Straight-line Grid Drawings of 3-Connected 1-Planar Graphs

Size: px
Start display at page:

Download "Straight-line Grid Drawings of 3-Connected 1-Planar Graphs"

Transcription

1 Stright-lin Gri Drwings o 3-Connt 1-Plnr Grhs M. Jwhrul Alm 1, Frnz J. Brnnurg 2, n Sthn G. Koourov 1 1 Drtmnt o Comutr Sin, Univrsity o Arizon, USA {mjlm, koourov}@s.rizon.u 2 Univrsity o Pssu, Pssu, Grmny rnn@inormtik.uni-ssu. Astrt. A grh is 1-lnr i it n rwn in th ln suh tht h g is ross t most on. In gnrl, 1-lnr grhs o not mit strightlin rwings. W show tht vry 3-onnt 1-lnr grh hs stright-lin rwing on n intgr gri o urti siz, with th xtion o singl g on th outr tht hs on n. Th rwing n omut in linr tim rom ny givn 1-lnr ming o th grh. 1 Introution Sin Eulr s Königsrg rig rolm ting k to 1736, lnr grhs hv rovi intrsting rolms in thory n in rti. Using th lort thnius o nonil orring n Shnyr rlizrs, vry lnr grh n rwn on gri o urti siz, n suh rwings n omut in linr tim [15, 21]. Th r oun is symtotilly otiml, sin th nst tringl grhs r lnr grhs n ruir Ω(n 2 ) r [10]. Th rwing lgorithms wr rin to imrov th r ruirmnt or to mit onvx rrsnttions, i.., whr h innr is onvx [5, 8] or stritly onvx [1]. Howvr, most grhs r nonlnr n rntly, thr hv n mny ttmts to stuy lrgr lsss o grhs. O rtiulr intrst r 1-lnr grhs, whih in sns r on st yon lnr grhs. Thy wr introu y Ringl [20] in n ttmt to olor lnr grh n its ul. Although it is known tht 3-onnt lnr grh n its ul hv stright-lin 1-lnr rwing [24] n vn on urti gri [13], littl is known out gnrl 1-lnr grhs. It is NP-hr to rogniz 1- lnr grhs [16, 18] in gnrl, lthough thr is linr-tim tsting lgorithm [11] or mximl 1-lnr grhs (i.., whr no itionl g n without violting 1-lnrity) givn th th irulr orring o inint gs roun h vrtx. A 1-lnr grh with n vrtis hs t most 4n 8 gs [4, 14, 19] n this ur oun is tight. On th othr hn stright-lin rwings o 1-lnr grhs my hv t most 4n 9 gs n this oun is tight [9]. Hn not ll 1-lnr grhs mit stright-lin rwings. Unlik lnr grhs, mximl 1-lnr grhs n muh srsr with only 2.64n gs [6]. 1 Rsrh suort in rt y NSF grnts CCF n DEB Rsrh suort y th Dutsh Forshungsgminsht, DFG, grnt Br 835/18-1.

2 i j 9 g h h j g g 2 1 i h () () () h g () Fig. 1. () () A 3-onnt 1-lnr grh n its stright-lin gri rwing (with on n in on g), () () nothr 3-onnt 1-lnr grh n its stright-lin gri rwing. Thomssn [23] rrs to 1-lnr grhs s grhs with ross inx 1 n rov tht n m 1-lnr grh n turn into stright-lin rwing i n only i it xlus B- n W -onigurtions; s Fig. 2. Ths orin onigurtions wr irst isovr y Egglton [12] n us y Hong t l. [17], who show tht th onigurtions n tt in linr tim i th ming is givn. Thy lso rov tht thr is linr tim lgorithm to onvrt 1-lnr ming without B- n W - onigurtions into stright-lin rwing, ut without ouns or th rwing r. In this r w sttl th stright-lin gri rwing rolm or 3-onnt 1- lnr grhs. First w omut norml orm or n m 1-lnr grh with no B-onigurtion n t most on W -onigurtion on th outr. Thn, tr ugmnting th grh with s mny lnr gs s ossil n thn lting th rossing gs, w in 3-onnt lnr grh, whih is rwn with stritly onvx s using n xtnsion o th lgorithm o Chrok n Knt [8]. Finlly th irs o rossing gs r rinsrt into th onvx s. This givs stright-lin rwing on gri o urti siz with th xtion o singl g on th outr, whih my n on n (n this xtion is unvoil); s Fig. 1. In ition, th rwing is otin in linr tim rom givn 1-lnr ming. 2 Prliminris A rwing o grh G is ming o G into th ln suh tht th vrtis r m to istint oints n h g is Jorn r twn its noints. A rwing is lnr i th Jorn rs o th gs o not ross n it is 1-lnr i h g is ross t most on. Not tht rossings twn gs inint to th sm vrtx r not llow. For xml, K 5 n K 6 r 1-lnr grhs. An ming o grh is lnr (rs. 1-lnr) i it mits lnr (rs. 1-lnr) rwing. An ming siis th s, whih r toologilly onnt rgions. Th unoun is th outr. A in lnr grh is sii y yli sun o gs on its ounry (or uivlntly y th yli sun o th noints o th gs). Aoringly, 1-lnr ming E(G) siis th s in 1-lnr rwing o G inluing th outr. A 1-lnr ming is witnss or 1-lnrity. In rtiulr, E(G) sris th irs o rossing gs n th s whr th gs

3 () () () Fig. 2. () An ugmnt X-onigurtion, () n ugmnt B-onigurtion, () n ugmnt W -onigurtion. Th grhs inu y th soli gs r ll n X-onigurtion (), B-onigurtion (), n W -onigurtion (). ross n hs linr siz. Eh ir o rossing gs (, ) n (, ) inus rossing oint. Cll th sgmnt o n g twn th vrtx n th rossing oint hlg. Eh hl-g is imrml, nlogous to th gs in lnr rwings, in th sns tht no g n ross suh hl-g without violting th 1-lnrity o th ming. Th non-ross gs r ll lnr. A lnriztion G is otin rom E(G) y using th rossing oints s rgulr vrtis n rling h rossing g y its two hl-gs. A 1-lnr ming E(G) n its lnriztion shr uivlnt mings, n h is givn y list o gs n hl-gs ining it, or uivlntly, y list o vrtis n rossing oints o th gs n hl gs. Egglton [12] ris th rolm o rognizing 1-lnr grhs with rtilinr rwings. H solv this rolm or outr-1-lnr grhs (1-lnr grhs with ll vrtis on th outr-yl) n roos thr orin onigurtions. Thomssn [23] solv Egglton s rolm n hrtriz th rtilinr 1-lnr mings y th xlusion o B- n W-onigurtions; s Fig. 2. Hong t l. [17], otin similr hrtriztion whr th B- n W -onigurtions r ll th Bulgri n Gui grhs. Thy lso show tht ll ourrns o ths onigurtions n omut in linr tim rom givn 1-lnr ming. Dinition 1. Consir 1-lnr ming E(G): A B-onigurtion onsists o n g (, ) n two gs (, ) n (, ) whih ross in som oint suh tht n li in th intrior o th tringl (,, ). Hr (, ) is ll th s o th onigurtion. An X-onigurtion onsists o ir (, ) n (, ) o rossing gs whih os not orm B-onigurtion. A W-onigurtion onsists o two irs o gs (, ), (, ) n (, ), (, ) whih ross in oints n, suh tht,,, li in th intrior o th urngl,,,. Hr gin th g (, ), i rsnt is th s. Osrv tht or ll ths onigurtions th s gs my ross y nothr g, whrs th rossing gs r imrml; s Fig 2. Thomssn [23] n Hong t l. [17] rov tht or 1-lnr ming to mit stright-lin rwing, B- n W -onigurtions must xlu:

4 Proosition 1. A 1-lnr ming E(G) mits stright-lin rwing with toologilly uivlnt ming i n only i it os not ontin B- or W -onigurtion. Augmnt givn 1-lnr ming E(G) y ing s mny gs to E(G) s ossil so tht G rmins siml grh n th nwly gs r lnr in E(G). W ll suh n ming lnr-mximl ming o G n th ortion lnr-mximl ugmnttion. (Not tht Hong t l. [17] olor th lnr gs o 1-lnr ming r n ll lnr-mximl ugmnttion r ugmnttion.) Th lnr sklton P(E(G)) onsists o th lnr gs o lnr-mximl ugmnttion. It is lnr m grh, sin ll irs o rossing gs r omitt. Not tht th lnr ugmnttion n th lnr sklton r in or n ming, not or grh. A grh my hv irnt mings whih giv ris to irnt onigurtions n ugmnttions. Th notion o lnr-mximl ming is irnt rom th notions o mximl 1-lnr mings n mximl 1-lnr grhs, whih r suh tht th ition o ny g violts 1-lnrity (or simliity) [6]. Th ollowing lim, rovn in mny rlir rs [6, 14, 17, 22, 23], shows tht rossing ir o gs inus K 4 in lnr-mximl ming, sin missing gs o K 4 n without inuing nw rossings. Lmm 1. Lt E(G) lnr-mximl 1-lnr ming o grh G n lt (, ) n (, ) two rossing gs. Thn th our vrtis {,,, } inu K 4. By Lmm 1, or lnr-mximl ming h X-, B-, n W -onigurtion is ugmnt y itionl gs. Hr w in ths ugmnt onigurtions. Dinition 2. Lt E(G) lnr-mximl 1-lnr ming o grh G. An ugmnt X-onigurtion onsists o K 4 with vrtis (,,, ) suh tht th gs (, ) n (, ) ross insi th urngl. An ugmnt B-onigurtion onsists o K 4 with vrtis (,,, ) suh tht th gs (, ) n (, ) ross yon th ounry o th urngl. An ugmnt W-onigurtion onsists o two K 4 s (,,, ) n (,,, ) on o whih is in n ugmnt X-onigurtion n th othr in n ugmnt B-onigurtion. For n ugmnt X- or ugmnt B-onigurtion, th gs not inuing rossing with othr gs in th onigurtion in yl, w ll it th sklton. In h onigurtion, th gs on th outr-ounry o th m onigurtion n not inuing rossing with othr gs in th onigurtion r th s gs. Using th rsults o Thomssn [23] n Hong t l. [17], w n now hrtriz whn lnr-mximl 1-lnr ming o grh mits stright-lin rwing: Lmm 2. Lt E(G) lnr-mximl 1-lnr ming o grh G. Thn thr is stright-lin 1-lnr rwing o G with toologilly uivlnt ming s E(G) i n only i E(G) os not ontin n ugmnt B-onigurtion. Proo. Assum E(G) ontins n ugmnt B-onigurtion. Thn it ontins B- onigurtion n hs no stright-lin 1-lnr rwing y Proosition 1. Convrsly, i E(G) hs no stright-lin 1-lnr rwing thn y Proosition 1 it ontins t lst on B- or W -onigurtion. Sin Γ is lnr-mximl ming, y Lmm 1 h rossing g ir in E(G) inus K 4. Thus th ott gs in Fig. 2() () must rsnt in ny B- or W - onigurtion, inuing n ugmnt B-onigurtion.

5 Th norml orm or n m 1-lnr grh E(G) is otin y irst ing th our lnr gs to orm K 4 or h ir o rossing gs whil routing thm losly to th rossing gs n thn rmoving ol ulit gs i nssry. Suh n ming o 1-lnr grh is norml ming o it. A norml lnrmximl ugmnttion or n m 1-lnr grh is otin y irst ining norml orm o th ming n thn y lnr-mximl ugmnttion. Lmm 3. Givn 1-lnr ming E(G), th norml lnr-mximl ugmnttion o E(G) n omut in linr tim. Proo. First ugmnt h rossing o two gs (, ) n (, ) to K 4, suh tht th gs (, ), (, ), (, ), (, ) r n in s o ulit th ormr g is rmov. Thn ll ugmnt X-onigurtions r mty n ontin no vrtis insi thir skltons. Nxt tringult ll s whih o not ontin hl-g, rossing g, or rossing oint. Eh st n on in linr tim. 3 Chrtriztion o 3-Connt 1-Plnr Grhs Hr w hrtriz 3-onnt 1-lnr grhs y norml ming, whr th rossings r ugmnt to K 4 s suh tht th rsulting ugmnt X-onigurtions hv vrtx-mty skltons n thr is no ugmnt B-onigurtion xt or t most on ugmnt W-onigurtion with ir o rossing gs in th outr. Lt E(G) 1-lnr ming o grh G. Eh ir o rossing gs inus rossing oint n th rossing gs n thir hl-gs r imrml s thy nnot ross y othr gs without violting 1-lnrity. An imrml th in E(G) is n intrnlly-isjoint sun P = v 1, 1, v 2, 2,..., v n, n, v n+1, whr v 1, v 2,..., v n+1 r (rgulr) vrtis o G, 1, 2,..., n r rossing oints in E(G) n (v i, i ), ( i, v i+1 ) or h i {1, 2,..., n} r hl gs. I v n+1 = v 0, thn P is n imrml yl. An imrml yl is srting whn it hs vrtis oth insi n outsi o it, sin lting its vrtis isonnts G. Lmm 4. Lt G = (V, E) 3-onnt 1-lnr grh with lnr-mximl 1-lnr ming E(G). Thn th ollowing onitions hol. A. (i) Two ugmnt B-onigurtions or two ugmnt X-onigurtions nnot on th sm si o ommon s g. (ii) Suos n ugmnt B-onigurtion B n n ugmnt X-onigurtion X r on th sm si o ommon s g (, ). Lt n th rossing oints or X n B, rstivly n lt R(X) n R(B) th rgions insi th skltons o X n B. Thn ll vrtis o V \ {, } r insi th imrml yl i R(X) R(B); othrwis ll vrtis o V \ {, } r outsi th imrml yl. B. (i) I two ugmnt B-onigurtions r on oosit sis o ommon s g (, ), with rossing oints n, rstivly, thn ll th vrtis o V \ {, } r insi th imrml yl.

6 () () () () () () (g) Fig. 3. Illustrtion or th roo o Lmm 4. (ii) I two ugmnt X-onigurtions r on oosit sis o ommon s g (, ), with rossing oints n, rstivly, thn ll th vrtis o V \ {, } r outsi th imrml yl. (iii) An ugmnt B-onigurtion n n ugmnt X-onigurtion nnot shr ommon s g rom oosit sis. Proo. Conition A.(i) n B.(iii) hol us h o ths onigurtions inus srting imrml yl in E(G) with only two (rgulr) vrtis rom G, ontrition with th 3-onntivity o G; s Fig. 3() () n (). Similrly, i ny o th Conitions A.(ii) n B.(i) (ii) is not stisi, thn th imrml yl oms srting n hn th ir {, } oms srtion ir o G, gin ontrition with th 3-onntivity o G; s Fig. 3() (), () n (g). Corollry 1. Lt G 3-onnt 1-lnr grh with lnr-mximl 1-lnr ming E(G). Thn no thr rossing g-irs in E(G) shr th sm s g. Proo. Eh rossing g ir inus ithr n ugmnt B- or n ugmnt X- onigurtion. This t long with Lmm 4[A.(i), B.(iii)] yils th orollry. Lmm 5. Lt G 3-onnt 1-lnr grh. Thn thr is lnr-mximl 1- lnr ming E(G ) o surgrh G o G so tht E(G ) ontins t most on ugmnt W-onigurtion in th outr n no othr ugmnt B-onigurtion, n h ugmnt X-onigurtion in E(G ) ontins no vrtx insi its sklton. Proo. Lt E(G) 1-lnr ming o G. W lim tht y norml lnrmximl ugmnttion o E(G) w gt th sir ming o surgrh o G. Not tht u to th g-rrouting this ortion onvrts ny B-onigurtion whos s is not shr with nothr onigurtion into n X-onigurtion; s Fig. 4(). I s g is shr y two B-onigurtions, thy r onvrt into on W - onigurtion n y Lmm 4 this W -onigurtion is on th outr ; s Fig. 4().

7 () () () Fig. 4. Illustrtion or th roo o Lmm 5. By Corollry 1, s g nnot shr y mor thn two B-onigurtions. Furthrmor this ortion os not rt ny nw B-onigurtion. It lso mks th sklton o ny ugmnt X-onigurtion vrtx-mty; y Lmm 4 s g n shr y t most two ugmnt X-onigurtions rom oosit sis n i it is shr y two ugmnt X-onigurtions, th intrior o th inu imrml yl is mty; s Fig. 4(). Lmm 5 togthr with Proosition 1 imlis th ollowing: Thorm 1. A 3-onnt 1-lnr grh mits stright-lin 1-lnr rwing xt or t most on g in th outr. 4 Gri Drwings In th rvious stion w show tht 3-onnt 1-lnr grh hs strightlin 1-lnr rwing, with th xtion o singl g in th outr. W now strngthn this rsult n show tht thr is stright-lin gri rwing with O(n 2 ) r, whih n onstrut in linr tim rom givn 1-lnr ming. Th lgorithm tks n ming E(G) n omuts norml lnr-mximl ugmnttion. Consir th lnr sklton P(E(G)) or th ming. I thr is n ugmnt W-onigurtion n rossing in th outr, on rossing g on th outr is kt n th othr rossing g is trt srtly. Thus th outr o P(E((G)) is tringl n th innr s r tringls or urngls. Eh urngl oms rom n ugmnt X-onigurtion. It must rwn stritly onvx, suh tht th rossing gs n r-insrt. This is hiv y n xtnsion o th onvx gri rwing lgorithm o Chrok n Knt [8], whih itsl is n xtnsion o th

8 shiting mtho o Fryssix, Ph n Pollk [15]. Sin th s r t most urngls, w n voi thr ollinr vrtis n th gnrtion to tringl y n xtr unit shit. Not tht our rwing lgorithm hivs n r o (2n 2) (2n 3), whil th gnrl lgorithms or stritly onvx gri rwings [1, 7] ruir lrgr r, sin stritly onvx rwings o n-gons n Ω(n 3 ) r [2]. Brny n Rot giv stritly onvx gri rwing o lnr grh on 14n 14n gri i th s r t most 4-gons, n on 2n 2n gri i, in ition, th outr is tringl. Howvr, thir roh is uit omlx n os not immitly yil ths ouns. It is lso not lr how to us this roh or lnr grhs in our 1-lnr grh stting, in rtiulr whn w hv n unvoil W-onigurtion in th outr. Th lgorithm o Chrok n Knt n in rtiulr th omuttion o nonil omosition rsums 3-onnt lnr grh. Thus th lnr sklton o 3- onnt 1-lnr grh must 3-onnt, whih hols xt or th K 4, whn it is m s n ugmnt X-onigurtion. This rsults rllls th t tht th lnriztion o 3-onnt 1-lnr grh is 3-onnt [14]. Lmm 6. Lt G grh with lnr-mximl 1-lnr ming E(G) suh tht it hs no ugmnt B-onigurtion n h ugmnt X-onigurtion in E(G) hs no vrtx insi its sklton. Thn th lnr sklton P(E(G)) is 3-onnt. W will rov Lmm 6 y showing tht thr is no srtion ir in P(E(G)). First w otin lnr grh H rom G s ollows. Lt (, ) n (, ) ir o rossing gs tht orm n ugmnt X-onigurtion X in Γ. W thn lt th two gs (, ), (, ); vrtx u n th gs (, u), (, u), (, u), (, u) to tringult th. Cll v ross-vrtx n ll this ortion ross-vrtx insrtion on X. W thn otin H rom G y ross-vrtx insrtion on h ugmnt X-onigurtion. Cll H lnriztion o G n not th st o ll th ross-vrtis y U. Thn P(E(G)) = H \U. Bor roving Lmm 6 w onsir svrl rortis o H, th lnriztion o th 1-lnr grh. Lmm 7. Lt G = (V, E) grh with lnr-mximl 1-lnr ming E(G) suh tht E(G) ontins no ugmnt B-onigurtion n h ugmnt X- onigurtion in E(G) ontins no vrtx insi its sklton. Lt H lnriztion o G, whr U is th st o ross-vrtis. Thn th ollowing onitions hol. () H is mximl lnr grh (xt i H is th K 4 in n X-onigurtion) () Eh vrtx o U hs gr 4. () U is n innnt st o H. () Thr is no srting tringl o H ontining ny vrtx rom U. () Thr is no srting 4-yl o H ontining two vrtis rom U. Proo. For onvnin, w ll h vrtx in V U rgulr vrtx. () Sin H is lnr grh, w only show tht h o H is tringl. Eh rossing g ir in Γ inus n ugmnt X-onigurtion whos sklton hs no vrtx in its intrior. Hn h o H ontining rossing vrtx is tringl. Agin, Hong t l. [17] show tht in lnr-mximl 1-lnr ming with no rossing vrtis is tringl. Thus H is mximl lnr grh.

9 () () Fig. 5. Illustrtion or th roo o Lmm 6. () () Ths two onitions ollow rom th t tht th nighorhoo o h rossing vrtx onsists o xtly our rgulr vrtis tht orm th sklton o th orrsoning ugmnt X-onigurtion. () For ontrition suos vrtx u U rtiits in srting tringl T o H. Sin th nighorhoo o u orms th sklton o th orrsoning ugmnt X-onigurtion X, th othr two vrtis, sy n, in T r rgulr vrtis. Th g (, ) nnot orm s g or X, sin i it i, thn th intrior o th srting tringl T woul ontin in th intrior o th sklton or X n hn woul mty. Assum thror tht n r not onsutiv on th sklton o X. In this s th g (, ) is rossing g in G n hn hs n lt whn onstruting H; s Fig. 5(). () Suos two vrtis u, v U rtiit in srting 4-yl T o H. Du to Conition (), ssum tht T = uv, whr, r rgulr vrtis. I th two vrtis, r jnt in H, ssum without loss o gnrlity tht th g (, ) is rwn insi th intrior o T. Thn th intrior o t lst on o th two tringls u n v is non-mty, inuing srting tringl in H, ontrition with Conition (). W thus ssum tht th two vrtis n r not jnt in H. Thn or oth th ugmnt X-onigurtions X n Y, orrsoning to th two rossing vrtis u n v, th two vrtis u n v r not onsutiv on thir sklton. This imlis tht th rossing g (, ) rtiits in two irnt ugmnt X-onigurtions in Γ, gin ontrition; s Fig. 5(). W r now ry to rov Lmm 6. Proo (Lmm 6). Assum or ontrition tht P(E(G)) is not 3-onnt. Thn thr xists som srtion ir {, } in P(E(G)). Lt H th lnriztion o G, whr U is th st o ross-vrtis. Thn S = U {, } is srting st or H. Tk miniml srting st S S suh tht no ror sust o S is srting st. Sin H is mximl lnr grh (rom Lmm 7()), S orms srting yl [3]. Th 3-onntivity o th mximl lnr grh H imlis S 3. Agin sin S ontins t most two rgulr vrtis, n no two ross-vrtis n jnt in H (Lmm 7()), S < 5. Hn S is srting tringl or srting 4-yl with t most two rgulr vrtis; w gt ontrition with Lmm 7() ().

10 Finlly, w sri our lgorithm or stright-lin gri rwings. This rwing lgorithm is s on n xtnsion o th lgorithm o Chrok n Knt [8] or omuting onvx rwing o lnr 3-onnt grh. For onvnin w rr to this lgorithm s th CK-lgorithm n w gin with ri ovrviw. Lt G = (V, E) n m 3-onnt grh n lt (u, v) n g on th outr-yl o G. Th CK-lgorithm strts y omuting nonil omosition o G, whih is n orr rtition V 1, V 2,..., V t o V suh tht th ollowing onitions hol: (i) For h k {1, 2,..., t}, th grh G k inu y th vrtis V 1... V k is 2-onnt n its outr-yl C k ontins th g (u, v). (ii) G 1 is yl, V t is singlton {z}, whr z / {u, v} is on th outr-yl o G. (iii) For h k {2,..., t 1} th ollowing onitions hol: I V k is singlton {z}, thn z is on th outr o G k 1 n hs t lst on nighor in G G k. I V k is hin {z 1,..., z l }, h z i hs t lst on nighor in G G k, z 1, z l hv on nighor h on C k 1 n no othr z i hs nighors on G k 1. For h k {1, 2,..., t}, w sy tht th vrtis tht long to V k hv rnk k. W ll vrtx o G k sturt i it hs no nighor in G G k. Th CK-lgorithm strts y rwing th g (u, v) with horizontl lin-sgmnt o unit lngth. Thn or k = 1, 2,..., t, it inrmntlly omlts th rwing o G k. Lt C k 1 = {(u = w 1,..., w,..., w,..., w r = v)} with 1 < r whr w n w r th ltmost n th rightmost nighor o vrtis in V k. Thn th vrtis o V k r l ov th vrtis w,..., w. Assum tht V k = {z 1,..., z l }. Thn z 1 is l on th vrtil lin ontining w i w is sturt in G k ; othrwis it is l on th vrtil lin on unit to th right o w. On th othr hn, z l is l on th ngtiv igonl lin (i.., with 45 slo) ontining w. I v k is singlton thn z = z 1 = z l is l t th intrstion o ths two lins. Othrwis (tr nssry shiting o w n othr vrtis), th vrtis z 1,... z l r l on onsutiv vrtil lins on unit rt rom h othr. In orr to mk sur tht this shiting ortion os not istur lnrity or onvxity, h vrtx v is ssoit with n unr-st U(v) n whnvr v is shit, ll vrtis in U(v) r lso shit long with v. Thus th gs twn vrtis o ny U(v) r in sns rigi. Thorm 2. Givn 1-lnr ming E(G) o 3-onnt grh G, strightlin rwing on th (2n 2) (2n 3) gri n omut in linr tim. Only on g on th outr my ruir on n. Proo. Assum tht E(G) is norml lnr-mximl ming; othrwis w omut on y norml lnr-mximl ugmnttion in linr tim y Lmm 3. Consir th lnr sklton P(E(G)). I thr is no unvoil W-onigurtion on th outr o th mximl lnr ugmnttion, thn th outr-yl o P(E(G)) is tringl. Othrwis w on o th rossing gs in th outr to P(E(G)) to mk th outr-yl tringl. Th othr rossing g is trt srtly. By Lmm 6, P(E(G)) is 3-onnt, its outr is tringl (,, ) n th innr s r tringls or urngls, whr th lttr rsult rom ugmnt X-onigurtions n r in on-to-on orrsonn to irs o rossing gs.

11 W wish to otin lnr stright-lin gri rwing o P(E(G)) suh tht ll urngls r stritly onvx. Although th CK-lgorithm rws ny 3-onnt lnr grh o n vrtis on gri o siz (n 1) (n 1) with onvx s, th s r not nssrily stritly onvx [8]. Hn w must moiy th lgorithm so tht ll urngls r stritly onvx. Not tht y th ssignmnt o th unr-sts, th CK-lgorithm gurnts tht on is rwn stritly onvx, it woul rmin stritly onvx tr ny susunt shiting o vrtis. For P(E(G)) h V k is ithr singl vrtx or ir with n g, sin th s r t most urngls. I V k is n g (z 1, z 2 ) thn, y th inition o th nonil omosition, xtly on urngl w z 1 z 2 w is orm n y onstrution this is rwn onvx. W thus ssum tht V k ontins singl vrtx, sy v. Lt C k 1 = {(u = w 1,..., w,..., w,..., w r = v)} with 1 < r whr w n w r th ltmost n th rightmost nighors o vrtis in V k. Thn th nw s rt y th insrtion o v r ll rwn stritly onvx unlss thr is som urngl vw 1w w +1 whr < < n w 1, w, w +1 r ollinr in th rwing o G k 1. In this s w must sturt in G k 1 n this ours in th CK-lgorithm only whn th lin ontining w 1, w, w +1 is vrtil lin or ngtiv igonl (with 45 slo). In th ormr s, w 1 shoul hv lso n sturt in G k 1, whih is not ossil sin v is its nighor. It is thus suiint to nsur tht no sturt vrtx o G k is in th ngtiv igonl o oth its lt n right nighors on C k. W o this y th ollowing xtnsion o th CK-lgorithm. Suos v is l ov w with slo 45, w ws l ov its rightmost lowr nighor w with slo 45, n thr is urngl (v, w, w, u) or som vrtx u with highr rnk to l ltr. Thn shit w y on xtr unit to th right whn v or u is l. This imlis n t w n stritly onvx ngl ov w. Th CK-lgorithm strts y ling th irst two vrtis on unit wy n it ruirs unit shit to th right or h ollowing vrtx. On th othr hn, 1-lnr grh hs t most n 2 irs o rossing gs. Hn, thr r g n 3 ugmnt X-onigurtions, h o whih inus urngl in th lnr sklton. Thus th with n hight r n 1 + g, whih is oun y 2n 4. Th vrtis,, o th outr tringl r l t th gri oints (0, 0), (0, n 1 + g), (n 1 + g, 0). I th grh h n unvoil W -onigurtion in th outr, w n ostrossing hs to rw th xtr g (, ), whih inus rossing with th g (, ). Sin is th ltmost lowr nighor o whn is l n is not sturt, is l t (1, j) or som j < n 2 + g. Shit on unit to th right, insrt n t ( 1, n + g), on igonl unit lt ov n rout (, ) vi th n oint. 5 Conlusion n Futur Work W show tht 3-onnt 1-lnr grhs n m on O(n) O(n) intgr gri, so tht gs r rwn s stright-lin sgmnts (xt or t most on g on th outr tht ruirs n). Morovr, th lgorithm is siml n runs in linr tim givn 1-lnr ming. Not tht vn th my ruir xonntil r or givn ix 1-lnr ming,.g., [17]. Rognition o 1-lnr grhs is NP-hr [18]. How hr is th rognition o lnr-mximl 1-lnr grhs?

12 Rrns 1. Bárány, I., Rot, G.: Stritly onvx rwings o lnr grhs. Doumnt Mthmti 11, (2006) 2. Bárány, I., Tokushig, N.: Th minimum r o onvx ltti n-gons. Comintori 24(2), (2004) 3. Byrs, I.: On k-th hmiltonin mximl lnr grhs. Disrt Mthmtis 40(1), (1982) 4. Bonik, R., Shumhr, H., Wgnr, K.: Bmrkungn zu inm Shsrnrolm von G. Ringl. Ah. us m Mth. Sminr r Univ. Hmurg 53, (1983) 5. Bonihon, N., Flsnr, S., Mosh, M.: Convx rwings o 3-onnt ln grhs. Algorithmi 47(4), (2007) 6. Brnnurg, F.J., Estin, D., Glißnr, A., Goorih, M.T., Hnur, K., Rislhur, J.: On th nsity o mximl 1-lnr grhs. In: Diimo, W., Ptrignni, M. (s.) Grh Drwing. LNCS, vol. 7704, Sringr (2013) 7. Chrok, M., Goorih, M.T., Tmssi, R.: Convx rwings o grhs in two n thr imnsions. In: Symosium on Comuttionl Gomtry (1996) 8. Chrok, M., Knt, G.: Convx gri rwings o 3-onnt lnr grhs. Intrntionl Journl o Comuttionl Gomtry n Alitions 7(3), (1997) 9. Diimo, W.: Dnsity o stright-lin 1-lnr grh rwings. Inormtion Prossing Lttr 113(7), (2013) 10. Dolv, D., Lighton, T., Triky, H.: Plnr ming o lnr grhs. In: Avns in Comuting Rsrh (1984) 11. Es, P., Hong, S.H., Ktoh, N., Liott, G., Shwitzr, P., Suzuki, Y.: Tsting mximl 1-lnrity o grhs with rottion systm in linr tim. In: Diimo, W., Ptrignni, M. (s.) Grh Drwing. LNCS, vol. 7704, Sringr (2013) 12. Egglton, R.B.: Rtilinr rwings o grhs. Utilits Mth. 29, (1986) 13. Ertn, C., Koourov, S.G.: Simultnous ming o lnr grh n its ul on th gri. Thory o Comuting Systms 38(3), (2005) 14. Frii, I., Mrs, T.: Th strutur o 1-lnr grhs. Disrt Mthmtis 307(7 8), (2007) 15. Fryssix, H., Ph, J., Pollk, R.: How to rw lnr grh on gri. Comintori 10(1), (1990) 16. Grigoriv, A., Bolnr, H.L.: Algorithms or grhs ml with w rossings r g. Algorithmi 49(1), 1 11 (2007) 17. Hong, S.H., Es, P., Liott, G., Poon, S.H.: Fáry s thorm or 1-lnr grhs. In: Gumunsson, J., Mstr, J., Vigls, T. (s.) Intrntionl Conrn on Comuting n Comintoris. LNCS, vol. 7434, Sringr (2012) 18. Korzhik, V.P., Mohr, B.: Miniml ostrutions or 1-immrsions n hrnss o 1-lnrity tsting. Journl o Grh Thory 72(1), (2013) 19. Ph, J., Tóth, G.: Grhs rwn with w rossings r g. Comintori 17, (1997) 20. Ringl, G.: Ein Shsrnrolm u r Kugl. Ah. us m Mth. Sminr r Univ. Hmurg 29, (1965) 21. Shnyr, W.: Eming lnr grhs on th gri. In: Johnson, D.S. (.) Symosium on Disrt Algorithms (1990) 22. Suzuki, Y.: R-mings o mximum 1-lnr grhs. SIAM Journl o Disrt Mthmtis 24(4), (2010) 23. Thomssn, C.: Rtilinr rwings o grhs. Journl o Grh Thory 12(3), (1988) 24. Tutt, W.T.: How to rw grh. Pro. Lonon Mth. Soity 13(52), (1963)

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Uniform 2D-Monotone Minimum Spanning Graphs

Uniform 2D-Monotone Minimum Spanning Graphs CCCG 2018, Winnipg, Cn, August 8 10, 2018 Uniorm 2D-Monoton Minimum Spnning Grphs Konstntinos Mstks Astrt A gomtri grph G is xy monoton i h pir o vrtis o G is onnt y xy monoton pth. W stuy th prolm o prouing

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Research Article On the Genus of the Zero-Divisor Graph of Z n

Research Article On the Genus of the Zero-Divisor Graph of Z n Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity,

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area Journl of Grph Algorithms n Applitions http://jg.info/ vol. 13, no. 2, pp. 153 177 (2009) On Clss of Plnr Grphs with Stright-Line Gri Drwings on Liner Are M. Rezul Krim 1,2 M. Siur Rhmn 1 1 Deprtment of

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Generalized swap operation for tetrahedrizations

Generalized swap operation for tetrahedrizations Gnrliz swp oprtion for ttrhriztions B. Lhnr 1, B. Hmnn 2, G. Umluf 3 1 Dprtmnt of Computr Sin, Univrsity of Kisrslutrn, Grmny lhnr@s.uni-kl. 2 Institut for Dt Anlysis n Visuliztion (IDAV), Dprtmnt of Computr

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igits in th bs xnsion

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

Witness-Bar Visibility Graphs

Witness-Bar Visibility Graphs Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Witnss-Br Visiility Grphs Crmn Cortés Frrn Hurto Alrto Márquz Jsús Vlnzul Astrt Br visiility grphs wr introu in th svntis s mol for som VLSI lyout prolms.

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures 1 (4, )-oosility o plnr rps wit orin struturs 4 5 Znr Brikkyzy 1 Cristopr Cox Mil Diryko 1 Kirstn Honson 1 Moit Kumt 1 Brnr Liiký 1, Ky Mssrsmit 1 Kvin Moss 1 Ktln Nowk 1 Kvin F. Plmowski 1 Drrik Stol

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Straight-line Grid Drawings of 3-Connected 1-Planar Graphs

Straight-line Grid Drawings of 3-Connected 1-Planar Graphs Strt-ln Gr Drwns o 3-Connt 1-Plnr Grs M. Jwrul Alm 1, Frnz J. Brnnur 2, n Stn G. Koourov 1 1 Drtmnt o Comutr Sn, Unvrsty o Arzon, USA {mlm, koourov}@s.rzon.u 2 Unvrsty o Pssu, 94030 Pssu, Grmny rnn@normtk.un-ssu.

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

On the Characterization of Level Planar Trees by Minimal Patterns

On the Characterization of Level Planar Trees by Minimal Patterns On t Crtriztion o Lvl Plnr Trs Miniml Pttrns Aljnro Estrll-Blrrm, J. Jos Fowlr, n Stn G. Koourov Drtmnt o Comutr Sin, Univrsit o Arizon {l,owlr}@mil.rizon.u, oourov@s.rizon.u Astrt. W onsir rtriztions

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

An Integer Linear Programming Based Routing Algorithm for Flip-Chip Design

An Integer Linear Programming Based Routing Algorithm for Flip-Chip Design . An Intgr Linr Progrmming Bs Routing Algorithm or Fli-Chi Dsign Ji-Wi Fng, Chin-Hsiung Hsu, n Yo-Wn Chng, Grut Institut o Eltronis Enginring, Ntionl Tiwn Univrsity, Tii 0, Tiwn Drtmnt o Eltril Enginring,

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information