Connection Diagram DECODIFICADORES. 74LS42 Decodificador BCD a decimal. Grado en Ingeniería Informática FUNDAMENTOS DE TECNOLIGÍA DE COMPUTADORES

Size: px
Start display at page:

Download "Connection Diagram DECODIFICADORES. 74LS42 Decodificador BCD a decimal. Grado en Ingeniería Informática FUNDAMENTOS DE TECNOLIGÍA DE COMPUTADORES"

Transcription

1 Grado en Ingeniería Informática DEPARTAMENTO DE AUTOMÁTICA ARQUITECTURA Y TECNOLOGÍA DE COMPUTADORES FUNDAMENTOS DE TECNOLIGÍA DE COMPUTADORES Circuitos combinacionales MSI DECODIFICADORES 74LS42 Decodificador BCD a decimal Connection Diagram Dual-In-Line Package

2 Function Table No. BCD Inputs Decimal Outputs D C B A L L L L L H H H H H H H H H 1 L L L H H L H H H H H H H H 2 L L H L H H L H H H H H H H 3 L L H H H H H L H H H H H H 4 L H L L H H H H L H H H H H 5 L H L H H H H H H L H H H H 6 L H H L H H H H H H L H H H 7 L H H H H H H H H H H L H H 8 H L L L H H H H H H H H L H 9 H L L H H H H H H H H H H L I H L H L H H H H H H H H H H N H L H H H H H H H H H H H H V H H L L H H H H H H H H H H A H H L H H H H H H H H H H H L H H H L H H H H H H H H H H I H H H H H H H H H H H H H H D H e High Level L e Low Level Logic Diagram e

3 74LS138 Decodificador 3 a 8 Connection Diagrams DM74LS138 Function Tables DM74LS138 Inputs Enable Select Outputs G1 G2 (Note 1) C B A YO Y1 Y2 Y3 Y4 Y5 Y6 Y7 X H X X X H H H H H H H H L X X X X H H H H H H H H H L L L L L H H H H H H H H L L L H H L H H H H H H H L L H L H H L H H H H H H L L H H H H H L H H H H H L H L L H H H H L H H H H L H L H H H H H H L H H H L H H L H H H H H H L H H L H H H H H H H H H H L Note 1: G2 = G2A + G2B

4 Logic Diagrams DM74LS138 74LS154 Decodificador 4 a 16 Connection and Logic Diagrams Dual-In-Line Package

5

6 Function Table Inputs Outputs G1 G2 D C B A L L L L L L L H H H H H H H H H H H H H H H L L L L L H H L H H H H H H H H H H H H H H L L L L H L H H L H H H H H H H H H H H H H L L L L H H H H H L H H H H H H H H H H H H L L L H L L H H H H L H H H H H H H H H H H L L L H L H H H H H H L H H H H H H H H H H L L L H H L H H H H H H L H H H H H H H H H L L L H H H H H H H H H H L H H H H H H H H L L H L L L H H H H H H H H L H H H H H H H L L H L L H H H H H H H H H H L H H H H H H L L H L H L H H H H H H H H H H L H H H H H L L H L H H H H H H H H H H H H H L H H H H L L H H L L H H H H H H H H H H H H L H H H L L H H L H H H H H H H H H H H H H H L H H L L H H H L H H H H H H H H H H H H H H L H L L H H H H H H H H H H H H H H H H H H H L L H X X X X H H H H H H H H H H H H H H H H H L X X X X H H H H H H H H H H H H H H H H H H X X X X H H H H H H H H H H H H H H H H H e High Level, L e Low Level, X e Don t Care 74LS47 Decodificador BCD a 7 segmentos Logic Symbol Connection Diagram V CC = Pin 16 GND = Pin 8 Pin Descriptions Pin Names Description A0 A3 BCD Inputs RBI Ripple Blanking Input (Active LOW) LT Lamp Test Input (Active LOW) BI/RBO Blanking Input (Active LOW) or Ripple Blanking Output (Active LOW) a g Segment Outputs (Active LOW) (Note 1) Note 1: OC Open Collector

7 Truth Table Decimal Inputs Outputs or Note Function LT RBI A3 A2 A1 A0 BI/RBO a b c d e f g 0 H H L L L L H L L L L L L H (Note 2) 1 H X L L L H H H L L H H H H (Note 2) 2 H X L L H L H L L H L L H L 3 H X L L H H H L L L L H H L 4 H X L H L L H H L L H H L L 5 H X L H L H H L H L L H L L 6 H X L H H L H H H L L L L L 7 H X L H H H H L L L H H H H 8 H X H L L L H L L L L L L L 9 H X H L L H H L L L H H L L 10 H X H L H L H H H H L L H L 11 H X H L H H H H H L L H H L 12 H X H H L L H H L H H H L L 13 H X H H L H H L H H L H L L 14 H X H H H L H H H H L L L L 15 H X H H H H H H H H H H H H BI X X X X X X L H H H H H H H (Note 3) RBI H L L L L L L H H H H H H H (Note 4) LT L X X X X X H L L L L L L L (Note 5) Note 2: BI/RBO is wire-and logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking out (BI) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a HIGH level if blanking or a decimal 0 is not desired. X = input may be HIGH or LOW. Note 3: When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a HIGH level regardless of the state of any other input condition. Note 4: When ripple-blanking input (RBI) and inputs A0, A1, A2 and A3 are LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output (RBO) goes to a LOW level (response condition). Note 5: When the blanking input/ripple-blanking output (BI/RBO) is OPEN or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a LOW level. Functional Description The DM74LS47 decodes the input data in the pattern indicated in the Truth Table and the segment identification illustration. If the input data is decimal zero, a LOW signal applied to the RBI blanks the display and causes a multidigit display. For example, by grounding the RBI of the highest order decoder and connecting its BI/RBO to RBI of the next lowest order decoder, etc., leading zeros will be suppressed. Similarly, by grounding RBI of the lowest order decoder and connecting its BI/RBO to RBI of the next highest order decoder, etc., trailing zeros will be suppressed. Leading and trailing zeros can be suppressed simultaneously by using external gates, i.e.: by driving RBI of a intermediate decoder from an OR gate whose inputs are BI/RBO of the next highest and lowest order decoders. BI/ RBO also serves as an unconditional blanking input. The internal NAND gate that generates the RBO signal has a resistive pull-up, as opposed to a totem pole, and thus BI/ RBO can be forced LOW by external means, using wiredcollector logic. A LOW signal thus applied to BI/RBO turns off all segment outputs. This blanking feature can be used to control display intensity by varying the duty cycle of the blanking signal. A LOW signal applied to LT turns on all segment outputs, provided that BI/RBO is not forced LOW.

8 Logic Diagram Numerical Designations Resultant Displays

9 CODIFICADORES 74LS147 Codificador con prioridad decimal BCD SN54/ 74LS147 (TOP VIEW) SN54/ 74LS147 FUNCTION TABLE INPUTS OUTPUTS D C B A H H H H H H H H H H H H H X X X X X X X X L L H H L X X X X X X X L H L H H H X X X X X X L H H H L L L X X X X X L H H H H L L H X X X X L H H H H H L H L X X X L H H H H H H L H H X X L H H H H H H H H L L X L H H H H H H H H H L H L H H H H H H H H H H H L H = HIGH Logic Level, L = LOW Logic Level, X = Irrelevant

10 SN54/ 74LS147

11 74LS148 Codificador con prioridad 8 a 3 SN54/ 74LS148 SN54/ 74LS748 (TOP VIEW) INPUTS SN54/ 74LS148 SN54/ 74LS748 FUNCTION TABLE OUTPUTS EI A2 A1 A0 GS EO H X X X X X X X X H H H H H L H H H H H H H H H H H H L L X X X X X X X L L L L L H L X X X X X X L H L L H L H L X X X X X L H H L H L L H L X X X X L H H H L H H L H L X X X L H H H H H L L L H L X X L H H H H H H L H L H L X L H H H H H H H H L L H L L H H H H H H H H H H L H

12 SN54/ 74LS148

13 MULTIPLEXORES 74LS157 Cuádruple multiplexor de dos entradas LOGIC SYMBOL E I0a I1a I0b I1b I0c I1c I0d I1d 1 S Za Zb Zc Zd VCC = PIN 16 GND = PIN 8 CONNECTION DIAGRAM DIP (TOP VIEW) VCC E I0c I1c Zc I0d I1d Zd NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package S I0a I1d Za I0b I1b Zb GND

14 LOGIC DIAGRAM I0a I1a I0b I1b I0c I1c I0d I1d E S Za Zb Zc Zd VCC = PIN 16 GND = PIN 8 = PIN NUMBERS TRUTH TABLE ENABLE SELECT INPUT INPUTS OUTPUT E S I0 I1 Z H X X X L L H X L L L H X H H L L L X L L L H X H H = HIGH Voltage Level L = LOW Voltage Level X = Don t Care

15 74LS151 Multiplexor 1 entre 8 Connection Diagram Truth Table Select Inputs Strobe C B A S H = HIGH Level L = LOW Level X = Don't Care D0, D1...D7 = the level of the respective D input Y Outputs X X X H L H L L L L D0 D0 L L H L D1 D1 L H L L D2 D2 L H H L D3 D3 H L L L D4 D4 H L H L D5 D5 H H L L D6 D6 H H H L D7 D7 W

16 Logic Diagrams See Address Buffers Address Buffers

17 COMPARADOR 74LS85 Comparador binario de 4 bits Connection Diagram Function Table Comparing Cascading Outputs Inputs Inputs A3, B3 A2, B2 A1, B1 A0, B0 A > B A < B A = B A > B A < B A = B A3 > B3 X X X X X X H L L A3 < B3 X X X X X X L H L A3 = B3 A2 > B2 X X X X X H L L A3 = B3 A2 < B2 X X X X X L H L A3 = B3 A2 = B2 A1 > B1 X X X X H L L A3 = B3 A2 = B2 A1 < B1 X X X X L H L A3 = B3 A2 = B2 A1 = B1 A0 > B0 X X X H L L A3 = B3 A2 = B2 A1 = B1 A0 < B0 X X X L H L A3 = B3 A2 = B2 A1 = B1 A0 = B0 H L L H L L A3 = B3 A2 = B2 A1 = B1 A0 = B0 L H L L H L A3 = B3 A2 = B2 A1 = B1 A0 = B0 L L H L L H A3 = B3 A2 = B2 A1 = B1 A0 = B0 X X H L L H A3 = B3 A2 = B2 A1 = B1 A0 = B0 H H L L L L A3 = B3 A2 = B2 A1 = B1 A0 = B0 L L L H H L H = HIGH Level, L = LOW Level, X = Don t Care

18 Logic Diagram

DM54LS47 DM74LS47 BCD to 7-Segment Decoder Driver with Open-Collector Outputs

DM54LS47 DM74LS47 BCD to 7-Segment Decoder Driver with Open-Collector Outputs DM54LS47 DM74LS47 BCD to 7-Segment Decoder Driver with Open-Collector Outputs General Description The LS47 accepts four lines of BCD (8421) input data generates their complements internally and decodes

More information

DM7446A, DM7447A BCD to 7-Segment Decoders/Drivers

DM7446A, DM7447A BCD to 7-Segment Decoders/Drivers DM7446A, DM7447A BCD to 7-Segment Decoders/Drivers General Description The DM7446A and DM7447A feature active-low outputs designed for driving common-anode LEDs or incandescent indicators directly. All

More information

Design of Combinational Logic

Design of Combinational Logic Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NASHIK 3. Design of Combinational Logic By Prof. Anand N. Gharu (Assistant Professor) PVGCOE Computer Dept.. 30 th June 2017 CONTENTS :- 1. Code Converter

More information

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, TTL, DECODERS MONOLITHIC SILICON. Inactive for new design after 7 September 1995.

MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, TTL, DECODERS MONOLITHIC SILICON. Inactive for new design after 7 September 1995. INCH-POUND 16 February 2005 SUPERSEDING MIL-M-38510/10C 3 March 1986 MILITARY SPECIFICATION MICROCIRCUITS, DIGITAL, BIPOLAR, TTL, DECODERS MONOLITHIC SILICON This specification is approved for use by all

More information

LOW POWER SCHOTTKY. GUARANTEED OPERATING RANGES ORDERING INFORMATION PLASTIC N SUFFIX CASE 648

LOW POWER SCHOTTKY.  GUARANTEED OPERATING RANGES ORDERING INFORMATION PLASTIC N SUFFIX CASE 648 The SN74LS247 is a BCD-to-Seven-Segment Decoder/Drivers. The LS247 composes the and with the tails. The LS247 has active-low outputs for direct drive of indicators. The LS247 features a lamp test input

More information

DM7446A DM5447A DM7447A BCD to 7-Segment Decoders Drivers

DM7446A DM5447A DM7447A BCD to 7-Segment Decoders Drivers DM7446A DM5447A DM7447A BCD to 7-Segment Decoders Drivers General Description The 46A and 47A feature active-low outputs designed for driving common-anode LEDs or incandescent indicators directly All of

More information

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU 534 007 DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DIGITAL

More information

SN54/74LS05 HEX INVERTER HEX INVERTER FAST AND LS TTL DATA 5-1 LOW POWER SCHOTTKY ORDERING INFORMATION GUARANTEED OPERATING RANGES

SN54/74LS05 HEX INVERTER HEX INVERTER FAST AND LS TTL DATA 5-1 LOW POWER SCHOTTKY ORDERING INFORMATION GUARANTEED OPERATING RANGES EX INERTER SN54/S05 CC 4 3 2 0 9 8 EX INERTER OW POWER SCOTTKY * * * * * * 2 3 4 5 6 *OPEN COECTOR OUTPUTS 7 GND 4 J SUFFIX CERAMIC CASE 632-08 4 N SUFFIX PASTIC CASE 646-06 4 D SUFFIX SOIC CASE 75A-02

More information

LOW POWER SCHOTTKY. GUARANTEED OPERATING RANGES ORDERING INFORMATION PLASTIC N SUFFIX CASE 648

LOW POWER SCHOTTKY.   GUARANTEED OPERATING RANGES ORDERING INFORMATION PLASTIC N SUFFIX CASE 648 The SN74LS247 is a BCD-to-Seven-Segment Decoder/Drivers. The LS247 composes the and with the tails. The LS247 has active-low outputs for direct drive of indicators. The LS247 features a lamp test input

More information

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. *MR for LS160A and LS161A *SR for LS162A and LS163A

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. *MR for LS160A and LS161A *SR for LS162A and LS163A BCD DECADE COUNTERS/ 4-BIT BINARY COUNTERS The LS160A/ 161A/ 162A/ 163A are high-speed 4-bit synchronous counters. They are edge-triggered, synchronously presettable, and cascadable MSI building blocks

More information

Digital Electronics Circuits 2017

Digital Electronics Circuits 2017 JSS SCIENCE AND TECHNOLOGY UNIVERSITY Digital Electronics Circuits (EC37L) Lab in-charge: Dr. Shankraiah Course outcomes: After the completion of laboratory the student will be able to, 1. Simplify, design

More information

Layout of 7400-series Chips Commonly Used in. CDA 3101: Introduction to Computer Hardware and Organization

Layout of 7400-series Chips Commonly Used in. CDA 3101: Introduction to Computer Hardware and Organization Layout of 400-series Chips Commonly Used in CDA 30: Introduction to Computer Hardware and Organization Charles N. Winton Department of Computer and Information Sciences University of North Florida 999

More information

SN74LS153D 74LS153 LOW POWER SCHOTTKY

SN74LS153D 74LS153 LOW POWER SCHOTTKY 74LS153 The LSTTL/MSI SN74LS153 is a very high speed Dual 4-Input Multiplexer with common select inputs and individual enable inputs for each section. It can select two bits of data from four sources.

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic

More information

DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS. To design and implement encoders and decoders using logic gates.

DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS. To design and implement encoders and decoders using logic gates. DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS AIM To design and implement encoders and decoders using logic gates. COMPONENTS REQUIRED S.No Components Specification Quantity 1. Digital IC Trainer

More information

Z = F(X) Combinational circuit. A combinational circuit can be specified either by a truth table. Truth Table

Z = F(X) Combinational circuit. A combinational circuit can be specified either by a truth table. Truth Table Lesson Objectives In this lesson, you will learn about What are combinational circuits Design procedure of combinational circuits Examples of combinational circuit design Combinational Circuits Logic circuit

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET F a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Infmation The IC06 74C/CT/CU/CMOS ogic

More information

Lab 3 Revisited. Zener diodes IAP 2008 Lecture 4 1

Lab 3 Revisited. Zener diodes IAP 2008 Lecture 4 1 Lab 3 Revisited Zener diodes R C 6.091 IAP 2008 Lecture 4 1 Lab 3 Revisited +15 Voltage regulators 555 timers 270 1N758 0.1uf 5K pot V+ V- 2N2222 0.1uf V o. V CC V Vin s = 5 V Vc V c Vs 1 e t = RC Threshold

More information

SN74LS151D LOW POWER SCHOTTKY

SN74LS151D LOW POWER SCHOTTKY The TTL/MSI SN74LS5 is a high speed 8-input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The LS5 can be used as a universal function

More information

NTE74LS181 Integrated Circuit TTL Arithmetic Logic Unit/Function Generator

NTE74LS181 Integrated Circuit TTL Arithmetic Logic Unit/Function Generator NTE74LS181 Integrated Circuit TTL Arithmetic Logic Unit/Function Generator Description: The NTE74LS181 is an arithmetic logic unit (ALU)/function generator in a 24 Lead DIP type package that has the complexity

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC6 74HC/HCT/HCU/HCMOS Logic Package Information The IC6 74HC/HCT/HCU/HCMOS

More information

Sample Test Paper - I

Sample Test Paper - I Scheme G Sample Test Paper - I Course Name : Computer Engineering Group Marks : 25 Hours: 1 Hrs. Q.1) Attempt any THREE: 09 Marks a) Define i) Propagation delay ii) Fan-in iii) Fan-out b) Convert the following:

More information

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below. Important notice Dear Customer, On 7 February 217 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, ogic and

More information

MM74C912 6-Digit BCD Display Controller/Driver

MM74C912 6-Digit BCD Display Controller/Driver 6-Digit BCD Display Controller/Driver General Description The display controllers are interface elements, with memory, that drive a 6-digit, 8-segment LED display. The display controllers receive data

More information

Chapter 6 Combinational Logic Functions

Chapter 6 Combinational Logic Functions Chapter 6 Combinational Logic Functions Chapter Objectives Upon successful completion of this chapter, you will be able to: Design binary decoders using logic gates. Create decoder designs in Multisim.

More information

Chapter 3 Combinational Logic Design

Chapter 3 Combinational Logic Design Logic and Computer Design Fundamentals Chapter 3 Combinational Logic Design Part 2 Combinational Logic Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hyperlinks are active in View Show mode)

More information

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. 查询 SN4/74LS2 供应商 捷多邦, 专业 PCB 打样工厂, 小时加急出货 PRESEABLE BCD/DECADE UP/DOWN COUNER PRESEABLE 4-BI BINARY UP/DOWN COUNER he SN4/74LS2 is an UP/DOWN BCD Decade (842) Counter and the SN4/74LS3 is an UP/DOWN MODULO-6

More information

CD4511BC BCD-to-7 Segment Latch/Decoder/Driver

CD4511BC BCD-to-7 Segment Latch/Decoder/Driver CD4511BC BCD-to-7 Segment Latch/Decoder/Driver General Description The CD4511BC BCD-to-seven segment latch/decoder/ driver is constructed with complementary MOS (CMOS) enhancement mode devices and NPN

More information

MODULAR CIRCUITS CHAPTER 7

MODULAR CIRCUITS CHAPTER 7 CHAPTER 7 MODULAR CIRCUITS A modular circuit is a digital circuit that performs a specific function or has certain usage. The modular circuits to be introduced in this chapter are decoders, encoders, multiplexers,

More information

Digital Circuits Labs J. Stanley Warford

Digital Circuits Labs J. Stanley Warford Digital Circuits abs J. Stanley Warford This is the parts list for a set of six digital circuit labs for use in conjunction with the textbook Computer Systems, Jones and Bartlett earning. The labs refer

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

SN74LS157MEL. Quad 2 Input Multiplexer LOW POWER SCHOTTKY

SN74LS157MEL. Quad 2 Input Multiplexer LOW POWER SCHOTTKY Quad 2 Input Multiplexer The LSTTL/ MSI is a high speed Quad 2-Input Multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four buffered outputs

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

CD4028BC BCD-to-Decimal Decoder

CD4028BC BCD-to-Decimal Decoder BCD-to-Decimal Decoder General Description The is a BCD-to-decimal or binary-to-octal decoder consisting of 4 inputs, decoding logic gates, and 10 output buffers. A BCD code applied to the 4 inputs, A,

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC4511 M74HC4511 BCD TO 7 SEGMENT LATCH/DECODER DRIVER. tpd = 28 ns (TYP.

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC4511 M74HC4511 BCD TO 7 SEGMENT LATCH/DECODER DRIVER. tpd = 28 ns (TYP. M54HC4511 M74HC4511 BCD TO 7 SEGMENT LATCH/DECODER DRIVER. HIGH SPEED tpd = 28 (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =4µA (MAX.) AT T A =25 C.HIGH NOISE IMMUNITY VNIH =VNIL =28%VCC (MIN.) OUTPUT

More information

INTEGRATED CIRCUITS. 74ALS11A Triple 3-Input AND gate. Product specification 1991 Feb 08 IC05 Data Handbook

INTEGRATED CIRCUITS. 74ALS11A Triple 3-Input AND gate. Product specification 1991 Feb 08 IC05 Data Handbook INTEGRATED CIRCUITS Triple 3-Input AND gate 1991 Feb 08 IC05 Data Handbook TYPE TYPICAL PROPAGATION DELAY TYPICAL SUPPLY CURRENT (TOTAL) 5.5ns 1.3mA PIN CONFIGURATION 1A 1 1B 2 14 13 V CC 1C ORDERING INFORMATION

More information

Boole Algebra and Logic Series

Boole Algebra and Logic Series S1 Teknik Telekomunikasi Fakultas Teknik Elektro oole lgebra and Logic Series 2016/2017 CLO1-Week2-asic Logic Operation and Logic Gate Outline Understand the basic theory of oolean Understand the basic

More information

Boolean Logic Continued Prof. James L. Frankel Harvard University

Boolean Logic Continued Prof. James L. Frankel Harvard University Boolean Logic Continued Prof. James L. Frankel Harvard University Version of 10:18 PM 5-Sep-2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. D Latch D R S Clk D Clk R S X 0 ~S 0 = R 0 ~R

More information

DATASHEET CA3162. Features. Description. Ordering Information. Pinout. Functional Block Diagram. A/D Converters for 3-Digit Display

DATASHEET CA3162. Features. Description. Ordering Information. Pinout. Functional Block Diagram. A/D Converters for 3-Digit Display DATASHEET CA A/D Converters for -Digit Display Features Dual Slope A/D Conversion Multiplexed BCD Display Ultra Stable Internal Band Gap Voltage Reference Capable of Reading 99mV Below Ground with Single

More information

M74HC4543TTR BCD TO 7 SEGMENT LATCH/DECODER/LCD DRIVER

M74HC4543TTR BCD TO 7 SEGMENT LATCH/DECODER/LCD DRIVER BCD TO 7 SEGMENT LATCH/DECODER/LCD DRIVER HIGH SPEED: t PD = 14 (TYP.) at V CC = 6V LOW POWER DISSIPATION: I CC = 4µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) SYMMETRICAL

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

Experiment 9 Sequential Circuits

Experiment 9 Sequential Circuits Introduction to Counters Experiment 9 Sequential Circuits The aim of this experiment is to familiarize you, frst with the basic sequential circuit device called a fip fop, and then, with the design and

More information

Binary addition (1-bit) P Q Y = P + Q Comments Carry = Carry = Carry = Carry = 1 P Q

Binary addition (1-bit) P Q Y = P + Q Comments Carry = Carry = Carry = Carry = 1 P Q Digital Arithmetic In Chapter 2, we have discussed number systems such as binary, hexadecimal, decimal, and octal. We have also discussed sign representation techniques, for example, sign-bit representation

More information

SN74LS157MEL LOW POWER SCHOTTKY

SN74LS157MEL LOW POWER SCHOTTKY The LSTTL/MSI SN74LS157 is a high speed Quad 2-Input Multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four buffered outputs present the selected

More information

Please read carefully. Good luck & Go Gators!!!

Please read carefully. Good luck & Go Gators!!! Page 1/12 Exam 1 May the Schwartz be with you! Instructions: Turn off all cell phones and other noise making devices and put away all electronics Show all work on the front of the test papers Box each

More information

UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC

UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC 16-BIT CONSTANT CURRENT LED SINK DRIVER DESCRIPTION The UTC L16B45 is designed for LED displays. UTC L16B45 contains a serial buffer and data latches

More information

NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output

NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output Description: The NTE74HC299 is an 8 bit shift/storage register with three state bus interface capability

More information

TC4511BP,TC4511BF TC4511BP/BF. TC4511B BCD-to-Seven Segment Latch/Decoder/Driver. Pin Assignment. Display

TC4511BP,TC4511BF TC4511BP/BF. TC4511B BCD-to-Seven Segment Latch/Decoder/Driver. Pin Assignment. Display TC411BP/BF TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC411BP,TC411BF TC411B BCD-to-Seven Segment Latch/Decoder/Driver TC411B is decoder which converts the input of BCD code into the 7

More information

Floating Point Representation and Digital Logic. Lecture 11 CS301

Floating Point Representation and Digital Logic. Lecture 11 CS301 Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8

More information

MM74HC151 8-Channel Digital Multiplexer

MM74HC151 8-Channel Digital Multiplexer 8-Channel Digital Multiplexer General Description The MM74HC151 high speed Digital multiplexer utilizes advanced silicon-gate CMOS technology. Along with the high noise immunity and low power dissipation

More information

74LS195 SN74LS195AD LOW POWER SCHOTTKY

74LS195 SN74LS195AD LOW POWER SCHOTTKY The SN74LS95A is a high speed 4-Bit Shift Register offering typical shift frequencies of 39 MHz. It is useful for a wide variety of register and counting applications. It utilizes the Schottky diode clamped

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

Experiment 7: Magnitude comparators

Experiment 7: Magnitude comparators Module: Logic Design Lab Name:... University no:.. Group no: Lab Partner Name: Experiment 7: Magnitude comparators Mr. Mohamed El-Saied Objective: Realization of -bit comparator using logic gates. Realization

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS ogic Family Specifications The IC6 74HC/HCT/HCU/HCMOS ogic Package Information The IC6 74HC/HCT/HCU/HCMOS

More information

1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS

1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS 1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS The IN74ACT138 is identical in pinout to the LS/ALS138, HC/HCT138. The IN74ACT138 may be used as a level converter for interfacing TTL or NMOS

More information

Unit 3. 2 Combinational circuits

Unit 3. 2 Combinational circuits Unit 3. 2 Combinational circuits Contents Bibliography Combinational circuits: concept, analysis and synthesis. Methods to simplify logical functions. Basic combinational circuits; Multiplexers Demultiplexers

More information

Signals and Systems Digital Logic System

Signals and Systems Digital Logic System Signals and Systems Digital Logic System Prof. Wonhee Kim Chapter 2 Design Process for Combinational Systems Step 1: Represent each of the inputs and outputs in binary Step 1.5: If necessary, break the

More information

MM74C912 6-Digit BCD Display Controller Driver MM74C917 6-Digit Hex Display Controller Driver

MM74C912 6-Digit BCD Display Controller Driver MM74C917 6-Digit Hex Display Controller Driver MM74C912 6-Digit BCD Display Controller Driver MM74C917 6-Digit Hex Display Controller Driver General Description The MM74C912 MM74C917 display controllers are interface elements with memory that drive

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

INTEGRATED CIRCUITS. 74F154 1-of-16 decoder/demultiplexer. Product specification Jan 08. IC15 Data Handbook

INTEGRATED CIRCUITS. 74F154 1-of-16 decoder/demultiplexer. Product specification Jan 08. IC15 Data Handbook INTEGRATED CIRCUITS 1-of-16 decoder/demultiplexer 1990 Jan 08 IC15 Data Handbook Decoder/demultiplexer FEATURES 16-line demultiplexing capability Mutually exclusive outputs 2-input enable gate for strobing

More information

Chapter 3 Combinational Logic Design

Chapter 3 Combinational Logic Design Logic and Computer Design Fundamentals Chapter 3 Combinational Logic Design Part 1- Implementation Technology and Logic Design Overview Part 1-Implementation Technology and Logic Design Design Concepts

More information

COMBINATIONAL CIRCUITS

COMBINATIONAL CIRCUITS OMINTIONL IRUITS pplications Parity Generation and heking Even Parity P e P e P P P P P P5 P P6 ( ) = m(,, ) =, Odd Parity P o P e Three-bit Parity Generator ( ) = m(,,5, ) P P P P P P5 P P6 = 6 Three-bit

More information

DETAIL SPECIFICATION SHEET

DETAIL SPECIFICATION SHEET INCH POUND MIL DTL 28803/1E 1 September 2018 SUPERSEDING MIL D 28803/1E 4 September 2013 DETAIL SPECIFICATION SHEET DISPLAY, OPTOELECTRONIC, SEGMENTED READOUT, BACKLIGHTED, STYLE II (LIGHT EMITTING DIODE),

More information

M74HCT138TTR 3 TO 8 LINE DECODER (INVERTING)

M74HCT138TTR 3 TO 8 LINE DECODER (INVERTING) 3 TO 8 LINE DECODER (INVERTING) HIGH SPEED: t PD = 16ns (TYP.) at V CC = 4.5V LOW POWER DISSIPATION: I CC = 4µA(MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS : V IH = 2V (MIN.) V IL = 0.8V (MAX) SYMMETRICAL

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) 3 TO 8 LINE DECODER HIGH SPEED: t PD = 15ns (TYP.) at V CC = 6V LOW POWER DISSIPATION: I CC = 4µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) SYMMETRICAL OUTPUT IMPEDANCE:

More information

NTE74177 Integrated Circuit TTL 35Mhz Presettable Binary Counter/Latch

NTE74177 Integrated Circuit TTL 35Mhz Presettable Binary Counter/Latch NTE74177 Integrated Circuit TTL 35Mhz Presettable Binary Counter/Latch Description: The NTE74177 is a high speed monolithic counter in a 14 Lead plastic DIP type package consisting of four DC coupled master

More information

BCD-TO-DECIMAL DECODER HIGH-VOLTAGE SILICON-GATE CMOS IW4028B TECHNICAL DATA

BCD-TO-DECIMAL DECODER HIGH-VOLTAGE SILICON-GATE CMOS IW4028B TECHNICAL DATA TECHNICAL DATA BCD-TO-DECIMAL DECODER HIGH-OLTAGE SILICON-GATE CMOS IW4028B The IW4028B types are BCD-to-decimal or binary-tooctal decoders consisting of buffering on all 4 inputs, decoding-logic gates,

More information

MM74HCT138 3-to-8 Line Decoder

MM74HCT138 3-to-8 Line Decoder 3-to-8 Line Decoder General Description The MM74HCT138 decoder utilizes advanced silicon-gate CMOS technology, and are well suited to memory address decoding or data routing applications. Both circuits

More information

1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS

1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS 1-OF-8 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS The IN74AC138 is identical in pinout to the LS/ALS138, HC/HCT138. The device inputs are compatible with standard CMOS outputs; with pullup resistors,

More information

74LS75 Quad Latch. DM74LS75 Quad Latch. General Description. Ordering Code: Logic Diagram. Connection Diagram. Function Table (Each Latch)

74LS75 Quad Latch. DM74LS75 Quad Latch. General Description. Ordering Code: Logic Diagram. Connection Diagram. Function Table (Each Latch) 74LS75 Quad Latch General Description These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present

More information

COMBINATIONAL LOGIC FUNCTIONS

COMBINATIONAL LOGIC FUNCTIONS COMBINATIONAL LOGIC FUNCTIONS Digital logic circuits can be classified as either combinational or sequential circuits. A combinational circuit is one where the output at any time depends only on the present

More information

INTEGRATED CIRCUITS. 74ALS138 1-of-8 decoder/demultiplexer. Product specification 1996 Jul 03 IC05 Data Handbook

INTEGRATED CIRCUITS. 74ALS138 1-of-8 decoder/demultiplexer. Product specification 1996 Jul 03 IC05 Data Handbook INTEGRATED CIRCUITS 1996 Jul 03 IC05 Data Handbook FEATURES Demultiplexing capability Multiple input enable for easy expansion Ideal for memory chip select decoding DESCRIPTION The decoder accepts three

More information

Digital Design through Arduino

Digital Design through Arduino 1 Digital Design through Arduino G V V Sharma Contents 1 Display Control through Hardware 1 1.1 Components......... 1 1.2 Powering the Display.... 1 1.3 Controlling the Display... 2 2 Display Control through

More information

NTE74176 Integrated Circuit TTL 35Mhz Presettable Decade Counter/Latch

NTE74176 Integrated Circuit TTL 35Mhz Presettable Decade Counter/Latch NTE74176 Integrated Circuit TTL 35Mhz Presettable Decade Counter/Latch Description: The NTE74176 is a high speed monolithic counter in a 14 Lead plastic DIP type package consisting of four DC coupled master

More information

S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques s complement 2 s complement 1 s complement

S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques s complement 2 s complement 1 s complement S.Y. Diploma : Sem. III [CO/CM/IF/CD/CW] Digital Techniques Time: 3 Hrs.] Prelim Question Paper Solution [Marks : Q.(a) (i) () (2) s COMPLEMENT s COMPLEMENT 2s COMPLEMENT 2s COMPLEMENT + Q.(a) (ii) ()

More information

Function of Combinational Logic ENT263

Function of Combinational Logic ENT263 Function of Combinational Logic ENT263 Chapter Objectives Distinguish between half-adder and full-adder Use BCD-to-7-segment decoders in display systems Apply multiplexer in data selection Use decoders

More information

University of Florida EEL 3701 Fall 2014 Dr. Eric. M. Schwartz Department of Electrical & Computer Engineering Wednesday, 15 October 2014

University of Florida EEL 3701 Fall 2014 Dr. Eric. M. Schwartz Department of Electrical & Computer Engineering Wednesday, 15 October 2014 Page 1/12 Exam 1 May the Schwartz Instructions: be with you! Turn off all cell phones and other noise making devices and put away all electronics Show all work on the front of the test papers Box each

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS Logic Family Specifications The IC6 74C/CT/CU/CMOS Logic Package Information The IC6 74C/CT/CU/CMOS

More information

NAND, NOR and XOR functions properties

NAND, NOR and XOR functions properties Laboratory NAND, NOR and XOR functions properties. Laboratory work goals Enumeration of NAND, NOR and XOR functions properties Presentation of NAND, NOR and XOR modules Realisation of circuits with gates

More information

Schedule. ECEN 301 Discussion #25 Final Review 1. Date Day Class No. 1 Dec Mon 25 Final Review. Title Chapters HW Due date. Lab Due date.

Schedule. ECEN 301 Discussion #25 Final Review 1. Date Day Class No. 1 Dec Mon 25 Final Review. Title Chapters HW Due date. Lab Due date. Schedule Date Day Class No. Dec Mon 25 Final Review 2 Dec Tue 3 Dec Wed 26 Final Review Title Chapters HW Due date Lab Due date LAB 8 Exam 4 Dec Thu 5 Dec Fri Recitation HW 6 Dec Sat 7 Dec Sun 8 Dec Mon

More information

Chapter 4. Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. elements. Dr.

Chapter 4. Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. elements. Dr. Chapter 4 Dr. Panos Nasiopoulos Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. Sequential: In addition, they include storage elements Combinational

More information

Up/down binary counter with separate up/down clocks

Up/down binary counter with separate up/down clocks FEATURES Synchronous reversible 4-bit counting Asynchronous parallel load capability Asynchronous reset (clear) Cascadable without external logic DESCRIPTION The is a 4-bit synchronous up/down counter

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic

More information

University of Florida EEL 3701 Summer 2015 Dr. Eric. M. Schwartz Department of Electrical & Computer Engineering Tuesday, 30 June 2015

University of Florida EEL 3701 Summer 2015 Dr. Eric. M. Schwartz Department of Electrical & Computer Engineering Tuesday, 30 June 2015 University of Florida EEL 3701 Summer 2015 Dr Eric M Schwartz Page 1/13 Exam 1 May the Schwartz be with you! Instructions: Turn off all cell phones and other noise making devices Show all work on the front

More information

MM74HC574 3-STATE Octal D-Type Edge-Triggered Flip-Flop

MM74HC574 3-STATE Octal D-Type Edge-Triggered Flip-Flop 3-STATE Octal D-Type Edge-Triggered Flip-Flop General Description The MM74HC574 high speed octal D-type flip-flops utilize advanced silicon-gate P-well CMOS technology. They possess the high noise immunity

More information

Combinational Logic. By : Ali Mustafa

Combinational Logic. By : Ali Mustafa Combinational Logic By : Ali Mustafa Contents Adder Subtractor Multiplier Comparator Decoder Encoder Multiplexer How to Analyze any combinational circuit like this? Analysis Procedure To obtain the output

More information

INTEGRATED CIRCUITS. 74F521 8-bit identity comparator. Product specification May 15. IC15 Data Handbook

INTEGRATED CIRCUITS. 74F521 8-bit identity comparator. Product specification May 15. IC15 Data Handbook INTEGRATED CIRCUITS 1990 May IC Data Handbook FEATURES Compares two 8-bit words in 6.5ns typical Expandable to any word length DESCRIPTION The is an expandable 8-bit comparator. It compares two words of

More information

Digital Circuits. 1. Inputs & Outputs are quantized at two levels. 2. Binary arithmetic, only digits are 0 & 1. Position indicates power of 2.

Digital Circuits. 1. Inputs & Outputs are quantized at two levels. 2. Binary arithmetic, only digits are 0 & 1. Position indicates power of 2. Digital Circuits 1. Inputs & Outputs are quantized at two levels. 2. inary arithmetic, only digits are 0 & 1. Position indicates power of 2. 11001 = 2 4 + 2 3 + 0 + 0 +2 0 16 + 8 + 0 + 0 + 1 = 25 Digital

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC06 74C/CT/CU/CMOS ogic Family Specifications The IC06 74C/CT/CU/CMOS ogic Package Information The IC06 74C/CT/CU/CMOS

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 6 - Combinational Logic Introduction A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept

More information

COMBINATIONAL LOGIC CIRCUITS. Dr. Mudathir A. Fagiri

COMBINATIONAL LOGIC CIRCUITS. Dr. Mudathir A. Fagiri COMBINATIONAL LOGIC CIRCUITS Dr. Mudathir A. Fagiri Standard Combinational Modules Decoder: Decode address Encoder: Encode address Multiplexer (Mux): Select data by address Demultiplexier (DeMux): Direct

More information

Digital Design through Pi

Digital Design through Pi 1 Digital Design through Pi G V V Sharma Contents 1 Display Control through Hardware 1 1.1 Components......... 1 1.2 Software Setup........ 1 1.3 Powering the Display.... 1 1.4 Controlling the Display...

More information

74VHCT138ATTR 3 TO 8 LINE DECODER (INVERTING)

74VHCT138ATTR 3 TO 8 LINE DECODER (INVERTING) 3 TO 8 LINE DECODER (INVERTING) HIGH SPEED: t PD = 7.6 ns (TYP.) at V CC = 5V LOW POWER DISSIPATION: I CC = 4 µa (MAX.) at T A =25 C COMPATIBLE WITH TTL OUTPUTS: V IH = 2V (MIN.), V IL = 0.8V (MAX) POWER

More information

MM74HC138 3-to-8 Line Decoder

MM74HC138 3-to-8 Line Decoder 3-to-8 Line Decoder General Description The MM74HC138 decoder utilizes advanced silicon-gate CMOS technology and is well suited to memory address decoding or data routing applications. The circuit features

More information

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs Description: The NTE74HC173 is an high speed 3 State Quad D Type Flip Flop in a 16 Lead DIP type package that

More information

UNIVERSAL DEMULTIPLEXER/ DECODER

UNIVERSAL DEMULTIPLEXER/ DECODER UNIVERSAL DEULTIPLEXER/ DECODER FEATURES DESCRIPTION ax. propagation delay of 1200ps IEE min. of 92mA Industry standard 100K ECL levels Extended supply voltage option: VEE = 4.2V to 5.5V Voltage and temperature

More information

Obsolete Product(s) - Obsolete Product(s)

Obsolete Product(s) - Obsolete Product(s) BCD TO DECIMAL DECODER HIGH SPEED : t PD = 14ns (TYP.) at V CC = 6V LOW POWER DISSIPATION: I CC =4µA(MAX.) at T A =25 C HIGH NOISE IMMUNITY: V NIH = V NIL = 28 % V CC (MIN.) SYMMETRICAL OUTPUT IMPEDANCE:

More information

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC148 M74HC148 8 TO 3 LINE PRIORITY ENCODER. tpd = 15 ns (TYP.

. HIGH SPEED .LOW POWER DISSIPATION .HIGH NOISE IMMUNITY M54HC148 M74HC148 8 TO 3 LINE PRIORITY ENCODER. tpd = 15 ns (TYP. M54HC148 M74HC148 8 TO 3 LINE PRIORITY ENCODER. HIGH SPEED tpd = 15 ns (TYP.) AT VCC =5V.LOW POWER DISSIPATION I CC =4µA (MAX.) AT T A =25 C.HIGH NOISE IMMUNITY VNIH =VNIL =28%VCC (MIN.) OUTPUT DRIVE CAPABILITY

More information