BIO Animal Form and Function Midterm examination Worth either 10% or 15% of your final grade. Tuesday March 14, 2006

Size: px
Start display at page:

Download "BIO Animal Form and Function Midterm examination Worth either 10% or 15% of your final grade. Tuesday March 14, 2006"

Transcription

1 BIO Animal Form and Function Midterm examination Worth either 10% or 15% of your final grade Tuesday March 14, 2006 Place your name and student number in the space provided below. Be sure that your name is on the top of each page because the exam will be separated to facilitate marking Circle the lab section for your lab. Check to be sure that your exam is complete with a total of 13 pages including this one Answer all questions in the space provided on the exam. Do not transfer answers to the back of the page The exam is out of 80 pts. Name: Student No: Circle your lab section: Thursday: A1-BSC312, A3-BSC330, A5-BSC335 Friday: A2-BSC312, A4-BSC330 A6-BSC335. Page 1 of 13

2 15 pts Part 1. Briefly explain what each of the following biological terms means. Where possible include an example in your definition from a group or an organism to which the term applies. Metanephridium {Excretory/osmoregulatory}{filters coelomic fluid}{open funnel}{animal: Molluscs, Annelida} must have first two and one of the remaining two for a total of three Lophotrochozoa {Protostome animals or Infrakingdom} with either {lophophore tentacles surrounding mouth} or the {trochophore larval stage in developement} Moulting fluid {Produced at the start of the moult}{breaks down/recycles chitin and protein}{of the old cuticle} Spiral cleavage {Early in embryo/4-8cellstage}{division through the h}{top four spiral or rotate}{cells are also determinate}1,1,1 any three of these four Renette cells {Found in nematodes}{assumed to be excretory}{osmoregulatory} Page 2 of 13

3 25 pts Part 2 Answer each of the following multiple choice questions by placing an X in the space to the left of the correct choice. There is only one correct answer for each question and questions have either 4 or 5 answers to choose from 2.1 The relationship between insects and flowers is a. neutral, and of neither harm nor benefit. b. a case of herbivores eating host plants. c. X co-evolution, with flowers evolving to attract insects and the insects adapting to pollinate flowers and harvest pollen and nectar. d. Always harmful to the plants. 2.2 Insect dominance is probably due to the evolution of a. X flight. b. cephalization. c. the exoskeleton. d. metamerism. e. jointed appendages. 2.3 Of the following features that are characteristic of earthworms, which one is lacking in polychaetes? a. coelom b. spiral cleavage c. setae d. triploblastic development e. X clitellum 2.4 The space between mantle and foot in a mollusc is called the a. hemocoel. b. coelom. c. enterocoel. d. X mantle cavity. e. radula cavity. Page 3 of 13

4 2.5 In earthworms, the larval stage is a trochophore. b. X absent. c. a veliger. d. dormant. e. free-living. 2.6 Conversion of ammonia to urea takes place in the annelid a. metanephridia. b. calciferous glands. c. nuchal glands. d. clitellar tissue. e. X chloragogen tissue. 2.7 The external openings of the respiratory system of insects are a. tracheae. b. malpighii. c. X spiracles. d. nephridiopores. e. tracheoles. 2.8 The body of an insect is composed of tagmata. a. seven b. two c. four d. X three e. five Page 4 of 13

5 2.9 Because their shells are made of it, land snails are limited to soils that contain some level of: a. aluminum. b. silica. c. X calcium. d. sodium. e. carbon The adaptation of bivalves to sedentary, filter feeding life-styles involved loss of the head and the a. mantle cavity. b. siphons. c. visceral mass. d. X radula. e. foot The radula: a. not only rasps off fine food particles but also serves as a conveyor belt to carry food toward the digestive tract. b. replaces worn teeth by secreting new teeth at the posterior end. c. varies in number and pattern of teeth, allowing species to be classified by this trait. d. may be modified to bore through hard materials. e. X All of the above are correct. Page 5 of 13

6 2.12 One region of the sea star stomach, the, receives ingested food. a. gizzard b. crop c. X cardiac stomach d. pylorus e. rectal cecum 2.13 Among insects with metamorphosis, immatures are called larvae because they are very different from the adult in body form, behaviour, and habitat. a. ametabolous b. X holometabolous c. paurometabolous d. hemimetabolous e. chrysalous 2.14 The major secretory and absorptive structures of the sea star digestive system are the a. cardiac stomachs. b. rectal ceca. c. Polian vesicles. d. X pyloric ceca. e. pyloric stomachs A distinctive feature of marine polychaete worms is the lateral extensions called a. X parapodia. b. setae. c. prostomi. d. palps. e. tentacles. Page 6 of 13

7 2.16 Echinoderm radial symmetry is described as secondary because: a. it appears only in the free-swimming larval stages b. it is often modified into biradial or bilateral symmetry as in sea urchins and sea cucumbers c. X echinoderms do not have radially symmetric larvae d. rather than an indefinite number of planes of symmetry, there are only five e. only the surface features are radially symmetric; this symmetry does not extend to the internal anatomy 2.17 In the cuticle of terrestrial arthropods all but which of the following is true a. the chitin and protein in the exocuticle are chemically cross linked to each other b. X waxes in the procuticle waterproof the whole cuticle c. moulting starts with apolysis d. the only living layer is the epidermis e. the endocuticle is recycled and used in producing the new cuticle Characteristics that are typical of an annelid include: a. segmentation, open circulatory system and nephridia b. X segmentation, closed circulatory system and nephridia c. no anus, nephridia and a coelom d. nephridia, coelom and an open circulatory system 2.19 Chelicerate arthropods possess a. X pedipalps. b. antennae. c. mandibles. d. three pairs of walking legs. e. All of the above are chelicerate features. Page 7 of 13

8 2.20 Nematodes: a. have flame cells. b. have an incomplete gut c. X are dioecoius d. have external cilia 2.21 The of annelids are responsible for rapid movements such as escape reactions. a. segmental ganglia b. subesophageal ganglia c. cerebral fibers d. X giant axons/fibers e. supraesophageal ganglia 2.22 The Mother-of-Pearl layer of a molluscs shell protects the delicate mantle. It s also called: a. X the nacreous layer b. the prismatic layer c. chonchiolin d. periostracum e. none of the above 2.23 In contrast to the function of our bodies, the nematode is unusual insofar as it: a. lacks circular muscles to antagonize the longitudinal muscles and must rely on the rigid cuticle and hydrostatic pressure. b. extends muscle cells to the nerve process, rather than nerves to the muscle cells. c. Has ameboid sperm. d. moves food through its alimentary tract without direct muscle contractions on the intestine. e. X All of the above are "unusual" nematode adaptations. Page 8 of 13

9 2.24 The of marine polychaete worms is dorsal and anterior to the mouth and contains numerous sensory structures. a. gnathostome b. X prostomium c. peristomium d. protostome e. pygidium 2.25 This part of the cuticle is the last layer added at the very end of the moult a. Crosslinked exocucticle b. Proteins of the epicuticle c. X the wax layer of the epicuticle d. procuticle e. endocuticle 25 pts Part 3: Complete the following sentences using the appropriate terms. Place the term in the space in the sentence or at the end of the sentence. 3.1 Any part of the digestive tract involved in storing food prior to digestion; it's particularly large in leeches. Crop 3.2 In molluscs, the true coelom is this cavity. Pericardial cavity 3.3 This larval stage is found in molluscs and annelids. Trochophore 3.4 Describes the separation of the old cuticle from the epidermis. Apolysis 3.5 This is the upper most part of a marine polychaete worm's parapodia. Notopodium 3.6 The internal organs of a nematode float in the body cavity because it does not have any of these to anchor them in place. Mesenteries 3.7 The grinding action of this structure helps to release digestive enzymes into a clam's stomach. Gastric shield 3.8 Nematodes have only these muscles. Longitudinal 3.9 In an echinoderm, the ring canal connects to this canal before connecting to the tube feet. Radial/lateral Page 9 of 13

10 3.10 The molluscs have an open circulatory system and blood pools here. Haemocoel 3.11 Most digestion of food for a spider occurs as a result of Extracorporeal digestion 3.12 The bristles or hairs of annelids. Setae 3.13 These keep the fluids on both echinoderm body cavities moving. Cilia 3.14 This canal connects the madreporite to the ring canal in an echinoderm. Stone canal 3.15 The unique image forming sensory apparatus of an arthropod is this type of an eye. Compound 3.16 This part of the tube foot extends into the body cavity of an echinoderm. Ampulla 3.17 The trochophore larva found in annelids is also found in this phylum. Mollusca 3.18 This structure increases the surface area of an earthworm's digestive system. Typhlosole 3.19 In arthropods, metameres combine to form these larger functional body units. Tagma 3.20 The tremendous array of molluscan body plans is an excellent example of this type of radiation. Adaptive 3.21 Ascaris is an unusually large nematode because of its adaptation to this type of life. Parasite/tic 3.22 The procuticle acts as this type of barrier, providing strength and protection for an arthropod. Physical/strength 3.23 These chitinous rods help support the parapodia of marine worms. Acicula 3.24 The outermost body covering of a nematode is called this. Cuticle 3.25 This opening is found on the annelid's pygidium. Anus Page 10 of 13

11 15 pts Part 4: Answer 3 of the following 6 questions in the space provided each answer is worth 5 points. If you answer more than three only the first three will be counted. 5.1 It s not easy for a nematode to swallow food. What s the problem and how does the nematode overcome it? {Problem: Coelomic fluid under constant hydrostatic pressure}{open mouth and pressure would squeeze food out}{pharynx muscles for two valves} {open front/close back and fill pharynx}{close front, open back and empty pharynx} 1,1,1,1, Describe the path that particles created by the radula follow inside the digestive system of a Mollusc. {Embedded in mucous string continuous and wrapped around crystalline style to pull into stomach} {Mucous dissolved by enzymes released from crystalline style and particles realeased}{ciliary sorting fields into digestive gland for small} or {large passed into intestine} {undigested out the anus} 1 point each Page 11 of 13

12 5.3 How do sea stars feed and digest their meal? {Invert cardiac stomach over coral or into clam} {release digestive enzymes/extracorporeal digestion} {Liquified food swept into digestive system (pyloric stomach) by cilia} { Final digestion in pyloric caeca} {Anus small, undigested regurgitated} point each 5.4 How does a tube foot work? {Small hydrostatic skeleton}{fluid isolated by valve at lateral canal}{ampullae create pressure}{muscles on wall of tube feet for position}{sucker to anchor} 1 each Page 12 of 13

13 5.5 Briefly explain the waggle dance of honey bees and what is being communicated during the dance. {Communicated distance}{direction to food source} {Diagram with shape of dance}{center axis is axis to the sun/sun s plane of polarized light} {Speed/frequency of the waggle the distance} 5.6 How does the respiratory system in insects work and how does it differ from most other animal systems {Differs gas piped directly to tissues}{trachea cover most of the distance}{trachioles where gas exchange occurs}{oxygen use creates a concentration gradient high on the outside low near active tissue}{gas diffuses down the concentration gradient} Page 13 of 13

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry?

Sponges. What is the sponge s habitat. What level of organization do sponges have? Type of symmetry? Sponges What is the sponge s habitat Marine (few freshwater species) What level of organization do sponges have? Cell level Type of symmetry? None Type of digestive system (none, complete or incomplete)?

More information

INVERTEBRATE DIVERSITY

INVERTEBRATE DIVERSITY INVERTEBRATE DIVERSITY 1 INVERTEBRATES Animals that lack a backbone Invertebrates 2 1 ANIMAL DEVELOPMENT Meiosis Egg Sperm Zygote Adult Blastula hollow ball of cells in a developing animal Gastrula Stage

More information

An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda. Reference: Chapter 33.3, 33.4

An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda. Reference: Chapter 33.3, 33.4 An Introduction to the Invertebrates (part 4?!) Annelida & Nematoda Reference: Chapter 33.3, 33.4 More Relationships Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals Excavata

More information

Animals contain specialized cells

Animals contain specialized cells What is an Animal? Kingdom Animalia Main Characteristics Members of the Animal Kingdom are: Eukaryotic Multicellular Heterotrophic Have cells with membranes BUT NO cell wall Animals contain specialized

More information

2. There are roughly this many described species in the phylum Mollusca. A) 1,000 B) 10,000 C) 100,000 D) 1 million E) 10 million

2. There are roughly this many described species in the phylum Mollusca. A) 1,000 B) 10,000 C) 100,000 D) 1 million E) 10 million Chapter 11 1. Molluscs are A) deuterostomes. B) ecdysozoaons. C) lophotrochozoans. D) chordates. E) hemichordates. 2. There are roughly this many described species in the phylum Mollusca. A) 1,000 B) 10,000

More information

Unit 12 ~ Learning Guide

Unit 12 ~ Learning Guide Unit 12 ~ Learning Guide Name: INSTRUCTIONS Complete the following notes and questions as you work through the related lessons. You are required to have this package completed BEFORE you write your unit

More information

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs

Chps : Animals. Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Chps 23-26: Animals Chps. 23-27: Animals Characteristics of kingdom Animalia: Multicellular Heterotrophic Most are motile Possess sense organs Animal Characteristics Forms of symmetry: Radial Bilateral

More information

Arthropoda ARTHRO JOINTED PODA FEET

Arthropoda ARTHRO JOINTED PODA FEET Arthropoda ARTHRO JOINTED PODA FEET The arthropods are a group of animals which has attained the greatest biological success largest number of species and individuals and occupy the greatest number of

More information

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges.

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges. College Biology - Problem Drill 15: The Evolution of Animal Diversity Question No. 1 of 10 1. Which is not a feature of the phyla porifera- sponges? Question #01 (A) Most are marine animals. (B) They have

More information

KINGDOM ANIMALIA CHARACTERISTICS

KINGDOM ANIMALIA CHARACTERISTICS KINGDOM ANIMALIA CHARACTERISTICS EUKARYOTIC MULTICELLULAR HETEROTROPHIC (by ingestion) MOVE AT SOME POINT IN LIFE (not all - sponges are sessile) DIGEST FOOD TO GET NUTRIENTS LACK CELL WALLS CHARACTERISTICS

More information

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya Classification The three-domains Bacteria Archaea Eukarya The six-kingdom system Bacteria Archaea Protista Plantae Fungi Animalia The traditional five-kingdom system Monera Protista Plantae Fungi Animalia

More information

Characteristics of Echinoderms

Characteristics of Echinoderms Characteristics of Echinoderms Adult echinoderms have a body plan with five parts organized symmetrically around a center Does not have an anterior nor posterior end or a brain Most echinoderms are two

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Characteristics of Animals multicellular Except for sponges, animal cells are arranged into tissues. Tissues are necessary to produce organs and organ systems. Tissues, organs,

More information

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata Eukaryote Phylogeny most protozoans, brown algae, & water molds Excavata Chromalveolata Rhizaria Plantae Amoebozoa Animalia Fungi cpsts. w/ 2 memb. chitin, hyphae glycogen eukaryotic cells (nucleus, etc.)

More information

What defines the zygote, the blastula, and the gastrula? Draw pictures.

What defines the zygote, the blastula, and the gastrula? Draw pictures. What makes a multicellular organism multicellular? a) Multiple cells b) Multiple cells that work together c) Specialized cells d) Multiple specialized cells that work together What defines the zygote,

More information

Primitively there is a pair of ganglia per body segment but there has been progressive fusion of ganglia both within and between segments.

Primitively there is a pair of ganglia per body segment but there has been progressive fusion of ganglia both within and between segments. Multicellular organisms contain systems of organs that carry out specialised functions that enable them to survive and reproduce examining the specialised cells and tissues involved in structure and function

More information

The Mollusks. Phylum Mollusca

The Mollusks. Phylum Mollusca The Mollusks Phylum Mollusca Mollusks- Latin molluscus = soft Coelomates Exhibit cephalization Many mollusks have larval stage- trochophore Hatch from egg case Easily dispersed by ocean currents and tides

More information

Chapter 33: Invertebrates

Chapter 33: Invertebrates Name Period Chapters 31, 32, and 33 should be considered as a single unit, and you should try to put all of them together in a single conceptual framework. Due to the scope of our course, you are likely

More information

2/17/2017. Lecture 10: Chapter 31 Protostome Diversity

2/17/2017. Lecture 10: Chapter 31 Protostome Diversity 1 Lecture 10: Chapter 31 Protostome Diversity 2 3 Protostomes: one of two monophyletic groups of bilaterally symmetrical, coelomate animals The other group is the Deuterostomes Differ in pattern of early

More information

- found in bryozoans (moss animals), brachiopods (lamp shells) and phoronids (horseshoe worms)

- found in bryozoans (moss animals), brachiopods (lamp shells) and phoronids (horseshoe worms) Chapter 33 Protostome Animals - insects the phylum Arthropoda include the insects, crusraceans and myriapods and make up 40% of the total mass of organisms present 33.1 An Overview of Protostome Evolution

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

Life Science 7 th NOTES: Ch Animals Invertebrates

Life Science 7 th NOTES: Ch Animals Invertebrates Life Science 7 th NOTES: Ch 10-11 Animals Invertebrates Write the correct word in the blanks to show directions on an animal body: ** Word Bank (Posterior, Ventral, Dorsal, Anterior) top surface front

More information

Nonvascular Plants mosses, liverworts and hornworts are nonvascular plants. These lack vascular tissue which is a system of tubes that transport

Nonvascular Plants mosses, liverworts and hornworts are nonvascular plants. These lack vascular tissue which is a system of tubes that transport Nonvascular Plants mosses, liverworts and hornworts are nonvascular plants. These lack vascular tissue which is a system of tubes that transport food, water and minerals throughout the plant. Water and

More information

Today: Animal Body Plans. Animal Body Plans: The Gut. The Animal Kingdom- General Characteristics: Animal Body Plans: Symmetry

Today: Animal Body Plans. Animal Body Plans: The Gut. The Animal Kingdom- General Characteristics: Animal Body Plans: Symmetry Today: Exploring the Animal Kingdom Introduction to Ecology The Animal Kingdom- General Characteristics: Multicellular Heterotrophic (via ingestion) Eukaryotes Require Oxygen for aerobic respiration Reproduce

More information

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen What Is an Animal? Section 25.1 Typical Animal Characteristics Biology II Mrs. Michaelsen I. Characteristics of Animals A. All animals are eukaryotic, multicellular, have ways of moving to reproduce, obtain

More information

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: Body symmetry Tissues

More information

UNIT 8A MARINE SCIENCE: Lower Invertebrates

UNIT 8A MARINE SCIENCE: Lower Invertebrates UNIT 8A MARINE SCIENCE: Lower Invertebrates Essential Questions: What are the characteristics of the simple body structured organisms? Unit Objectives/I Can Statements: General Invertebrates 1. List taxa

More information

The Animal Kingdom: The Protostomes. Protostomes 4/16/2012. Chapter 30

The Animal Kingdom: The Protostomes. Protostomes 4/16/2012. Chapter 30 Porifera Acoelomates ates The Animal Kingdom: The Protostomes Chapter 30 Protostome Bilateral Protostomes Acoelomates ates Characterized by spiral cleavage determinate cleavage (fixed fate of cells) of

More information

Dearolf BIOL 220. CLADE METAZOA CLADE EUMETAZOA CLADE BILTERIA CLADE PROTOSTOMIA CLADE LOPHOTROCHOZOA Phylum Ectoprocta

Dearolf BIOL 220. CLADE METAZOA CLADE EUMETAZOA CLADE BILTERIA CLADE PROTOSTOMIA CLADE LOPHOTROCHOZOA Phylum Ectoprocta CLADE LOPHOTROCHOZOA Phylum Ectoprocta Hickman Chapter 15 Some Evolutionary Experiments Phylum Ectoprocta (Bryozoa) Zooid Zoecium Lophophore Statoblasts Helpful website: http://www.earthlife.net/inverts/bryozoa.html

More information

Introduction to Animal Kingdom. Invertebrates and Vertebrates

Introduction to Animal Kingdom. Invertebrates and Vertebrates Introduction to Animal Kingdom Invertebrates and Vertebrates Introduction To Animals Vertebrate animal with a backbone. Invertebrate animal without a backbone; includes more than 95% of all animal species

More information

v Scientists have identified 1.3 million living species of animals v The definition of an animal

v Scientists have identified 1.3 million living species of animals v The definition of an animal Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

Chapter 8-9 Intro to Animals. Image from:

Chapter 8-9 Intro to Animals. Image from: Chapter 8-9 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Zoology Definition: the scientific study of the behavior, structure, physiology, classification, and distribution

More information

Marine Invertebrates

Marine Invertebrates Name: Date: Period: Marine Invertebrates Porifera Annelida Cnidaria Mollusca Platyhelminthes Arthropoda Nematoda Echinodermata Name Class Date Section 26 2 Sponges (pages 664 667) This section explains

More information

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 33 An Introduction to Invertebrates Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 33.UN08 Metazoa Eumetazoa

More information

Arthropods. Ch. 13, pg

Arthropods. Ch. 13, pg Arthropods Ch. 13, pg. 374-382 382 Arthropods Insects Arachnids Centipedes and Millipedes Crustaceans Characteristics of Arthropods Arthropods have jointed appendages and include legs, antennae, claws,

More information

Introduction to Animal Diversity Lecture 7 Winter 2014

Introduction to Animal Diversity Lecture 7 Winter 2014 Introduction to Animal Diversity Lecture 7 Winter 2014 Evolution of Animals 1 Prokaryotes Eukaryotes Prokaryotes No nucleus Nucleoid region Simple No membrane bound organelles Smaller (1-5 nm) Evolutionarily

More information

Game Ranging / Field Guiding Course. Phylum Mollusca. To gain an understanding of the morphology and biology of common molluscs.

Game Ranging / Field Guiding Course. Phylum Mollusca. To gain an understanding of the morphology and biology of common molluscs. 1 Module # 2 Component # 6 Phylum Mollusca Objectives: To gain an understanding of the morphology and biology of common molluscs. Expected Outcomes: To develop a good understanding of the internal and

More information

INVERTEBRATES. The Earth and Living Things. Carme Font Casanovas 1

INVERTEBRATES. The Earth and Living Things. Carme Font Casanovas 1 INVERTEBRATES Living Things. Carme Font Casanovas 1 How many animals can you see? ant rose coral snake anemone fish grass bee Living Things. Carme Font Casanovas 2 Invertebrates There are animals without

More information

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? Animals What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification? What synapomorphies unite Animals Multicellular Heterotrophs (Metazoans)?

More information

Biosc 41 9/10 Announcements

Biosc 41 9/10 Announcements Biosc 41 9/10 Announcements v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal Body Plans

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Moving Forward Quizlet Each section we cover, 1 group will go to our class on Quizlet and create 20 flash cards on the topic (/5mks) If I warn you about talking while I m talking,

More information

Animal Phyla: A Summary. Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University

Animal Phyla: A Summary. Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University Animal Phyla: A Summary Danilo V. Rogayan Jr. Faculty, College of Education, Arts and Sciences Ramon Magsaysay Technological University Phylum Platyhelminthes The phylum consists of four classes Turbellaria

More information

Biology 211 (1) Exam 2 Worksheet!

Biology 211 (1) Exam 2 Worksheet! Biology 211 (1) Exam 2 Worksheet Chapter 33 Introduction to Animal Diversity Kingdom Animalia: 1. Approximately how many different animal species are alive on Earth currently. How many those species have

More information

Kingdom Animalia. Zoology the study of animals

Kingdom Animalia. Zoology the study of animals Kingdom Animalia Zoology the study of animals Summary Animals are multicellular and eukaryotic. consume and digest organic materials thereby being heterotrophs. Most are motile at some time in their lives.

More information

c. Can you locate the planaria eyespots? What do the eyespots sense?

c. Can you locate the planaria eyespots? What do the eyespots sense? Invertebrate Lab II Learning Objectives State the phyla of the organisms discussed in the lab activities Use the characteristics of symmetry, coelom, embryo tissue layers, and patterns of development to

More information

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved.

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved. Chapter Presentation Visual Concepts Transparencies Standardized Test Prep Introduction to Animals Table of Contents Section 2 Animal Body Systems Objectives Identify the features that animals have in

More information

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates Contents ANIMALS Lab 1: Animal Diversity invertebrates Lab 2: Animal Diversity 2 vertebrates Lab 3: Animal Structure 1 Gross morphology Lab 4: Animal Structure 2 Histology Lab 5: The Nervous System & Sensory

More information

Invertebrate Diversity

Invertebrate Diversity CHAPTER 23 Invertebrate Diversity Summary of Key Concepts Concept 23.1 Diverse animals share several key characteristics. (pp. 494 496) More than a million living species of animals are organized into

More information

PHYLUM MOLLUSCA Soft bodied Triploblastic Mouth and Anus True Coelum Bilaterally symmetrical Moist environments

PHYLUM MOLLUSCA Soft bodied Triploblastic Mouth and Anus True Coelum Bilaterally symmetrical Moist environments PHYLUM MOLLUSCA Soft bodied Triploblastic Mouth and Anus True Coelum Bilaterally symmetrical Moist environments http://infusion.allconet.org/webquest/phylummollusca.ht ml Mollusca Phylum Mollusca includes

More information

Name Class Date. After you read this section, you should be able to answer these questions:

Name Class Date. After you read this section, you should be able to answer these questions: CHAPTER 14 3 Invertebrates SECTION Introduction to Animals BEFORE YOU READ After you read this section, you should be able to answer these questions: What structures and systems perform basic life functions

More information

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1)

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) A) They are multicellular eukaryotes. B) They are heterotrophs. C) Their cells are supported

More information

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Chapter 32 Introduction to Animal Diversity Welcome to Your Kingdom The animal kingdom extends far beyond humans and other animals we may encounter 1.3 million living species of animals have been identified

More information

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animal Diversity Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Nutritional mode Ingest food and use enzymes in the body to digest Cell structure and

More information

Guided Reading Activities

Guided Reading Activities Name Period Chapter 18: The Evolution of Invertebrate Diversity Guided Reading Activities Big idea: Animal evolution and diversity Answer the following questions as you read modules 18.1 18.4: 1. The eating

More information

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017 Animal Diversity Chapter 32 Which of these organisms are animals? Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animals share the same: Nutritional

More information

LOPHOTROCHOZOA. Find the whole mount slide of Bugula or Pectinatella. Add the zoids to the drawing below. Find and add the lophophores.

LOPHOTROCHOZOA. Find the whole mount slide of Bugula or Pectinatella. Add the zoids to the drawing below. Find and add the lophophores. LOPHOTROCHOZOA 1.a. Examine specimens of preserved and fossil ectoprocts. How do they resemble colonial hydroids? This kind of similarity between organisms in different clades is called what? 1.b. Find

More information

Chapter 32 Intro to Animals. Image from:

Chapter 32 Intro to Animals. Image from: Chapter 32 Intro to Animals Image from: http://animaldiversity.ummz.umich.edu/index.html Animals Invertebrates (animals without a backbone) Porifera Cnidaria Worms Mollusks Echinoderms Arthropods Animals

More information

Characteristics of Animals

Characteristics of Animals Characteristics of Animals Multicellular Cellular Organization What is this? Heterotrophic Adaptations CHAPTER 9 Cellular Organization 4 Major Functions of Animals Obtain food and water Sustain metabolism

More information

Invertebrate Survey Lab

Invertebrate Survey Lab Answer these questions before lab. 1. What kingdom do all animals fall into? a. Protist b. Animalia c. Eukarya 2. How many phyla of invertebrates are in appendix E on pages 1074-1076? a. 9 b. 7 c. 8 3.

More information

Figure 1. Cladogram of the Major Animal Phyla based upon SSU-rRNA

Figure 1. Cladogram of the Major Animal Phyla based upon SSU-rRNA Biology 4B Laboratory Invertebrates II: Mollusca, Annelida and Nematoda Objectives To understand the basic differences among the invertebrate animal phyla To investigate and learn the obvious external

More information

Porifera Sponges Features:

Porifera Sponges Features: Porifera Sponges The Phylum Porifera consists only of sponges, which is unique since these animals are entirely aquatic; with 98% found only in marine environments and a small percentage found in freshwater

More information

Gen Bio III Lab 7 Animal Diversity Part II

Gen Bio III Lab 7 Animal Diversity Part II Gen Bio III Lab 7 Animal Diversity Part II Introduction Last lab you were introduced to animals and provided with some ways to think about them (body plan, phylogenies and trait mapping, adaptations for

More information

Ascaris lumbricoides, human roundworm text pp complete straight digestive tract intestine is flattened, reproductive organs more rounded

Ascaris lumbricoides, human roundworm text pp complete straight digestive tract intestine is flattened, reproductive organs more rounded BSC 201L (15e) Lab #4: Nematodes, Small Protostome Phyla AND Annelida Use the text and figures in Exercise 10 (Nematodes and Small Protostome Phyla) AND in Exercise 12 (Annelids) to aid your study of the

More information

Final Exam Study Guide. Evolution

Final Exam Study Guide. Evolution Name: Biology I A Final Exam Study Guide Date: Mr. Tiesler Evolution An adaptation is a physical or behavioral change that improves a population s ability to survive. Evolution is the process by which

More information

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida 1 Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida Objectives: Be able to distinguish radial symmetry from bilateral symmetry. Be able to identify which of the phyla

More information

Invertebrates. Invertebrate Characteristics. Body Symmetry

Invertebrates. Invertebrate Characteristics. Body Symmetry 3 Invertebrates Key Concept Invertebrates do not have backbones, but they do have other structures to perform their life functions. What You Will Learn Invertebrates have many specialized structures that

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Welcome to Your Kingdom The animal kingdom

More information

Z361 Final Fall 2000 Multiple Choice Section

Z361 Final Fall 2000 Multiple Choice Section Name: Z361 Final Fall 2000 Multiple Choice Section Answer all 32 questions using a No. 2 pencil to fill in a scantron form provided. Except for question #32, there is only one correct answer to each question.

More information

Name Class Date. Matching On the lines provided, write the letter of the description that best matches each term on the left. 1.

Name Class Date. Matching On the lines provided, write the letter of the description that best matches each term on the left. 1. Chapter 28 Arthropods and Echinoderms Chapter Vocabulary Review Matching On the lines provided, write the letter of the description that best matches each term on the left. 1. thorax a. shedding of the

More information

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia What Is an Animal? What characteristics do all animals have? Animals come in many shapes, forms, and sizes. Scientists estimate that there are between 1 and 2 million species of animals! Some, like whales

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Revision Based on Chapter 25 Grade 11

Revision Based on Chapter 25 Grade 11 Revision Based on Chapter 25 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A cell that contains a nucleus and membrane-bound organelles

More information

28 3 Insects Slide 1 of 44

28 3 Insects Slide 1 of 44 1 of 44 Class Insecta contains more species than any other group of animals. 2 of 44 What Is an Insect? What Is an Insect? Insects have a body divided into three parts head, thorax, and abdomen. Three

More information

2. Examine the external anatomy of the squid and identify the following structures: tentacles, arms, fins, siphon, mantle, eyes and collar.

2. Examine the external anatomy of the squid and identify the following structures: tentacles, arms, fins, siphon, mantle, eyes and collar. Cephalopod Anatomy As their name implies, members of the class Cephalopoda have modified head-foot which bears an array of prehensile tentacles and arms at the cranial end of the body. The visceral mass

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University The Evolution of Animal Diversity Dr. Stephen J. Salek Biology 130 Fayetteville State University Create your own animal? Start with a basic plant. Make the plant into a simple animal such as a worm. Consider:

More information

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab)

Kingdom Animalia. Special Features: Advanced nervous systems means cephalization (faces), brains, and efficient mobility (walk/run/swim/grab) Kingdom Animalia Kingdom Animalia Cell Number: Multicellular with extensive specialization Cell Type: Eukaryotic Animal Cells (no cell wall) Food: Heterotrophic Carnivore (meat), Herbivore (plants), Omnivore

More information

Are these organisms. animals or not?

Are these organisms. animals or not? 1 2 3 4 5 Are these organisms 6 7 8 animals or not? 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 Typical Animal Characteristics Eukaryotic Multicellular Ability to move Reproduce Obtain food (heterotrophic)

More information

Brief Introduction to the Animal Kingdom

Brief Introduction to the Animal Kingdom Brief Introduction to the Animal Kingdom Vocabulary Vertebrate Invertebrate Detritivore Asymmetry Bilateral symmetry Radial symmetry Cephalization Coelum Pseudocoelum Acoelomates Blastula Blastophore Protosome

More information

*Add to Science Notebook Name 1

*Add to Science Notebook Name 1 *Add to Science Notebook Name 1 Arthropods, Ch. 13, pg. 374-382 Characteristics of Arthropods *Arthropods are the largest group of animals. *Arthropods have jointed and include,,, and. *Arthropod appendages

More information

Chapter 9. Benefits of Being Large. Levels of Organization in Organismal Complexity. Hierarchical Organization of Animal Complexity. Fig. 9.

Chapter 9. Benefits of Being Large. Levels of Organization in Organismal Complexity. Hierarchical Organization of Animal Complexity. Fig. 9. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 9 Architectural Pattern of an Animal Levels of Organization in Organismal Complexity Zoologists recognize

More information

Classification. Grouping & Identifying Living Things

Classification. Grouping & Identifying Living Things Classification Grouping & Identifying Living Things Classifying Living Things We put livings things into three Domains Eukarya Bacteria Archaea Which are divided into 6 Kingdoms Plant Animal Fungi Protist

More information

Animals are in Domain Eukarya

Animals are in Domain Eukarya The Diversity of Animals 1: invertebrates Chapter 23 Animals are in Domain Eukarya Immediate ancestors are a type of Protista Key features Multicellular Kingdom Animalia Heterotrophic: gain energy by consuming

More information

Superphylum Deuterostomia

Superphylum Deuterostomia Superphylum Deuterostomia Bởi: OpenStaxCollege The phyla Echinodermata and Chordata (the phylum in which humans are placed) both belong to the superphylum Deuterostomia. Recall that protostome and deuterostomes

More information

Mollusks. Use Target Reading Skills. b. invertebrate c. segmented body d. unsegmented body

Mollusks. Use Target Reading Skills. b. invertebrate c. segmented body d. unsegmented body Name Date Class Mollusks This section descnbes the features of mollusks aud identifies three mapr groups of mollusks. Use Target Reading Skills As vou read, compare and contrast the three groups of mollusks

More information

Lecture XII Origin of Animals Dr. Kopeny

Lecture XII Origin of Animals Dr. Kopeny Delivered 2/20 and 2/22 Lecture XII Origin of Animals Dr. Kopeny Origin of Animals and Diversification of Body Plans Phylogeny of animals based on morphology Porifera Cnidaria Ctenophora Platyhelminthes

More information

Chapter 7. Marine Animals Without a Backbone

Chapter 7. Marine Animals Without a Backbone Chapter 7 Marine Animals Without a Backbone General Characteristics of Animals Multicellular, diploid organisms with tissues, organs or organ systems in most Heterotrophic Require oxygen for aerobic

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

Proterozoic Eon. BIO1130 Organismal Biology. Page 1. Phanerozoic Paleozoic era. Phanerozoic. Paleozoic era. Major Era

Proterozoic Eon. BIO1130 Organismal Biology. Page 1. Phanerozoic Paleozoic era. Phanerozoic. Paleozoic era. Major Era Phanerozoic Paleozoic era 1 Geological time scale and building height ( 1floor 60Ma, 72 floors, 12 feet/floor) Major Era Phanerozoic Cenozoic (65 Ma to present time, 72 nd floor) Mesozoic (245-65 Ma, 65

More information

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS GENERAL FEATURES OF ANIMALS Heterotrophy - obtain energy and organic molecules by ingesting other organisms Multicellularity - Many have complex bodies

More information

The Radiata-Bilateria split. Second branching in the evolutionary tree

The Radiata-Bilateria split. Second branching in the evolutionary tree The Radiata-Bilateria split Second branching in the evolutionary tree Two very important characteristics are used to distinguish between the second bifurcation of metazoans Body symmetry Germinal layers

More information

Chapter 24 Introduction to Animals

Chapter 24 Introduction to Animals 1 Chapter 24 Introduction to Animals I. Animal characteristics A. General Animal Features Multicellular B. Feeding and Digestion a. acquire nutrients from various sources obtaining nutrients unique to

More information

1 1:29 PM 2 1:29 PM. Porifera Placozoa Cnidaria Ctenophora Platyhelminthes Gastrotricha Gnathostomulida Cycliophora Rotifera Annelida

1 1:29 PM 2 1:29 PM. Porifera Placozoa Cnidaria Ctenophora Platyhelminthes Gastrotricha Gnathostomulida Cycliophora Rotifera Annelida Phylum Mollusca 1 Extant Animalia ~1,300,000 species Parazoa (1.2%) Radiata (0.9%) Protostomia (3.9%) Platyzoa (2.2%) Platyhelminthes (1.9%) Others (0.3%) Lophotrochozoa (9.8%) Mollusca (8.5%) Annelida

More information

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Animal Body Plans Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod Sponges Cnidaria, Ctenophora, Platyhelminthes Acoelomate -Eucoelomate Annelid Mollusca Arthropoda Size Constraints

More information

Preview 2/22 Dr. Kopeny

Preview 2/22 Dr. Kopeny Preview 2/22 Dr. Kopeny Flatworms (Platyhelminthes) Simple Lophtrochozoans -bilateral symmetry -cephalization -lack organs for oxygen transport -simple organs for excreting metabolic waste -gut with single

More information

MOLLUSCAN AQUACULTURE - INTRODUCTION

MOLLUSCAN AQUACULTURE - INTRODUCTION 1 MOLLUSCAN AQUACULTURE - INTRODUCTION Mollusks have been cultured since the time of the Romans, who in particular, considered oysters a delicacy. The latest aquaculture production figures from FAO (see

More information

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa

Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa 1 Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, and Lophotrochozoa Objectives: Be able to distinguish radial symmetry from bilateral symmetry. Be able to identify which of the phyla

More information

Lecture 11: Why are arthropods successful?

Lecture 11: Why are arthropods successful? Lecture 11: Why are arthropods successful? Goals: 1. Define success 2. Compare insects to other living organisms, understand what insect adaptations have contributed to their success 3. Relate methods

More information

Intro to Animals. Chapter 32

Intro to Animals. Chapter 32 Intro to Animals Chapter 32 1) Multicellular Organization (Different cells have different functions) Specialization: adaptation of a cell for a particular function Remember: cells tissues organs organ

More information