Three Phase Circuits

Size: px
Start display at page:

Download "Three Phase Circuits"

Transcription

1 Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University

2 OUTLINE Previously on ELCN102 Three Phase Circuits Balanced Star-Star Connection Balanced Star-Delta Connection Balanced Delta-Delta Connection Balanced Delta-Star Connection Unbalanced Three Phase System 2

3 Previously on ELCN102 Instantaneous Power Instantaneous power p t is the product of the instantaneous voltage v(t) across the element and the instantaneous current i(t) through it p t = v t i t v t = V m cos ωt + φ v, i t = I m cos ωt + φ i p t = V m I m cos ωt + φ v cos ωt + φ = V mi m 2 cos 2ωt + φ v + φ i + cos φ v φ i 3

4 Previously on ELCN102 Instantaneous Power p t = 1 2 V mi m cos 2ωt + φ v + φ i + cos φ v φ i 4

5 Previously on ELCN102 Average Power Average Power (P av ) is the average of p t over one period P av = 1 T න 0 T p t dt = 1 T න 0 T V m I m 2 cos 2ωt + φ v + φ i + cos φ v φ i dt = 1 2 V mi m cos φ v φ i 5

6 Previously on ELCN102 Average Power Average Power (P av ) is the average of p t over one period P av = 1 2 V mi m cos φ v φ i 6

7 Previously on ELCN102 Average Power Z = Z Z = R + jx R = Z cos Z, P av = 1 2 V mi m cos φ v φ i X = Z sin Z = I m 2 2 Z cos Z = I m 2 R 2 For impedance Z, the average power is given by P av = I m 2 R 2 R = Re Z is the resistive part of Z 7

8 Previously on ELCN102 Average Power For φ v φ i = 0 P av = 1 2 V mi m cos φ v φ i Z is pure resistive and the average power absorbed by the impedance will be maximum. For φ v φ i = ±90 o Z is pure reactive and the average power absorbed by the impedance will be zero. 8

9 Previously on ELCN102 Root Mean Square Root Mean Square (rms) or Effective value of a varying signal is defined as the value of DC signal that would produce the same power dissipation in a resistive load DC Signal Sinusoidal Signal 2 P av = I eff R 2 I eff = I m 2 2 I eff = I m 2 P av = I m 2 2 R The eff value of a sinusoidal signal = Maximum of the sinusoidal 2 9

10 Previously on ELCN102 Root Mean Square Root Mean Square (rms) or Effective value of a varying signal is defined as the value of DC signal that would produce the same power dissipation in a resistive load DC Signal 2 P av = I eff R Any periodic Signal P av = 1 T න 0 T i t v t dt I eff = 1 T න 0 T i 2 t dt = R T න 0 T i 2 t dt 10

11 Previously on ELCN102 Complex Power Complex power is important in power analysis because it contains all the information about the power absorbed by a given load. The complex power S absorbed by an AC load is the product of the voltage and the complex conjugate of the current S = 1 V I 2 V = V m φ v, I = I m φ i S = 1 2 V mi m φ v φ i 11

12 Previously on ELCN102 Maximum Average Power Transfer For maximum average power transfer, the load impedance Z L must be equal to the complex conjugate of the Thevenin/Norton impedance Z Th. For maximum power P ZL Z L = Z th = Z N 12

13 Previously on ELCN102 Maximum Average Power Transfer P ZL = V m 2 R th 2 4R th 2 P ZL = V m 2 8R th V rms = V m 2 V 2 rms = V m 2 2 Z th = R th + jx th P ZL = V 2 rms 4R th Z L = Z th = R th jx th 13

14 Previously on ELCN102 Complex Power S = V rms I rms φ v φ i = V rms I rms cos φ v φ i + jv rms I rms sin φ v φ i 2 2 = I rms R + ji rms X = P + jq P = Re S is called the Active Power and its unit is Watt. Q = Im S is called the Reactive Power and its unit is VAR. A = S = V rms I rms is the Apparent Power and its unit is VA. φ v φ i is the Power Factor Angle. 14

15 Single phase Circuits Up to now, we are dealing with a single phase AC power system which consists of An AC generator (V AC = V p φ) A load (Z L ). A pair of wires (a transmission line) to connect the generator and the load. 15

16 Polyphase Circuits Circuits or systems in which the AC sources operate at the same frequency but different phases are known as polyphase. 16

17 Polyphase Circuits Two-phase generator produces two sources having the same amplitude and frequency but out of phase with each other by 90 o. 17

18 Polyphase Circuits Three-phase generator produces three sources having the same amplitude and frequency but out of phase with each other by 120 o 18

19 Three Phase Circuits Three Phase Voltages Three phase power transmission has become the standard for power distribution, at the operating frequency of 60 Hz (in the United States) or 50 Hz in most other parts of the world. For the generation of same amount of power, the three-phase system is more economical than the single-phase. For the transmission of same amount of power, the threephase system is more economical than the single-phase. The instantaneous power in a three-phase system is constant. This results in smooth and vibration free operation of machine. A 3-phase generator can be used to feed a 1-phase load, whereas vice-versa is not possible. 19

20 Generation of Three Phase Voltages Electricity is generated by varying the magnetic flux passing through an inductor. One way to do this is by rotating a coil between two magnetic poles. 20

21 Generation of Three Phase Voltages Electricity is generated by varying the magnetic flux passing through an inductor. The other way to do this is by keeping the coil stationary (stator) and rotating a magnetic (rotor). 21

22 Generation of Three Phase Voltages By winding two coils around the stator, two waves can be generated. The two signals have the same magnitude and frequency but different phase. 22

23 Generation of Three Phase Voltages A three-phase voltage source is a generator with three separate windings distributed around the periphery of the stator. The three signals have the same magnitude and frequency but out of phase with each other by 120 o. 23

24 Generation of Three Phase Voltages Standard practice is to refer to the three phases as a, b, and c, and to use the a-phase as the reference phase. The abc sequence (+ve sequence) is produced when the rotor rotates counterclockwise. V a = V m 0 o, V b = V m 120 o, V c = V m 120 o 24

25 Generation of Three Phase Voltages Standard practice is to refer to the three phases as a, b, and c, and to use the a-phase as the reference phase. The acb sequence ( ve sequence) is produced when the rotor rotates clockwise. V a = V m 0 o, V b = V m 120 o, V c = V m 120 o 25

26 Source Connections A typical three-phase system consists of three voltage sources connected to loads by three or four wires. The first source configuration is done by connecting a, ư ሗb, and cư to one node n (called the neutral node). Star Connection 26

27 Source Connections A typical three-phase system consists of three voltage sources connected to loads by three or four wires. The second source configuration is done by connecting a to c, ư c to ሗb, and b to a. ư Delta Connection 27

28 Star Connections The phase voltages V an, V bn, and V cn are respectively between lines a, b, and c, and the neutral line n. V an = V p 0 o, V bn = V p 120 o, V cn = V p 120 o V an V p + j0 V bn V p cos 120 o + jv p sin 120 o V cn V p cos 120 o + jv p sin 120 o Total 28

29 Star Connections The phase voltages V an, V bn, and V cn are respectively between lines a, b, and c, and the neutral line n. V an = V p 0 o, V bn = V p 120 o, V cn = V p 120 o V an V bn V cn V p + j0 0.5V p + jv p sin 120 o 0.5V p jv p sin 120 o Total 0 29

30 Star Connections The phase voltages V an, V bn, and V cn are respectively between lines a, b, and c, and the neutral line n. V an = V p 0 o, V bn = V p 120 o, V cn = V p 120 o If the voltage sources have the same amplitude and frequency ω and are out of phase with each other by 120 o, the voltages are said to be balanced. 30

31 Example (1) Three Phase Circuits Determine the phase sequence of the set of voltages : v an t = 200 cos(ωt + 10 o ) v bn t = 200 cos(ωt 230 o ) v cn t = 200 cos(ωt 110 o ) 31

32 Load Connections Similar to the source, the load has two configuration Star Connection Delta Connection A balanced load is one in which the phase impedances are equal in magnitude and in phase. 32

33 Circuit Connections Because there are two configuration for the source and load connections, there are four different configuration for the whole circuit. Source Connection Load Connection System Connection Star Connection Star Connection Star-Star Connection Star Connection Delta Connection Star-Delta Connection Delta Connection Star Connection Delta-Star Connection Delta Connection Delta Connection Delta-Delta Connection 33

34 Balanced Star-Star Connection A balanced Y-Y system is a three-phase system with a balanced Y-connected source and a balanced Y-connected load. Z s is the source impedance. Z l is the line impedance. Z L is the load impedance. Z n is the neutral line impedance. Z Y = Z s + Z L + Z l 34

35 Balanced Star-Star Connection KCL at node N I n = I a + I b + I c V N Z n = V an V N Z Y + V bn V N Z Y + V cn V N Z Y 35

36 Balanced Star-Star Connection KCL at node N I n = I a + I b + I c V N 1 Z n + 3 Z Y = V an + V bn + V cn Z Y 36

37 Balanced Star-Star Connection KCL at node N I n = I a + I b + I c V an + V bn + V cn = 0 V N 1 Z n + 3 Z Y = 0 37

38 Balanced Star-Star Connection KCL at node N I n = I a + I b + I c 1 V an + V bn + V cn = 0 VV N + 3 N = 0 I= n = 0 0 Z n Z Y 38

39 Balanced Star-Star Connection For a balanced star-star connection, the neutral line can be removed without affecting the system. I a + I b + I c = 0 V N V n = 0 39

40 Balanced Star-Star Connection I a = V an Z Y = V p 0 o Z Y I b = V bn = V p 120 o = I Z Y Z a 120 o Y I c = V cn = V p 120 o = I Z a 120 o Y Z Y I a, I b, and I c are called the line currents. 40

41 Example (2) Three Phase Circuits Calculate the line currents in the three-wire Y-Y system shown. 41

42 Balanced Star-Delta Connection A balanced Y- system is a three-phase system with a balanced Y- connected source and a balanced -connected load. V an = V p 0 o, V bn = V p 120 o, V cn = V p 120 o V an, V bn, and V cn are called phase voltage 42

43 Balanced Star-Delta Connection V an = V p 0 o, V bn = V p 120 o, V cn = V p 120 o V AB = V an V bn = V p 0 o V p 120 o = V p 1 + j0 V p 0.5 j 3 2 = V p j 3 2 = 3V p 30 o V 43

44 Balanced Star-Delta Connection Similarly, V AB = 3V p 30 o = V L 30 o V V BC = V L 90 o V, V CA = V L 150 o V V AB, V BC, and V CA are called line voltage. 44

45 Balanced Star-Delta Connection V an = V p 0 o V bn = V p 120 o V cn = V p 120 o V AB = V L 30 o V V BC = V L 90 o V V CA = V L 150 o V Line voltage = 3 phase voltage Line voltage leads phase voltage by 30 o 45

46 Balanced Star-Delta Connection Phasor Diagram V AB = V an V bn V BC = V bn V cn V CA = V cn V an Line voltage = 3 phase voltage Line voltage leads phase voltage by 30 o 46

47 Balanced Star-Delta Connection Similarly, I AB = V AB Z = V L 30 o Z = I p φ p A I BC = V BC Z = V L 90 o Z = I p φ p 120 o A (= I AB 120 o ) 47

48 Balanced Star-Delta Connection Similarly, I AB = V AB Z = V L 30 o Z = I p φ p A I CA = V CA Z = V L 150 o Z = I p φ p o A = I AB 120 o 48

49 Balanced Star-Delta Connection I a = I AB I CA = I AB I AB 120 o = I AB 1 + j0 I AB j 3 2 = I AB 1.5 j 3 2 = 3I AB 30 o A 49

50 Balanced Star-Delta Connection Similarly, I a = 3I AB 30 o = I L 30 o A I b = I L 150 o A = I a 120 o I c = I L 90 o A = I a 120 o 50

51 Balanced Star-Delta Connection I a, I b, and I c are called the line currents. I a = I b = I c = I L I AB, I BC, and I CA are called the phase currents. I AB = I BC = I CA = I p 51

52 Balanced Star-Delta Connection I AB = I p 30 o A I BC = I p 90 o A I CA = I p 150 o A I a = I L 30 o A I b = I L 150 o A I c = I L 90 o A Line current = 3 phase current Line current lags phase current by 30 o 52

53 Balanced Star-Delta Connection Line voltage = 3 phase voltage. Line voltage leads phase voltage by 30 o Line current = 3 phase current. Line current lags phase current by 30 o 53

54 Example (3) Three Phase Circuits A balanced abc -sequence Y-connected source with V an = o V is connected to a -connected balanced load of Z Δ = 8 + j4 Ω per phase. Calculate the phase and line currents. 54

55 Balanced Delta-Delta Connection A balanced - system is a three-phase system with a balanced -connected source and a balanced -connected load. Line voltage = phase voltage. Line current = 3 phase current. Line current lags phase current by 30 o 55

56 Example (4) Three Phase Circuits A balanced Δ-connected load having an impedance Z Δ = 20 j15ω is connected to a Δ -connected, positive-sequence generator having V ab = o V. Calculate the phase currents of the load and the line currents. 56

57 Balanced Delta-Star Connection A balanced -Y system is a three-phase system with a balanced -connected source and a balanced Y-connected load. Line voltage = 3 phase voltage. Line voltage leads phase voltage by 30 o Line current = phase current. 57

58 Example (5) Three Phase Circuits A balanced Y-connected load with a phase resistance of 40 and a reactance of 25 is supplied by a balanced, positive sequence Δ connected source with a line voltage of 210V. Calculate the phase currents. (Hint: Use V ab as reference). 58

59 Example (6) Three Phase Circuits Determine the total average power, reactive power, and complex power at the source and at the load in the three-wire Y-Y system shown. 59

60 Unbalanced Three Phase System An unbalanced system is due to unbalanced voltage sources or an unbalanced load. Unbalanced three phase system is solved by direct application of node or mesh analysis. I a = V AN Z 1 I c = V CN Z 3 I b = V BN Z 2 I n = I a + I b + I c 60

61 Example (7) Three Phase Circuits The unbalanced Y-load shown has balanced voltages of 100 V and the acb sequence. Calculate the line currents and the neutral current if Z 1 = 15 Ω, Z 2 = 10 + j5 Ω, and Z 3 = 6 j8 Ω. 61

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Lecture 11 - AC Power

Lecture 11 - AC Power - AC Power 11/17/2015 Reading: Chapter 11 1 Outline Instantaneous power Complex power Average (real) power Reactive power Apparent power Maximum power transfer Power factor correction 2 Power in AC Circuits

More information

THREE-PHASE CIRCUITS. Historical Profiles

THREE-PHASE CIRCUITS. Historical Profiles C H A P T E R THREE-PHASE CIRCUITS 1 2 Society is never prepared to receive any invention. Every new thing is resisted, and it takes years for the inventor to get people to listen to him and years more

More information

Sinusoidal Steady State Analysis (AC Analysis) Part I

Sinusoidal Steady State Analysis (AC Analysis) Part I Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Chapter 12: Three-Phase Circuits

Chapter 12: Three-Phase Circuits Chater 1: Three-Phase Circuits 1.1 ntroduction 1. Balanced Three-Phase oltages 1.3 Balanced Wye-Wye connection 1.4 Balanced Wye-Delta Connection 1.7 Power in a Balanced System 1.1 NTRODUCTON A single-hase

More information

EKT103 ELECTRICAL ENGINEERING

EKT103 ELECTRICAL ENGINEERING EKT13 EECTRCA ENGNEERNG Chater 1 Three-Phase System 1 COURSE OUTCOME (CO) CO1: Ability to define and exlain the concet of single-hase and threehase system. 2 Revision A sinusoid is a signal that has the

More information

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale.

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale. ECE 40 Review of Three Phase Circuits Outline Phasor Complex power Power factor Balanced 3Ф circuit Read Appendix A Phasors and in steady state are sinusoidal functions with constant frequency 5 0 15 10

More information

THREE PHASE SYSTEMS Part 1

THREE PHASE SYSTEMS Part 1 ERT105: ELECTRCAL TECHNOLOGY CHAPTER 3 THREE PHASE SYSTEMS Part 1 1 Objectives Become familiar with the operation of a three phase generator and the magnitude and phase relationship. Be able to calculate

More information

THREE-PHASE CIRCUITS

THREE-PHASE CIRCUITS THR-HAS CIRCUITS 4.1 Introduction Generation, Transmission and distribution of electricity via the National Grid system is accomplished by three-phase alternating currents. The voltage induced by a single

More information

LO 1: Three Phase Circuits

LO 1: Three Phase Circuits Course: EEL 2043 Principles of Electric Machines Class Instructor: Dr. Haris M. Khalid Email: hkhalid@hct.ac.ae Webpage: www.harismkhalid.com LO 1: Three Phase Circuits Three Phase AC System Three phase

More information

Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system.

Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system. Three-phase Circuits Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system. Where 3 voltages are supplied of equal magnitude,

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

ECE 421/521 Electric Energy Systems Power Systems Analysis I 2 Basic Principles. Instructor: Kai Sun Fall 2013

ECE 421/521 Electric Energy Systems Power Systems Analysis I 2 Basic Principles. Instructor: Kai Sun Fall 2013 ECE 41/51 Electric Energy Systems Power Systems Analysis I Basic Principles Instructor: Kai Sun Fall 013 1 Outline Power in a 1-phase AC circuit Complex power Balanced 3-phase circuit Single Phase AC System

More information

EE221 - Practice for the Midterm Exam

EE221 - Practice for the Midterm Exam EE1 - Practice for the Midterm Exam 1. Consider this circuit and corresponding plot of the inductor current: Determine the values of L, R 1 and R : L = H, R 1 = Ω and R = Ω. Hint: Use the plot to determine

More information

Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas

Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas A specifically designed programme for Da Afghanistan Breshna Sherkat (DABS) Afghanistan 1 Areas Covered Under this Module

More information

Power and Energy Measurement

Power and Energy Measurement Power and Energy Measurement EIE 240 Electrical and Electronic Measurement April 24, 2015 1 Work, Energy and Power Work is an activity of force and movement in the direction of force (Joules) Energy is

More information

BASIC PRINCIPLES. Power In Single-Phase AC Circuit

BASIC PRINCIPLES. Power In Single-Phase AC Circuit BASIC PRINCIPLES Power In Single-Phase AC Circuit Let instantaneous voltage be v(t)=v m cos(ωt+θ v ) Let instantaneous current be i(t)=i m cos(ωt+θ i ) The instantaneous p(t) delivered to the load is p(t)=v(t)i(t)=v

More information

6. Three-Phase Systems. Department of Electrical, Electronic, and Information Engineering (DEI) - University of Bologna

6. Three-Phase Systems. Department of Electrical, Electronic, and Information Engineering (DEI) - University of Bologna 6. Three-Phase Systems J B G Three-Phase Systems v v v i i i The generation and the distribution of electrical energy is usually done by three- phase systems. There are three wire system connected to a

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

Three-phase AC Circuits. Measurement of Power in a Three-phase Circuit

Three-phase AC Circuits. Measurement of Power in a Three-phase Circuit Three-phase AC Circuits Lesson Measurement of Power in a Three-phase Circuit In the previous lesson, the phase and line currents for balanced delta-connected load fed from a three-phase supply, along with

More information

12. Introduction and Chapter Objectives

12. Introduction and Chapter Objectives Real Analog - Circuits 1 Chapter 1: Steady-State Sinusoidal Power 1. Introduction and Chapter Objectives In this chapter we will address the issue of power transmission via sinusoidal or AC) signals. This

More information

11. AC Circuit Power Analysis

11. AC Circuit Power Analysis . AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous

More information

Module 4. Single-phase AC Circuits

Module 4. Single-phase AC Circuits Module 4 Single-phase AC Circuits Lesson 14 Solution of Current in R-L-C Series Circuits In the last lesson, two points were described: 1. How to represent a sinusoidal (ac) quantity, i.e. voltage/current

More information

Basics of Electric Circuits

Basics of Electric Circuits António Dente Célia de Jesus February 2014 1 Alternating Current Circuits 1.1 Using Phasors There are practical and economic reasons justifying that electrical generators produce emf with alternating and

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

BASIC NETWORK ANALYSIS

BASIC NETWORK ANALYSIS SECTION 1 BASIC NETWORK ANALYSIS A. Wayne Galli, Ph.D. Project Engineer Newport News Shipbuilding Series-Parallel dc Network Analysis......................... 1.1 Branch-Current Analysis of a dc Network......................

More information

Power and Energy Measurement

Power and Energy Measurement Power and Energy Measurement ENE 240 Electrical and Electronic Measurement Class 11, February 4, 2009 werapon.chi@kmutt.ac.th 1 Work, Energy and Power Work is an activity of force and movement in the direction

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1. Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω.

Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1. Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Homework 2 SJTU233 Problem 1 Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Express Zab in polar form. Enter your answer using polar notation. Express argument in degrees.

More information

Chapter 10: Sinusoids and Phasors

Chapter 10: Sinusoids and Phasors Chapter 10: Sinusoids and Phasors 1. Motivation 2. Sinusoid Features 3. Phasors 4. Phasor Relationships for Circuit Elements 5. Impedance and Admittance 6. Kirchhoff s Laws in the Frequency Domain 7. Impedance

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Chapter 2-3 Transformers

Chapter 2-3 Transformers Principles of Electric Machines and Power Electronics Chapter 2-3 Transformers Third Edition P. C. Sen Auto transformer Per unit system S b = S rate V b1 = V rate1 V b2 = V rate2 S b I b1 = = S rate =

More information

Lecture 9: Space-Vector Models

Lecture 9: Space-Vector Models 1 / 30 Lecture 9: Space-Vector Models ELEC-E8405 Electric Drives (5 ECTS) Marko Hinkkanen Autumn 2017 2 / 30 Learning Outcomes After this lecture and exercises you will be able to: Include the number of

More information

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST ATTEMPT ALL QUESTIONS (EACH QUESTION 20 Marks, FULL MAKS = 60) Given v 1 = 100 sin(100πt+π/6) (i) Find the MS, period and the frequency of v 1 (ii) If v 2 =75sin(100πt-π/10) find V 1, V 2, 2V 1 -V 2 (phasor)

More information

Power Systems - Basic Concepts and Applications - Part I

Power Systems - Basic Concepts and Applications - Part I PDHonline Course E104 (1 PDH) Power ystems Basic Concepts and Applications Part I Instructor: hihmin Hsu PhD PE 01 PDH Online PDH Center 57 Meadow Estates Drive Fairfax A 006658 Phone & Fax: 709880088

More information

Power Factor Improvement

Power Factor Improvement Salman bin AbdulazizUniversity College of Engineering Electrical Engineering Department EE 2050Electrical Circuit Laboratory Power Factor Improvement Experiment # 4 Objectives: 1. To introduce the concept

More information

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS 1. Introduction A sinusoidal current has the following form: where I m is the amplitude value; ω=2 πf is the angular frequency; φ is the phase shift. i (t )=I m.sin

More information

Work, Energy and Power

Work, Energy and Power 1 Work, Energy and Power Work is an activity of force and movement in the direction of force (Joules) Energy is the capacity for doing work (Joules) Power is the rate of using energy (Watt) P = W / t,

More information

Electric Circuits II Power Measurement. Dr. Firas Obeidat

Electric Circuits II Power Measurement. Dr. Firas Obeidat Electric Circuits II Power Measurement Dr. Firas Obeidat 1 Table of contents 1 Single-Phase Power Measurement 2 Three-Phase Power Measurement 2 Single-Phase Power Measurement The wattmeter is the instrument

More information

Revised October 6, EEL , Henry Zmuda. 2. Three-Phase Circuits 1

Revised October 6, EEL , Henry Zmuda. 2. Three-Phase Circuits 1 Three Phase Circuitsit Revised October 6, 008. Three-Phase Circuits 1 Preliminary Comments and a quick review of phasors. We live in the time domain. We also assume a causal (nonpredictive) world. Real-world

More information

Lecture 3: Three-phase power circuits

Lecture 3: Three-phase power circuits 1/24/28 Lecture : Three-phase power circuits 1 nstructor: Dr. Gleb. Tcheslavski Contact: gleb@ee.lamar.edu Office Hours: TBD; Room 2 Class web site: MyLamar ntroduction 2 Almost all electric power generation

More information

Sinusoidal Steady State Power Calculations

Sinusoidal Steady State Power Calculations 10 Sinusoidal Steady State Power Calculations Assessment Problems AP 10.1 [a] V = 100/ 45 V, Therefore I = 20/15 A P = 1 (100)(20)cos[ 45 (15)] = 500W, 2 A B Q = 1000sin 60 = 866.03 VAR, B A [b] V = 100/

More information

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS Contents ELEC46 Power ystem Analysis Lecture ELECTRC POWER CRCUT BAC CONCEPT AND ANALY. Circuit analysis. Phasors. Power in single phase circuits 4. Three phase () circuits 5. Power in circuits 6. ingle

More information

AC Electric Machines. Objectives. Introduction. 1. To understand what the meant by the term ac circuit. 2. To understand how to analyze ac circuits.

AC Electric Machines. Objectives. Introduction. 1. To understand what the meant by the term ac circuit. 2. To understand how to analyze ac circuits. AC Electric Machines Objectives 1. To understand what the meant by the term ac circuit.. To understand how to analyze ac circuits. 3. To understand the basic construction and operation of an ac machine.

More information

Sinusoidal Steady State Analysis

Sinusoidal Steady State Analysis Sinusoidal Steady State Analysis 9 Assessment Problems AP 9. [a] V = 70/ 40 V [b] 0 sin(000t +20 ) = 0 cos(000t 70 ).. I = 0/ 70 A [c] I =5/36.87 + 0/ 53.3 =4+j3+6 j8 =0 j5 =.8/ 26.57 A [d] sin(20,000πt

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

Three Phase Systems 295

Three Phase Systems 295 Three Phase Systems 95 9. MEASUEMENT OF POE Star-Connected Balanced Load with Neutral Point Power can be measured in this case by connecting a single wattmeter with its current coil in one line and the

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

Sinusoids and Phasors

Sinusoids and Phasors CHAPTER 9 Sinusoids and Phasors We now begins the analysis of circuits in which the voltage or current sources are time-varying. In this chapter, we are particularly interested in sinusoidally time-varying

More information

ECE 421/521 Electric Energy Systems Power Systems Analysis I 2 Basic Principles. Instructor: Kai Sun Fall 2014

ECE 421/521 Electric Energy Systems Power Systems Analysis I 2 Basic Principles. Instructor: Kai Sun Fall 2014 ECE 41/51 Electric Energy Systems Power Systems Analysis I Basic Princiles Instructor: Kai Sun Fall 014 1 Outline Power in a 1-hase AC circuit Comlex ower Balanced 3-hase circuit Single Phase AC System

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

EE 212 PASSIVE AC CIRCUITS

EE 212 PASSIVE AC CIRCUITS EE 212 PASSIVE AC CIRCUITS Condensed Text Prepared by: Rajesh Karki, Ph.D., P.Eng. Dept. of Electrical Engineering University of Saskatchewan About the EE 212 Condensed Text The major topics in the course

More information

UNIT- I Phase Sequence:

UNIT- I Phase Sequence: UNIT- I Phase Sequence: Phase sequence refers to the relation between voltages (or currents, as well) in a three-phase system. The common representation of this relation is in terms of a phasor diagram,

More information

Exercise Dr.-Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme

Exercise Dr.-Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme Exercise1 1.10.015 Informatik 7 Rechnernetze und Kommunikationssysteme Review of Phasors Goal of phasor analysis is to simplify the analysis of constant frequency ac systems v(t) = max cos(wt + q v ) i(t)

More information

Introduction to Synchronous. Machines. Kevin Gaughan

Introduction to Synchronous. Machines. Kevin Gaughan Introduction to Synchronous Machines Kevin Gaughan The Synchronous Machine An AC machine (generator or motor) with a stator winding (usually 3 phase) generating a rotating magnetic field and a rotor carrying

More information

ALTERNATING CURRENT

ALTERNATING CURRENT ATENATING UENT Important oints:. The alternating current (A) is generally expressed as ( ) I I sin ω t + φ Where i peak value of alternating current.. emf of an alternating current source is generally

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 11 Sinusoidal Steady-State Analysis Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 11.1

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

= 32.0\cis{38.7} = j Ω. Zab = Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1

= 32.0\cis{38.7} = j Ω. Zab = Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1 Homework 2 SJTU233 Problem 1 Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω. Express Zab in polar form. Enter your answer using polar notation. Express argument in degrees.

More information

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 32A AC Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Describe

More information

Chapter 5 Steady-State Sinusoidal Analysis

Chapter 5 Steady-State Sinusoidal Analysis Chapter 5 Steady-State Sinusoidal Analysis Chapter 5 Steady-State Sinusoidal Analysis 1. Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal. 2. Solve steady-state

More information

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current. AC power Consider a simple RC circuit We might like to know how much power is being supplied by the source We probably need to find the current R 10! R 10! is VS Vmcosωt Vm 10 V f 60 Hz V m 10 V C 150

More information

AC Power Analysis. Chapter Objectives:

AC Power Analysis. Chapter Objectives: AC Power Analysis Chapter Objectives: Know the difference between instantaneous power and average power Learn the AC version of maximum power transfer theorem Learn about the concepts of effective or value

More information

04-Electric Power. ECEGR 452 Renewable Energy Systems

04-Electric Power. ECEGR 452 Renewable Energy Systems 04-Electric Power ECEGR 452 Renewable Energy Systems Overview Review of Electric Circuits Phasor Representation Electrical Power Power Factor Dr. Louie 2 Introduction Majority of the electrical energy

More information

Chapter 15 Power And Harmonics in Nonsinusoidal Systems

Chapter 15 Power And Harmonics in Nonsinusoidal Systems Chapter 15 Power And Harmonics in Nonsinusoidal Systems 15.1. Average power in terms of Fourier series 15.2. RMS value of a waveform 15.3. Power factor THD Distortion and Displacement factors 15.4. Power

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

FACULTY OF ENGINEERING LAB SHEET

FACULTY OF ENGINEERING LAB SHEET FCLTY F ENGNEERNG LB SHEET EEL1196 nstrumentation & Measurement Techniques TRMESTER 2 2017-2018 M2: Power Measurement sing Two Wattmeter Method *Note: Students will have to tabulate the theoretical values

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

Review of DC Electric Circuit. DC Electric Circuits Examples (source:

Review of DC Electric Circuit. DC Electric Circuits Examples (source: Review of DC Electric Circuit DC Electric Circuits Examples (source: http://hyperphysics.phyastr.gsu.edu/hbase/electric/dcex.html) 1 Review - DC Electric Circuit Multisim Circuit Simulation DC Circuit

More information

ENE 104 Electric Circuit Theory

ENE 104 Electric Circuit Theory Electric Circuit Theory Lecture 11: : Dejwoot KHAWPARSUTH http://webstaff.kmutt.ac.th/~dejwoot.kha/ Objectives : Ch12 Page 2 single-phase and polyphase systems Y- and Δ- connected three-phase system per-phase

More information

Toolbox: Electrical Systems Dynamics

Toolbox: Electrical Systems Dynamics Toolbox: Electrical Systems Dynamics Dr. John C. Wright MIT - PSFC 05 OCT 2010 Introduction Outline Outline AC and DC power transmission Basic electric circuits Electricity and the grid Image removed due

More information

Lecture 05 Power in AC circuit

Lecture 05 Power in AC circuit CA2627 Building Science Lecture 05 Power in AC circuit Instructor: Jiayu Chen Ph.D. Announcement 1. Makeup Midterm 2. Midterm grade Grade 25 20 15 10 5 0 10 15 20 25 30 35 40 Grade Jiayu Chen, Ph.D. 2

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain. Name If you have any questions ask them. Remember to include all units on your answers (V, A, etc). Clearly indicate your answers. All angles must be in the range 0 to +180 or 0 to 180 degrees. 1) [6 pts]

More information

Capacitor of capacitance C; Their schematic representations are shown in Figure below.

Capacitor of capacitance C; Their schematic representations are shown in Figure below. UNIT 1 Basic Circuit Concepts In modern life, circuits are everywhere. Without circuits, you wouldn't have indoor lights. Without circuits, you wouldn't have the computer you're using to watch this lesson.

More information

10.1 COMPLEX POWER IN CIRCUITS WITH AC SIGNALS

10.1 COMPLEX POWER IN CIRCUITS WITH AC SIGNALS HAPER 10 Power in A ircuits HAPER OUINE 10.1 omplex Power in ircuits with A ignals 10. How to alculate omplex Power 10.3 omplex Power alculations in eries Parallel ircuits 10.4 Power Factor and pf orrection

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

More information

Work, Energy and Power

Work, Energy and Power 1 Work, Energy and Power Work is an activity of force and movement in the direction of force (Joules) Energy is the capacity for doing work (Joules) Power is the rate of using energy (Watt) P = W / t,

More information

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications FINALEXAMINATION. Session

THE UNIVERSITY OF NEW SOUTH WALES. School of Electrical Engineering & Telecommunications FINALEXAMINATION. Session Name: Student ID: Signature: THE UNIVERSITY OF NEW SOUTH WALES School of Electrical Engineering & Telecommunications FINALEXAMINATION Session 00 ELEC46 Power System Analysis TIME ALLOWED: 3 hours TOTAL

More information

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) d axis: L fd L F - M R fd F L 1d L D - M R 1d D R fd R F e fd e F R 1d R D Subscript Notations: ( ) fd ~ field winding quantities

More information

Electronic Power Conversion

Electronic Power Conversion Electronic Power Conversion Review of Basic Electrical and Magnetic Circuit Concepts Challenge the future 3. Review of Basic Electrical and Magnetic Circuit Concepts Notation Electric circuits Steady state

More information

15-884/484 Electric Power Systems 1: DC and AC Circuits

15-884/484 Electric Power Systems 1: DC and AC Circuits 15-884/484 Electric Power Systems 1: DC and AC Circuits J. Zico Kolter October 8, 2013 1 Hydro Estimated U.S. Energy Use in 2010: ~98.0 Quads Lawrence Livermore National Laboratory Solar 0.11 0.01 8.44

More information

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1 Module 4 Single-phase A ircuits ersion EE IIT, Kharagpur esson 4 Solution of urrent in -- Series ircuits ersion EE IIT, Kharagpur In the last lesson, two points were described:. How to represent a sinusoidal

More information

Alternating Current. Symbol for A.C. source. A.C.

Alternating Current. Symbol for A.C. source. A.C. Alternating Current Kirchoff s rules for loops and junctions may be used to analyze complicated circuits such as the one below, powered by an alternating current (A.C.) source. But the analysis can quickly

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

ELEC ELE TRO TR MAGNETIC INDUCTION

ELEC ELE TRO TR MAGNETIC INDUCTION ELECTRO MAGNETIC INDUCTION Faraday Henry 1791-1867 1797 1878 Laws:- Faraday s Laws :- 1) When ever there is a change in magnetic flux linked with a coil, a current is generated in the coil. The current

More information

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.).

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). . Transformers Transformer Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.). f the primary side is connected to an AC voltage source v (t), an AC flux (t) will be

More information

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat Electric Circuits II Sinusoidal Steady State Analysis Dr. Firas Obeidat 1 Table of Contents 1 2 3 4 5 Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin and Norton Equivalent

More information

Total No. of Questions :09] [Total No. of Pages : 03

Total No. of Questions :09] [Total No. of Pages : 03 EE 4 (RR) Total No. of Questions :09] [Total No. of Pages : 03 II/IV B.Tech. DEGREE EXAMINATIONS, APRIL/MAY- 016 Second Semester ELECTRICAL & ELECTRONICS NETWORK ANALYSIS Time: Three Hours Answer Question

More information

ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION ELECTROMAGNETIC INDUCTION 1. Magnetic Flux 2. Faraday s Experiments 3. Faraday s Laws of Electromagnetic Induction 4. Lenz s Law and Law of Conservation of Energy 5. Expression for Induced emf based on

More information

DEPARTMENT OF ELECTRICAL ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING DEPARTMENT OF ELECTRICAL ENGINEERING THIRD SEMESTER,(EE/EEE) SUBJECT:NETWORK THEORY SUBJECT CODE-303 SYLLABUS :NETWORK THEORY (3--0) MODULE-I (0 HOURS) Coupled Circuits: Self-inductance and Mutual inductance,

More information

Consider Figure What is the horizontal axis grid increment?

Consider Figure What is the horizontal axis grid increment? Chapter Outline CHAPER 14 hree-phase Circuits and Power 14.1 What Is hree-phase? Why Is hree-phase Used? 14.2 hree-phase Circuits: Configurations, Conversions, Analysis 14.2.1 Delta Configuration Analysis

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power Synchronous generators are the primary

More information

Analysis of AC Power RMS and Phasors Power Factor. Power Factor. Eduardo Campero Littlewood

Analysis of AC Power RMS and Phasors Power Factor. Power Factor. Eduardo Campero Littlewood Power Factor Eduardo Campero Littlewood Universidad Autónoma Metropolitana Azcapotzalco Campus Energy Department Content 1 Analysis of AC Power 2 RMS and Phasors 3 Power Factor Recommended Bibliography

More information

Get Discount Coupons for your Coaching institute and FREE Study Material at ELECTROMAGNETIC INDUCTION

Get Discount Coupons for your Coaching institute and FREE Study Material at  ELECTROMAGNETIC INDUCTION ELECTROMAGNETIC INDUCTION 1. Magnetic Flux 2. Faraday s Experiments 3. Faraday s Laws of Electromagnetic Induction 4. Lenz s Law and Law of Conservation of Energy 5. Expression for Induced emf based on

More information