(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:


 Brett Palmer
 1 years ago
 Views:
Transcription
1 1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4. (ii) Determine the value of K so that the Gain margin of the system is 20 db. (iii) Determine the value of K so that the phase margin of the system is 60 degrees. (b) A unity feedback system is characterized by the transfer function G(S) = Design a suitable compensator to meet the following specifications: (i) Settling time for 2% tolerance, band = 4 sec (ii) Steady state error for ramp input 10%.(1990) 2. Draw the root locus diagram for the following control system and calculate the breakin and breakaway points..(1992) 3. Sketch the desirable range of the location of the poles of the transfer function of a system s damping ratio is to lie between 0.3 and 0.7 and its natural frequency is to lie between 2 and 4rad/sec..(1993) 4. Draw a signal flow graph for the following equations: x 2 = t 12 x 1 + t 32 x 3 x 3 = t 23 x 2 + t 43 x 4 x 4 = t 24 x 2 + t 34 x 3 + t 44 x 4 x 5 = t 25 x 2 + t 45 x 4 5. Consider a feedback control system with the open loop transfer function G(s) = Design a series compensator to provide the following specification:.(1993)
2 (i) The phase margin of the system must be greater than (ii) When the input to the system is a ramp, the steady state error of the output in position should be less then 0.1 degree/deg/sec of the final output velocity..(1993) 6. The open loop transfer function of a system is given below: G(s) H(s) = For what values of K is the system stable?.(1994) 7. (a) The system shown below consists of a unity feedback loop containing a minor rate feedback loop. (i) (ii) Without any rate feedback (b = 0), determine the damping factor, natural resonant frequency, overshoot of the system to a unit step input, and the steady state error resulting from a unit ramp input. Determine the rate feedback constant which will increase the equivalent damping factor of the system to 0.8. Determine the overshoot of the system in this case to a unit step input and the steady state error resulting from a unit ramp input. (b) Using Bode plots, determine the gain margin and phase margin of a unit feedback system having an open loop transfer function: G(s) = By what constant factor should G(s) be multiplied for (i) a gain margin 20 db, and (ii) a phase margin of 24 0.(1994) 8. (a) Sketch the rootlocus of a unity feedback system with an openloop transfer function
3 G(s) = For what range of k will the system have damped oscillatory response? What is the highest value of k that can be used before continuous oscillations occur? (b) Consider the third order position control system with velocity feedback shown below. Determine the value of k so that the dominant poles of the transfer function of the closed loop system have a damping ratio of 0.5. What will be the response of the system to a unit step input for this value of k?.(1995) 9. Determine the value of k so that all the roots of the following polynomial are to the left of the line = F(s) = s 3 + 6s s + k.(1996) 10. Sketch the constantm loci in the Gplane for a unity feedback system and derive the equations for the loci..(1996) 11. (a) Find the output in the following block diagram having three input: R, U 1 and U 2. (b) Enumerate the advantages of state space modeling Derive relations to find the poles and zeros of a system from the state space model. Determine the poles and zeros of the following system: X = X + C = [175]X + [1]r.(1996)
4 12. Obtain the transfer function for the multiloop control system shown..(1997) 13. A unity feedback control system has a forward transfer. Find the resonance peak and the corresponding frequency for the closed loop frequency response. Derive the formula you used..(1997) 14. For open loop transfer function A(s) = a negative feedback is applied with a feedback factor β. Find the value of βa, (i) corresponding to the breakaway point, (ii) for which the system becomes unstable..(1998) 15. (a) The open loop transfer function of a unity feedback control system is G(s) = Construct the rootlocus diagram of the system and comment on the stability of the system..(1998) (b) For a proportional plus derivative (PD) controller plot the controller output and error vs time. Specify the equation for the controller..(1998) 16.
5 A dynamic vibration absorber is shown in the above figure. The system is seen in many situations involving machines containing several unbalanced components. The parameters M 2 and K 12 may be chosen such that the main Mass M 1 does not vibrate when F(t) = a sin ω 0 t. (a) Obtain the differential equation describing the system. (b) Draw the analogous electric circuit based on Force current analogy. (c) What is the condition for Mass M 1 not vibrating at frequency ω 0..(1999) 17. (a) Explain gain margin and phase margin from Nyquist diagram. (b) A closed loop transfer function of a unity feedback control system is = Determine the response of the system when the excitation applied to the input terminal is.(1999) (d) For the system shown below, determine the characteristic equation. Hence, find the following the excitation is a unit step: (i) Undamped natural frequency (ii) Damped frequency of oscillation (iii) Dampling ratio and damping factor (iv) Maximum overshoot (v) Setting time (vi) Number of cycles completed before the output is settled within 2%, 5% of its final value (vii) Time interval after which maximum and minimum will occur..(1999)
6 18. (i) Write the transfer function of a PID controller and state the effect of integral control on the performance of the system. (ii) A closed loop system has G(s) = and H(s) =1/s. Draw the Nyquist path for analyzing the stability of the system. 19. A second order control system with proportional derivative controller is shown in figure. Derive expression for its (i) steady state error to velocity input (ii) natural frequency of oscillation (iii) damping ratio in terms of the system parameters. 20. By analytical method calculate the gain margin in db of the unity feedback control system with transfer function..(2000) G(s) =.(2000) 21. For the mechanical system shown in Figure write the differential equation representing the system. Draw an integrator based electronic circuit to simulate this mechanical system to study the variations of x for different value of the parameters. Symbols used have their usual meaning..(2001) 22. (a) A control system is represented by the block diagram of figure. Find its characteristic equation using block diagram reduction technique. (b) Calculate its damping factor and undamped natural frequency for k V = 10. (c) What should be the value of k v for critical damping?
7 (d) For k V = 10, find the expression of C(t) and obtain the time at which first overshoot occurs. Also find the peak overshoot magnitude. 23. (a).(2001) Determine the value of k and velocity feedback constant k v so that the maximum overshoot in the unit step response is 0.2 and the peak time is 1 sec. With these values of k and k v, obtain the rise time and settling time. (b) Consider a closed loop system whose loop transfer function is G(s) H(s) = Determine the maximum value of the gain k for stability as a function of dead time T..(2002) 24. (a) Consider a control system with characteristic equation s(s + 4) (s 2 + 2s + 2) + K(s + 1) = 0 Draw the complete root loci labeling important values. Also find the angles of asymptotes and the intercept of asymptotes. (b) Consider a third order system with characteristic equation s s x 10 6 s+1.5 x 10 7 K = 0.
8 Find the critical value of K for stability using RouthHurwitz criterion. Also find the undamped frequency corresponding to the zero input response and the critical value of K..(2003) 25. For a singleloop feedback control system G(s) = and H(s) = Evaluate the steady state errors for three basic types of inputs. 26. (a) A three term controller is described by the equation (t) = 20 Where e(t) = system error (t) = controller output T r = reset time T d = derivative time This is used to control a process with transfer function G(s) = unity.(2003) feedback is used. (i) If integral action is not employed, find the derivative time required to make the closedloop damping ratio unity. (ii) If this value of derivative time is maintained, determine the minimum value of reset time that can be used without instability arising. (b) Consider the following control system (i) Sketch the root locus diagram for 0 < K <. (ii) Determine the value of K that gives the system characteristic equation a damping ratio of 0.5..(2004) 27. A phase lead compensator has a transfer function G(s) = Determine the maximum value of the phase lead and the frequency at which it occurs. Sketch the Bode diagram for this network..(2004) 28. (a) Construct a signal flow graph for the following equations and evaluate y 5 /y 1 : y 2 = a 12 y 1 + a 32 y 3
9 y 3 = a 33 y 2 + a 43 y 4 y 4 = a 24 y 2 + a 34 y 3 + a 44 y 4 y 5 = a 25 y 2 + a 45 y 4 (b) The characteristic equation of a closed loop control system is s 3 + 3Ks 2 + (K+1)s +4 = 0 Find the range of K for which the system is stable. Shown all steps clearly..(2005) 29. (a) Consider a mechanical system as shown. Write the force equations and draw a fully labeled state diagram. (b) An amplifier with an open loop voltage gain of 500 delivers 10 W of output power at 5% second harmonic distortion when the input signal is 5 mv. If 20dB negative voltage is to remain 10 W, determine (i) the required input signal strength, and (ii) the percent second harmonic distortion..(2005) 30. State and explain the terms gain margin and phase margin. With neat sketches, explain how you can obtain gain margin and phase margin from Nyquist diagram and Bode plot..(2006) 31. (a) Find the value of gain k for the feedback control system shown in figure, such that the system will be underdamped and will respond with 16% overshoot. Then calculate the following parameters of the system: (i) Undamped natural frequency (ii) Damping ratio, (iii) Time required to reach the first maximum or peak, T p (iv) Time required for the transient to reach within 2% of the steadystate value, i.e., settling time, T s (v) Damped natural frequency, ω d.
10 (b) using the rootlocus technique, discuss the stability of unity feedback firstorder and secondorder control system of gain k..(2006) 32. Draw the asymptotic Bode diagram for G(s) = and determine the value of G(j1000). 33. A unity feedback system has a forward has a forward loop transfer function:.(2006) G(s) = Determine: (i) the range of k for closedloop system stability, (ii) the frequency of oscillations when the system is marginally stable..(2007) 34. (a) A closedloop system is represented by = 144e where, e = r0.5c is the actuating signal. Find the value of the damping ratio, damped and undamped frequency of oscillations. Draw the block diagram of the system. (b) A system employing a proportional and an errorrate control is hsown in the figure. Determine (i) the errorrate factor k e, so that the damping ratio is 0.5; (ii) the settling time, maximum overshoot and steadystate error for unit ramp input..(2007) 35. (i) For the system shown in the figure, obtain the values of k and a, to satisfy, M r = 1.04 and ω r = rad/sec. (ii) A unity feedback system has an openloop transfer function G(s) = Determine the steadystate error for r(t) = 3 +10t..(2007)
11 36. Determine the open loop transfer function, G(s) H(s), of a feedback control system whose BodePlot s magnitude characteristic is shown in the figure..(2008) 37. (a) If a unity feedback system having G(s) = is critically stable and oscillates with a frequency of 2.5 rad/sec, calculate the corresponding values of K and p. (b) For the block diagram of a unity feedback control system, define: (i) the steady error for K = 400 and unit ramp input. (ii) the value of K for which the steady state error for unit input will be (c) For the tachometer feedback control system shown in the figure. Determine the value of Kb to make the system s damping ratio equal to 0.8. Calculate the corresponding peak time, peak overshoot, damped frequency and settling time taking 2% of the steady state valued..(2008)
12 38. The openloop transfer function of a unity feedback system is G(s) =, where K and T are positive constants. How many times the gain of the system, K s should be increased the peak overshoot from 40% to 60%?.(2008) 39. (a) Explain the difficulties involved in the application of RouthHurwitz criterion and also bring out limitations. Find the stability of the control system whose characteristic equation is given by: (s1) 2 (s+2)(s+1) = 0. (b) Explain the effect of additional poles and zeros of G(s) H(s) on the shape of the Nyquist plot. Sketch the Nyquist diagram and determine stability of the transfer function: (i) G(s) H(s) = (ii) G(s) H(s) = (c) Obtain the overall transfer function C/R from the signal flow graph.(2009)
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS STAFF NAME: Mr. P.NARASIMMAN BRANCH : ECE Mr.K.R.VENKATESAN YEAR : II SEMESTER
More informationDEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2
More informationNADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501
More informationRoot Locus Methods. The root locus procedure
Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationVALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationr +  FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic
MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of handwritten notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More information7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM
ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationEC6405  CONTROL SYSTEM ENGINEERING Questions and Answers Unit  I Control System Modeling Two marks 1. What is control system? A system consists of a number of components connected together to perform
More informationChemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University
Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationChapter 7 : Root Locus Technique
Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationECE317 : Feedback and Control
ECE317 : Feedback and Control Lecture : Steadystate error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace
More informationFATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY
FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai  625 020. An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION
More informationIndex. Index. More information. in this web service Cambridge University Press
Atype elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 Atype variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
More informationEE C128 / ME C134 Fall 2014 HW 8  Solutions. HW 8  Solutions
EE C28 / ME C34 Fall 24 HW 8  Solutions HW 8  Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationSolution for Mechanical Measurement & Control
Solution for Mechanical Measurement & Control December2015 Index Q.1) a). 23 b).34 c). 5 d). 6 Q.2) a). 7 b). 7 to 9 c). 1011 Q.3) a). 1112 b). 1213 c). 13 Q.4) a). 1415 b). 15 (N.A.) Q.5) a). 15
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationEEE 184: Introduction to feedback systems
EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)
More informationLecture 1 Root Locus
Root Locus ELEC304Alper Erdogan 1 1 Lecture 1 Root Locus What is RootLocus? : A graphical representation of closed loop poles as a system parameter varied. Based on RootLocus graph we can choose the
More informationa. Closedloop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a
Root Locus Simple definition Locus of points on the s plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation
More informationThe requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot  in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
More informationBangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory
Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system
More informationLaplace Transform Analysis of Signals and Systems
Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 24: Compensation in the Frequency Domain Overview In this Lecture, you will learn: Lead Compensators Performance Specs Altering
More informationRoot Locus Design Example #4
Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is
More informationME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
More informationSolutions to SkillAssessment Exercises
Solutions to SkillAssessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part
More informationRadar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.
Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter
More informationControl System (ECE411) Lectures 13 & 14
Control System (ECE411) Lectures 13 & 14, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 SteadyState Error Analysis Remark: For a unity feedback system
More informationESE319 Introduction to Microelectronics. Feedback Basics
Feedback Basics Stability Feedback concept Feedback in emitter follower Onepole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More informationFrequency Response Analysis
Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions
More information2.010 Fall 2000 Solution of Homework Assignment 8
2.1 Fall 2 Solution of Homework Assignment 8 1. Root Locus Analysis of Hydraulic Servomechanism. The block diagram of the controlled hydraulic servomechanism is shown in Fig. 1 e r e error + i Σ C(s) P(s)
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationConventional PaperI Part A. 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy
EEConventional PaperI IES01 www.gateforum.com Conventional PaperI01 Part A 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy impedance for a lossy dielectric
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationFeedback design for the Buck Converter
Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real
More informationChapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steadystate Steadystate errors errors Type Type k k systems systems Integral Integral
More informationAnalysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
More informationEE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas
EE 370L Controls Laboratory Laboratory Exercise #7 Root Locus Department of Electrical an Computer Engineering University of Nevaa, at Las Vegas 1. Learning Objectives To emonstrate the concept of error
More informationEssence of the Root Locus Technique
Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general setup, namely for the case when the closedloop
More informationME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II
ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and
More informationLab # 4 Time Response Analysis
Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an
More information1 (20 pts) Nyquist Exercise
EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationMAK 391 System Dynamics & Control. Presentation Topic. The Root Locus Method. Student Number: Group: IB. Name & Surname: Göksel CANSEVEN
MAK 391 System Dynamics & Control Presentation Topic The Root Locus Method Student Number: 9901.06047 Group: IB Name & Surname: Göksel CANSEVEN Date: December 2001 The RootLocus Method Göksel CANSEVEN
More informationI What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF
EE C28 / ME C34 Feedback Control Systems Lecture Chapter 8 Root Locus Techniques Lecture abstract Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationFREQUENCYRESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCYRESPONSE DESIGN 9.: PD and lead compensation networks The frequencyresponse methods we have seen so far largely tell us about stability and stability margins
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationECE382/ME482 Spring 2005 Homework 7 Solution April 17, K(s + 0.2) s 2 (s + 2)(s + 5) G(s) =
ECE382/ME482 Spring 25 Homework 7 Solution April 17, 25 1 Solution to HW7 AP9.5 We are given a system with open loop transfer function G(s) = K(s +.2) s 2 (s + 2)(s + 5) (1) and unity negative feedback.
More informationLecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
More informationLecture 7:Time Response PoleZero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion
Cleveland State University MCE441: Intr. Linear Control Lecture 7:Time Influence of Poles and Zeros Higher Order and Pole Criterion Prof. Richter 1 / 26 FirstOrder Specs: Step : Pole Real inputs contain
More informationH(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )
.7 Quiz Solutions Problem : a H(s) = s a a) Calculate the zero order hold equivalent H eq (z). H eq (z) = z z G(s) Z{ } s G(s) a Z{ } = Z{ s s(s a ) } G(s) A B Z{ } = Z{ + } s s(s + a) s(s a) G(s) a a
More informationLecture 17 Date:
Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A
More informationExample on Root Locus Sketching and Control Design
Example on Root Locus Sketching and Control Design MCE44  Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We
More informationDue Wednesday, February 6th EE/MFS 599 HW #5
Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unityfeedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]
More informationCHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS
CHAPTER 5 : REDUCTION OF MULTIPLE SUBSYSTEMS Objectives Students should be able to: Reduce a block diagram of multiple subsystems to a single block representing the transfer function from input to output
More informationEXAMPLE PROBLEMS AND SOLUTIONS
Similarly, the program for the fourthorder transfer function approximation with T = 0.1 sec is [num,denl = pade(0.1, 4); printsys(num, den, 'st) numlden = sa42o0sa3 + 1 80O0sA2840000~ + 16800000 sa4
More informationControl System. Contents
Contents Chapter Topic Page Chapter Chapter Chapter3 Chapter4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of
More informationQuestion paper solution. 1. Compare linear and nonlinear control system. ( 4 marks, Dec 2012)
Question paper solution UNIT. Compare linear and nonlinear control system. ( 4 marks, Dec 0) Linearcontrol system: obey super position theorem, stability depends only on root location, do not exhibit
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationClass 12 Root Locus part II
Class 12 Root Locus part II Revising (from part I): Closed loop system K The Root Locus the locus of the poles of the closed loop system, when we vary the value of K Comple plane jω ais 0 real ais Thus,
More informationSecond Order and Higher Order Systems
Second Order and Higher Order Systems 1. Second Order System In this section, we shall obtain the response of a typical secondorder control system to a step input. In terms of damping ratio and natural
More informationFeedback Control part 2
Overview Feedback Control part EGR 36 April 19, 017 Concepts from EGR 0 Open and closedloop control Everything before chapter 7 are openloop systems Transient response Design criteria Translate criteria
More informationAPPLICATIONS FOR ROBOTICS
Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table
More informationPD, PI, PID Compensation. M. Sami Fadali Professor of Electrical Engineering University of Nevada
PD, PI, PID Compensation M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline PD compensation. PI compensation. PID compensation. 2 PD Control L= loop gain s cl = desired closedloop
More informationHomework Assignment 3
ECE382/ME482 Fall 2008 Homework 3 Solution October 20, 2008 1 Homework Assignment 3 Assigned September 30, 2008. Due in lecture October 7, 2008. Note that you must include all of your work to obtain full
More informationPower System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur. Module 3 Lecture 8
Power System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur Module 3 Lecture 8 Welcome to lecture number 8 of module 3. In the previous
More informationRoot locus 5. tw4 = 450. Root Locus S51 S O L U T I O N S
Root Locus S51 S O L U T I O N S Root locus 5 Note: All references to Figures and Equations whose numbers are not preceded by an "S" refer to the textbook. (a) Rule 2 is all that is required to find the
More informationFrequency (rad/s)
. The frequency response of the plant in a unity feedback control systems is shown in Figure. a) What is the static velocity error coefficient K v for the system? b) A lead compensator with a transfer
More informationToday (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10
Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationEE 4343/ Control System Design Project LECTURE 10
Copyright S. Ikenaga 998 All rights reserved EE 4343/5329  Control System Design Project LECTURE EE 4343/5329 Homepage EE 4343/5329 Course Outline Design of Phaselead and Phaselag compensators using
More informationEE3CL4: Introduction to Linear Control Systems
1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We
More informationDIGITAL CONTROL OF POWER CONVERTERS. 3 Digital controller design
DIGITAL CONTROL OF POWER CONVERTERS 3 Digital controller design Frequency response of discrete systems H(z) Properties: z e j T s 1 DC Gain z=1 H(1)=DC 2 Periodic nature j Ts z e jt e s cos( jt ) j sin(
More informationThe FrequencyResponse
6 The FrequencyResponse Design Method A Perspective on the FrequencyResponse Design Method The design of feedback control systems in industry is probably accomplished using frequencyresponse methods
More informationUniversity of Science and Technology, Sudan Department of Chemical Engineering.
ISO 91:28 Certified Volume 3, Issue 6, November 214 Design and Decoupling of Control System for a Continuous Stirred Tank Reactor (CSTR) Georgeous, N.B *1 and Gasmalseed, G.A, Abdalla, B.K (12) University
More informationDesign via Root Locus
Design via Root Locus I 9 Chapter Learning Outcomes J After completing this chapter the student will be able to: Use the root locus to design cascade compensators to improve the steadystate error (Sections
More informationLoop shaping exercise
Loop shaping exercise Excerpt 1 from Controlli Automatici  Esercizi di Sintesi, L. Lanari, G. Oriolo, EUROMA  La Goliardica, 1997. It s a generic book with some typical problems in control, not a collection
More informationRoot Locus Design Example #3
Root Locus Design Example #3 A. Introduction The system represents a linear model for vertical motion of an underwater vehicle at zero forward speed. The vehicle is assumed to have zero pitch and roll
More informationDynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.
Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control
More informationCascade Control of a Continuous Stirred Tank Reactor (CSTR)
Journal of Applied and Industrial Sciences, 213, 1 (4): 1623, ISSN: 23284595 (PRINT), ISSN: 2328469 (ONLINE) Research Article Cascade Control of a Continuous Stirred Tank Reactor (CSTR) 16 A. O. Ahmed
More informationEE3CL4: Introduction to Linear Control Systems
1 / 30 EE3CL4: Introduction to Linear Control Systems Section 9: of and using Techniques McMaster University Winter 2017 2 / 30 Outline 1 2 3 4 / 30 domain analysis Analyze closed loop using open loop
More information