Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Size: px
Start display at page:

Download "Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players."

Transcription

1 Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts o grph thory rom th point o viw o soil ntwork nlysis. Grphs Th unmntl onpt o grph thory is th grph, whih (spit th nm) is st thought o s mthmtil ojt rthr thn igrm, vn though grphs hv vry nturl grphil rprsnttion. Grph inition. A grph usully not G(V,E) or G = (V,E) onsists o st o vrtis V togthr with st o gs E. Th numr o vrtis in grph is usully not n whil th numr o gs is usully not m. Vrtis. Vrtis r lso known s nos, points n (in soil ntworks) s tors, gnts or plyrs. Egs. Egs r lso known s lins n (in soil ntworks) s tis or links. An g = (u,v) is in y th unorr pir o vrtis tht srv s its n points. As n xmpl, th grph pit in Figur 1 hs vrtx st V={,,,,.} n g st E = {(,),(,),(,),(,),(,),(,)}.

2 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. Figur 1. Ajny. Two vrtis u n v r jnt i thr xists n g (u,v) tht onnts thm. Inin. An g (u,v) is si to inint upon nos u n v. Loops. An g = (u,u) tht links vrtx to itsl is known s sl-loop or rlxiv ti. Visuliztion issus. Whn looking t visuliztions o grphs suh s Figur 1, it is importnt to rliz tht th only inormtion ontin in th igrm is jny; th position o nos in th pln (n thror th lngth o lins) is ritrry unlss othrwis spii. Hn it is usully ngrous to rw onlusions s on th sptil position o th nos. For xmpl, it is tmpting to onlu tht nos in th mil o igrm r mor importnt thn nos on th priphris, ut this will otn i not usully mistk. Multigrphs. Whn us to rprsnt soil ntworks, w typilly us h lin to rprsnt instns o th sm soil rltion, so tht i (,) inits rinship twn th prson lot t no n th prson lot t no, thn (,) woul lso init rinship twn n. In ition, w only llow on g twn ny two vrtis. Thus, h istint soil rltion tht is mpirilly msur on th sm group o popl is rprsnt y sprt grphs, whih r likly to hv irnt struturs (tr ll, who tlks to whom is not th sm s who isliks whom).

3 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. Howvr, in grph thory, no suh limittions r impos. Egs n long to irnt typs, n w n multipl gs twn th sm pir o vrtis. Ajny mtrix. Evry grph hs ssoit with it n jny mtrix, whih is inry n n mtrix A in whih ij = 1 n ji = 1 i vrtx vi is jnt to vrtx vj, n ij = 0 n ji = 0 othrwis. Th nturl grphil rprsnttion o n jny mtrix is tl, suh s shown in Figur Figur 2. Ajny mtrix or grph in Figur 1. Compltnss. Exmining ithr Figur 1 or Figur 2, w n s tht not vry vrtx is jnt to vry othr. A grph in whih ll vrtis r jnt to ll othrs is si to omplt. Dnsity. Th xtnt to whih grph is omplt is init y its nsity, whih is in s th numr o gs ivi y th numr possil. I sl-loops r xlu, thn th numr possil is n(n-1)/2. I sl-loops r llow, thn th numr possil is n(n+1)/2. Hn th nsity o th grph in Figur 1 is 6/15 = Sugrphs. A sugrph o grph G is grph whos points n lins r ontin in G. A omplt sugrph o G is stion o G tht is omplt (i.., hs nsity = 1). Cliqus. A liqu is mximl omplt sugrph. A mximl omplt sugrph is sugrph o G tht is omplt n is mximl in th sns tht no othr no o G oul to th sugrph without losing th ompltnss proprty. In Figur 1, th nos {,,} togthr with th lins onnting thm orm liqu. Cliqus hv n sn s wy to rprsnt wht soil sintists hv ll primry groups.

4 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. Conntnss. Whil not vry vrtx in th grph in Figur 1 is jnt, on n onstrut squn o jnt vrtis rom ny vrtx to ny othr. Grphs with this proprty r ll onnt. Rhility. Similrly, ny pir o vrtis in whih on vrtx n rh th othr vi squn o jnt vrtis is ll rhl. I w trmin rhility or vry pir o vrtis, w n onstrut rhility mtrix R suh s pit in Figur 3. Th mtrix R n thought o s th rsult o pplying trnsitiv losur to th jny mtrix A. g g g Figur 3. Componnt. A omponnt o grph is in s mximl sugrph in whih pth xists rom vry no to vry othr (i.., thy r mutully rhl). Th siz o omponnt is in s th numr o nos it ontins. A onnt grph hs only on omponnt. Wlk. A squn o jnt vrtis v 0,v 1,,v n is known s wlk. In Figur 3, th squn,,,,,g is wlk. A wlk n lso sn s squn o inint gs, whr two gs r si to inint i thy shr xtly on vrtx. Clos. A wlk is los i v o = v n. Pth. A wlk in whih no vrtx ours mor thn on is known s pth. In Figur 3, th squn,,,,, is pth.

5 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. Tril. A wlk in whih no g ours mor thn on is known s tril. In Figur 3, th squn,,,,,,g is tril ut not pth. Evry pth is tril, n vry tril is wlk. Cyl. A yl n in s los pth in whih n >= 3. Th squn,, in Figur 3 is yl. Tr. A tr is onnt grph tht ontins no yls. In tr, vry pir o points is onnt y uniqu pth. Tht is, thr is only on wy to gt rom A to B. Lngth. Th lngth o wlk (n thror pth or tril) is in s th numr o gs it ontins. For xmpl, in Figur 3, th pth,,,, hs lngth 4. Gosi. A wlk twn two vrtis whos lngth is s short s ny othr wlk onnting th sm pir o vrtis is ll gosi. O ours, ll gosis r pths. Gosis r not nssrily uniqu. From vrtx to vrtx in Figur 1, thr r two gosis:,,,,, n,,,g,,. Distn. Th grph-thorti istn (usully shortn to just istn ) twn two vrtis is in s th lngth o gosi tht onnts thm. I w omput th istn twn vry pir o vrtis, w n onstrut istn mtrix D suh s pit in Figur 4. Th mximum istn in grph ins th grph s imtr. As shown in Figur 4, th imtr o th grph in Figur 1 is 4. I th grph is not onnt, thn thr xist pirs o vrtis tht r not mutully rhl so tht th istn twn thm is not in n th imtr o suh grph is lso not in. g g Figur 4. Distn mtrix or grph in Figur 3.

6 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. Powrs. Th powrs o grph s jny mtrix, A p, giv th numr o wlks o lngth p twn ll pirs o nos. For xmpl, A 2, otin y 2 multiplying th mtrix y itsl, hs ntris ij tht giv th numr o wlks o lngth 2 tht join no v i to no v j. Hn, th gosi istn mtrix p D hs ntris ij = p, whr p is th smllst p suh tht ij > 0. (Howvr, thr xist muh str lgorithms or omputing th istn mtrix.) Entriity. Th ntriity (v) o point v in onnt grph G(V,E) is mx (u,v), or ll u V. In othr wors, point s ntriity is qul to th istn rom itsl to th point rthst wy. Th ntriity o no in Figur 3 is 3. Rius & Dimtr.. Th minimum ntriity o ll points in grph is ll th rius r(g) o th grph, whil th mximum ntriity is th imtr o th grph. In Figur 3, th rius is 2 n th imtr is 4. Cntr. A vrtx tht is lst istnt rom ll othr vrtis (in th sns tht its ntriity quls th rius o th grph) is mmr o th ntr o th grph n is ll ntrl point. Evry tr hs ntr onsisting o ithr on point or two jnt points. Dgr. Th numr o vrtis jnt to givn vrtx is ll th gr o th vrtx n is not (v). It n otin rom th jny mtrix o grph y simply omputing h row sum. For xmpl, th gr o vrtx in Figur 3 is 4. Avrg gr. Th vrg gr,, o ll vrtis pit in Figur 3 is Thr is irt rltionship twn th vrg gr,, o ll vrtis in grph n th grph s nsity: nsity = n 1 Isolts & pnnts. A vrtx with gr 0 is known s n isolt (n onstituts omponnt o siz 1), whil vrtx with gr 1 is pnnt. Dgr vrin. Holing vrg gr onstnt, thr is tnny or grphs tht ontin som nos o high gr (n thror high vrin

7 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. in gr) to hv shortr istns thn grphs with lowr vrin, with th high gr nos srving s shortuts ross th ntwork. Cutpoint. A no whos rmovl rom grph isonnts th grph (or, mor gnrlly, inrss th numr o omponnts in th grph) is ll utpoint or n rtiultion point. Th grph in Figur 3 hs thr utpoints, nmly,, n. A onnt, non-trivil grph is ll non-sprl i it hs no utpoints. Blok. A lok or i-omponnt is mximl nonsprl sugrph. Bloks prtition th gs in grph into mutully xlusiv gs. Thy lso shr no nos xpt utpoints. Thus, utpoints ompos grphs into (nrly) non-ovrlpping stions. In loks o mor thn two points, vry pir o points lis long ommon yl, whih mns tht thr is lwys minimum o two wys to gt rom ny point to ny othr. In Figur 3, w in th ollowing loks: {,}, {,}, {,,,g}, {,}. Cutst. Th notion o utpoint n gnrliz to utst, whih is st o points whos joint rmovl inrss th numr o omponnts in th grph. O prtiulr intrst is minimum wight utst, whih is utst tht is s smll s possil (i.., no othr utst hs wr mmrs). Thr n mor thn on istint minimum wight utst in grph. Vrtx onntivity. Th siz o grph s minimum wight utst ins th vrtx onntivity κ(g) o grph, whih is th minimum numr o nos tht must rmov to inrs th numr o omponnts in th grph (or rnr it trivil). Th point onntivity o isonnt grph is 0. Th point onntivity o grph ontining utpoint is no highr thn 1. Th point onntivity o non-sprl grph is t lst 2. W n nlogously in th vrtx onntivity κ(u,v) o pir o points u,v s th numr o nos tht must rmov to isonnt tht pir. Th onntivity o th grph κ (G) is just th minimum κ (u,v) or ll u,v in V. Inpnnt pths. A mous thorm y Mngr pulish in 1929 rlts th vrtx onntivity o pir o nos to th mximum numr o noinpnnt pths onnting thos nos. A st o pths rom sour no s to trgt no t is no-inpnnt i non o th pths shr ny vrtis si rom s n t. Mngr s thorm stts tht or ny sour s n trgt t, th mximum numr o no-inpnnt pths twn s n t is qul to th vrtx onntivity o tht pir i.., th numr o nos tht

8 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. must rmov to isonnt thm. Hn, thr might mny irnt pths rom s to t, ut i thy ll shr rtin no (i.., r not inpnnt), thn s n t n sily isonnt y liminting just tht no. Thus, w n think o th point onntivity o grph s n initor o th invulnrility o th grph to thrts o isonntion y rmovl o nos. I κ(g) is high, or i th vrg κ (u,v) is high or ll pirs o nos, thn w know tht it is irly iiult to isonnt th nos in th grph y rmoving intrmiris. Brig. Th vrtx-s notions o utpoint, utst, vrtx onntivity n no-inpnnt pth st hv nlogous ountrprts or gs. A rig is in s n g whos rmovl woul inrs th numr o omponnts in th grph. Eg onntivity. Eg onntivity is not λ(g) n th g onntivity o pir o nos is not λ(u,v). A isonnt grph hs λ(g)=0, whil grph with rig hs λ(g)=1. Point onntivity n lin onntivity r rlt to h othr n to th minimum gr in grph y Whitny s inqulity: κ ( G) λ( G) δ ( G) Dirt Grphs Motivtion. As not t th outst, th gs ontin in grphs r unorr pirs o nos (i.., (u,v) is th sm thing s (v,u)). As suh, grphs r usul or noing irtionlss rltionships suh s th soil rltion siling o or th physil rltion is nr. Howvr, mny rltions tht w woul lik to mol r not irtionlss. For xmpl, is th oss o is usully nti-symmtri in th sns tht i u is th oss o v, it is unlikly tht v is th oss o u. Othr rltions, suh s givs vi to r simply non-symmtri in th sns tht i u givs vi to v, v my or my not giv vi to u. Dinition. To mol non-symmtri rltions w us irt grphs, lso known s igrphs. A igrph D(V,E) onsists o st o nos V n st

9 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. o orr pirs o nos E ll rs or irt lins. Th r (u,v) points rom u to v. Digrphs r usully rprsnt visully lik grphs, xpt tht rrowhs r pl on lins to init irtion (s Figur 5). Whn oth rs (u,v) n (v,u) r prsnt in igrph, thy my rprsnt y oul-h rrow (s in Figur 5), or two sprt rrows (s shown in Figur 5). Figur 5 Figur 5 Dirt Wlk. In igrph, wlk is squn o nos v o,v 1, v n in whih h pir o nos v i, v i +1 is link y n r (v i,v i +1). In othr wors, it is trvrsl o th grph in whih th low o movmnt ollows th irtion o th rs, lik r moving rom pl to pl vi on-wy strts. A pth in igrph is wlk in whih ll points r istint. Smiwlk. A smiwlk is squn o nos v o,v 1, v n in whih h pir o nos v i, v i +1 is link y ithr th r (v i,v i +1) or th r (v i +1,v i ). In othr wors, in smiwlk, th trvrsl n not rspt th irtion o rs, lik r tht rly gos th wrong wy on on-wy strts. By nlogy, w n lso in smipth, smitril, n smiyl.

10 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. Unrlying grph. Anothr wy to think o smi-wlks is s wlks on th unrlying grph, whr th unrlying grph is th grph G(V,E) tht is orm rom th igrph D(V,E ) suh tht (u,v) E i n only i (u,v) E or (v,u) E. Thus, th unrlying grph o igrph is silly th grph orm y ignoring irtionlity. Strongly onnt. A igrph is strongly onnt i thr xists pth (not smipth) rom vry point to vry othr. Not tht th pth rom u to v n not involv th sm intrmiris s th pth rom v to u. Uniltrlly onnt. A igrph is uniltrlly onnt i or vry pir o points thr is pth rom on to th othr (ut not nssrily th othr wy roun). Wkly onnt. A igrph is wkly onnt i vry pir o points is mutully rhl vi smipth (i.., i th unrlying grph is onnt). Strong omponnt. A strong omponnt o igrph is mximl strongly onnt sugrph. In othr wors, it is sugrph tht is strongly onnt n whih is s lrg s possil (thr is no no outsi th sugrph tht is strongly onnt to ll th nos in th sugrph). A wk omponnt is mximl wkly onnt sugrph. Outgr. Th numr o rs originting rom no v (i.., outgoing rs) is ll th outgr o v, not o(v). Ingr. Th numr o rs pointing to no v (i.., inoming rs) is ll th ingr o v, not i(v). In grph rprsnting rinship lings mong st o prsons, outgr n sn s initing grgriousnss, whil ingr orrspons to populrity. Th vrg outgr o igrph is nssrily qul to th vrg ingr. Dirt jny. Th jny mtrix A o igrph is n n n mtrix in whih ij = 1 i (v i,v j ) E n ij = 0 othrwis. Unlik th jny mtrix o n unirt grph, th jny mtrix o irt grph is not onstrin to symmtri, so tht th top right hl n not qul th ottom lt hl (i.., ij <> ji ). I igrph is yli, thn it is

11 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. possil to orr th points o D so tht th jny mtrix uppr tringulr (i.., ll positiv ntris r ov th min igonl). Soil Ntwork Extnsions to Grph Thory In this stion w onsir ontriutions to grph thory rom th stuy o soil ntworks. Thr r two min groups o ontriutions: ohsiv susts n rols/positions. Not tht th initions o ohsiv susts ssum grphs, whil thos o rols/position ssum igrphs. Cohsiv Susts It ws mntion rlir tht th notion o liqu n sn s ormlizing th notion o primry group. A prolm with this, howvr, is tht it is too strit to prtil: rl groups will ontin svrl pirs o popl who on t hv los rltionship. A rlxtion n gnrliztion o th liqu onpt is th n-liqu. An n-liqu S o grph is mximl st o nos 1 in whih or ll u,v S, th grph-thorti istn (u,v) <= n. In othr wors, n n-liqu is st o nos in whih vry no n rh vry othr in n or wr stps, n th st is mximl in th sns tht no othr no in th grph is istn n or lss rom vry othr no in th sugrph. A 1-liqu is th sm s n orinry liqu. Th st {,,,,} in Figur 6 is n xmpl o 2-liqu. Figur 6. 1 Cohsiv susts r tritionlly in in trms o sugrphs rthr thn susts o nos. Howvr, sin most popl think out thm in trms o no sts, n us using sugrphs omplits nottion, w us susts hr.

12 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. Not tht th pth o lngth n or lss linking mmr o th n-liqu to nothr mmr my pss through n intrmiry who is not in th group. In th 2-liqu in Figur 6, nos n r istn 2 only us o, whih is not mmr o th 2-liqu. In this sns, n-liqus r not s ohsiv s thy might othrwis ppr. Th notion o n n-ln vois tht. An n-ln is n n-liqu in whih th imtr o th sugrph G inu y S is lss thn or qul to n. Th sugrph G o grph G inu y th st o nos S is in s th mximl sugrph o G tht hs point st S. In othr wors, it is th sugrph o G otin y tking ll nos in S n ll tis mong thm. Thror, n n-ln S is n n-liqu in whih ll pirs hv istn lss thn or qul to n vn whn w rstrit ll pths to involv only mmrs o S. In Figur 6, th st {,,,,} is 2- ln, ut {,,,,} is not us n hv istn grtr thn 2 in th inu sugrph. Not tht {,,,} is lso ils th 2-ln ritrion us n-lns r in to n-liqus n {,,,} is not 2-liqu (it ils th mximlity ritrion sin {,,,,}). An n-lu orrts this prolm y liminting th n-liqu ritrion rom th inition. An n-lu is sust S o nos suh tht in th sugrph inu y S, th imtr is n or lss. Evry n-ln is oth n n-lu n n n-liqu. Th st {,,,} is 2-lu. Whrs n-liqus, n-lns n n-lus ll gnrliz th notion o liqu vi rlxing istn, th k-plx gnrlizs th liqu y rlxing nsity. A k- plx is sust S o nos suh tht vry mmr o th st is onnt to n-k othrs, whr n is th siz o S. Although not prt o th oiil inition, it is onvntionl to itionlly impos mximlity onition, so tht propr susts o k-plxs r ignor. Thr r som gurnts on th ohsivnss o k-plxs. For xmpl, k-plxs in whih k < (n+2)/2 hv no istns grtr thn 2 n nnot ontin rigs (mking thm rsistnt to ttk y lting n g). In Figur 6, th st {,,,} ils to 2-plx us h mmr must hv t lst 4-2=2 tis to othr mmrs o th st, yt hs only on ti within th group. In th grph in Figur 7, th st {,,,} is 2-plx.

13 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. Figur 7. Mor ohsiv thn k-plxs r LS sts. Lt H st o nos in grph G(V,E) n lt K propr sust o H. Lt α(k) not th numr o gs linking mmrs o K to V-K (th st o nos not in K). Thn H is n LS st o G i or vry propr sust K o H, α(k) > α(h). Th si i is tht iniviuls in H hv mor tis with othr mmrs thn thy o to outsirs. Anothr wy to in LS sts tht mks this mor vint is s ollows. Lt α(x,y) not th numr o gs rom mmrs o st X to mmrs o st Y. Thn H is n LS st i α(k,h-k) > α(k,v-h). In Figur 7, th st {,,,} is not n LS st sin α({,,},{}) is not grtr thn α({,,},{}). In ontrst, th st {,,,} in Figur 8 os quliy s n LS st. Figur 8. A ky proprty o LS sts is high g onntivity. Spiilly, vry no in n LS st hs highr g onntivity (λ) with othr mmrs o th LS st thn with ny non-mmr. Tking this s th sol ritrion or ining ohsiv sust, lm st is in s mximl sust o nos S suh tht or ll,, S n V-S, λ(,) > λ(,). To th xtnt tht λ is high, mmrs o th sm lm st r iiult to isonnt rom on

14 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. nothr us λ ins th numr gs tht must rmov rom th grph in orr to isonnt th nos within th lm st. A k-or is mximl sugrph H in whih δ(h) >= k. Hn, vry mmr o 2-or is onnt to t lst 2 othr mmrs, n no no outsi th 2-or is onnt to 2 or mor mmrs o th or (othrwis it woul not mximl). Evry k-or ontins t lst k+1 vrtis, n vrtis in irnt k-ors nnot jnt. A 1-or is simply omponnt. K-ors n sri s loosly ohsiv rgions whih will ontin mor ohsiv susts. For xmpl, vry k-plx is ontin in k-or. Rols/Positions Givn igrph D(V,E), th in-nighorhoo o no v, not Ni(v) is th st o vrtis tht sn rs to v. Tht is, N i (v) = {u: (u,v) E}. Th outnighorhoo o no v, not N o (v) is th st o vrtis tht riv rs rom v. Tht is, N o (v) = {u: (v,u) E}. A olortion C is n ssignmnts o olors to th vrtis V o igrph. Th olor o vrtx v is not C(v) n th st o istint olors ssign to nos in st S is not C(S) n trm th sptrum o S. In Figur 9, olortion o nos is pit y lling th nos with lttrs suh s r or r, n y or yllow. Nos olor th sm r si to quivlnt. r y w r Figur 9. y A olortion is strong struturl olortion i nos r ssign th sm olor i n only i thy hv intil in n out nighorhoos. Tht is, or ll u,v V, C(u) = C(v) i n only i Ni(u) = Ni(v) n No(u) = No(v). Th

15 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. olortion in Figur 9 is strong struturl olortion. W n hk this y tking pirs o nos n vriying tht i thy r olor th sm (i.., r strongly struturlly quivlnt) thy hv intil nighorhoos, n i thy r not olor th sm, thy hv irnt nighorhoos. For xmpl, n r olor th sm, n oth o thir nighorhoos onsist o {,,}. Not tht in strong struturl olortions, ny two nos tht r olor th sm r struturlly intil: i w rmov th intiying lls rom th intilly olor nos, thn spin th grph roun in sp or pling it k own on th pg, w woul not l to igur out whih o th sm-olor nos ws whih. Consquntly, ny proprty o th nos tht stms rom thir struturl position (suh s xpt tim until rrivl o somthing lowing through th ntwork) shoul th sm or nos tht r quivlnt. A olortion C is rgulr i C(u) = C(v) implis tht C(Ni(u)) = C(Ni(v)) n C(No(u)) = C(No(v)) or ll u, v V. In othr wors, in rgulr olortions, vry pir o nos tht hs th sm olor must riv rs rom nos omprising th sm st o olors n must sn rs to nos omprising th sm st o olors. Evry struturl olortion is rgulr olortion. r y r r y Figur 10. Rgulr olortion. Th olortion in Figur 10 (whih pits th sm igrph s in Figur 9) is rgulr, ut not strongly struturl. To s this, onsir tht vry r no hs n out-nighorhoo ontining only yllow nos (.g., C(N o ()={y}), n n in-nighorhoo ontining only yllow nos, whil vry yllow no hs n out-nighorhoo ontining only r nos n n in-nighorhoo ontining only r nos. Figur 11 pits nothr rgulr olortion. Not tht no g oul not olor th sm s or i,

16 1 st Drt, Rvision 2, writtn vry quikly. My ontin rrors. B wr. us it hs n outnighorhoo onsisting o whit no, whil n i hv no outnighorhoo t ll. Consquntly no p oul not olor th sm s n, sin p s out-nighorhoo ontins no o irnt olor thn th n. This lso implis tht g nnot olor th sm s n i us it riv ti rom no o irnt olor. r p r g h i y s g y w Figur 11. Rgulr olortion j I grph rprsnts soil ntwork, w n think o th olors s ining mrgnt lsss or typs o popl suh tht i on mmr o rtin lss (lu) hs outgoing tis to mmrs o xtly two othr lsss (yllow n grn), thn ll othr mmrs o tht (lu) lss hv outgoing tis to mmrs o thos sm two lsss (yllow n grn). Thus, rgulr olortions lssiy mmrs o soil ntwork oring to thir pttrn o rltions o othrs, n two popl r pl in th sm lss i thy intrt in th sm wys with th sm kins o othrs (ut not nssrily with sm iniviuls). Just s th vrious gnrliztions o liqus r ttmpts to ptur mthmtilly th notion o soil group, rgulr olortions r n ttmpt to ptur th notion o soil rol systm, in whih popl plying rtin rol hv hrtristi rltions with othrs who r plying omplmntry rols (suh s otors, nurss n ptints).

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017 Dv Mount CMSC 45: Ltur Grph Bsis Thursy, Au, 07 Rin: Chpt. in KT (Klinr n Tros) n Chpt. in DBV (Dsupt, Ppimitriou, n Vzirni). Som o our trminoloy irs rom our txt. Grphs n Dirphs: A rph G = (V, E) is strutur

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Quartets and unrooted level-k networks

Quartets and unrooted level-k networks Phylogntis Workshop, Is Nwton Institut or Mthmtil Sins Cmrig 21/06/2011 Qurtts n unroot lvl-k ntworks Philipp Gmtt Outlin Astrt n xpliit phylognti ntworks Lvl-k ntworks Unroot lvl-1 ntworks n irulr split

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

C-201 Sheet Bar Measures 1 inch

C-201 Sheet Bar Measures 1 inch Janine M. lexander, P.. P.. No. 9, L 0 N. PRK RO, SUIT 0 HOLLYWOO, LORI 0 PHON: (9) - X: (9) 08- No.: 9 I ST SRIPTION Y GT VLVS SHLL RSILINT ST, MNUTUR TO MT OR X TH RQUIRMNTS O WW 09 (LTST RVISION) N

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

Decimals DECIMALS.

Decimals DECIMALS. Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION RVISION RV SRIPTION Y T HNG NO NOT OR PROUT LL JJH // LR TIL PPLY PROUT I LL TIL INSI UPPR ROSS MMR ON PR RK IS J OUR POST RK SQUR HOL RIL IS MN MS G NUT, PNL RNG 99 PPLY PROUT I LL INSI UPPR ROSS MMR

More information