions 6. (25 Pts) 7. (20 Pts) Notes: 1. Please read over all questions before you begin your work.

More information

Microwave Circuit Design I

Microwave Circuit Design I 9 1 Microwave Circuit Design I Lecture 9 Topics: 1. Admittance Smith Chart 2. Impedance Matching 3. Single-Stub Tuning Reading: Pozar pp. 228 235 The Admittance Smith Chart Since the following is also

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

Conventional Paper-I-2011 PART-A

Conventional Paper-I-2011 PART-A Conventional Paper-I-0 PART-A.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

An Integrated Overview of CAD/CAE Tools and Their Use on Nonlinear Network Design

An Integrated Overview of CAD/CAE Tools and Their Use on Nonlinear Network Design An Integrated Overview of CAD/CAE Tools and Their Use on Nonlinear Networ Design José Carlos Pedro and Nuno Borges Carvalho Telecommunications Institute University of Aveiro International Microwave Symposium

More information

An Introduction to the Smith Chart for Amateur Radio. Jesse Sheinwald, N2CA

An Introduction to the Smith Chart for Amateur Radio. Jesse Sheinwald, N2CA An Introduction to the Smith Chart for Amateur Radio Jesse Sheinwald, N2CA jsheinwald@pobox.com ± 180 50 20 0.1 0.3 0.5 0.7 0.9 1.2 1.4 1.6 1.8 2.0 3.0 4.0 5.0 10 20 50-90 0 0 < 0.1 0.3 0.5 0.7 0.9 1.2

More information

The Operation of a Generator on Infinite Busbars

The Operation of a Generator on Infinite Busbars The Operation of a Generator on Infinite Busbars In order to simplify the ideas as much as possible the resistance of the generator will be neglected; in practice this assumption is usually reasonable.

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

Solutions to Problems in Chapter 5

Solutions to Problems in Chapter 5 Appendix E Solutions to Problems in Chapter 5 E. Problem 5. Properties of the two-port network The network is mismatched at both ports (s 0 and s 0). The network is reciprocal (s s ). The network is symmetrical

More information