# COMP108 Algorithmic Foundations

Size: px
Start display at page:

Transcription

1 Grdy mthods Prudn Wong

2 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod

3 Lrning outoms Undrstnd wht grdy mthod is Al to pply Kruskl s lgorithm to find minimum spnning tr Al to pply Dijkstr s lgorithm to find singlsour shortst-pths Al to pply grdy lgorithm to find solution for Knpsk prolm 3

4 Grdy mthods How to grdy? At vry stp, mk th st mov you n mk Kp going until you r don Advntgs Don t nd to py muh ffort t h stp Usully finds solution vry quikly Th solution found is usully not d Possil prolm Th solution found my NOT th st on

5 Grdy mthods - xmpls Minimum spnning tr Kruskl s lgorithm Singl-sour shortst-pths Dijkstr s lgorithm Both lgorithms find on of th BEST solutions Knpsk prolm grdy lgorithm dos NOT find th BEST solution 5

6 Kruskl s lgorithm

7 Minimum Spnning tr (MST) Givn n undirtd onntd grph G Th dgs r llld y wight Spnning tr of G tr ontining ll vrtis in G Minimum spnning tr of G spnning tr of G with minimum wight 7

8 Exmpls Grph G (dg ll is wight) d Spnning trs of G d d 1 d MST 8

9 Id of Kruskl's lgorithm - MST min-wight dg nd min-wight dg trs in forst my mrg until on singl tr formd 9

10 Kruskl s lgorithm - MST 8 7 d i h 1 g f Arrng dgs from smllst to lrgst wight (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 10

11 Kruskl s lgorithm - MST 8 11 h i 1 g d 1 f 9 10 (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 Choos th minimum wight dg (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 11

12 Kruskl s lgorithm - MST 8 7 d i h 1 g f Choos th nxt minimum wight dg (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 1

13 Kruskl s lgorithm - MST 8 11 h i 1 g d 1 f 9 10 (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 Continu s long s no yl forms (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 13

14 Kruskl s lgorithm - MST 8 11 h i 1 g d 1 f 9 10 (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 Continu s long s no yl forms (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 1

15 Kruskl s lgorithm - MST 8 11 h i 1 g d 1 f 9 10 (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 Continu s long s no yl forms (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 15

16 Kruskl s lgorithm - MST 8 11 h i 1 g d 1 f 9 10 (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 Continu s long s no yl forms (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 16

17 Kruskl s lgorithm - MST 8 11 h 7 8 i 7 1 g 1 (h,i) nnot inludd, othrwis, yl is formd d f 9 10 (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 17

18 Kruskl s lgorithm - MST 8 7 d i h 1 g f Choos th nxt minimum wight dg (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 18

19 Kruskl s lgorithm - MST 8 11 h 7 8 i 7 1 g 1 (,h) nnot inludd, othrwis, yl is formd d f 9 10 (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 19

20 Kruskl s lgorithm - MST 8 7 d i h 1 g f Choos th nxt minimum wight dg (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 0

21 Kruskl s lgorithm - MST 8 11 h 7 8 i 7 1 g 1 (f,) nnot inludd, othrwis, yl is formd d f 9 10 (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 1

22 Kruskl s lgorithm - MST 8 11 h 7 8 i 7 1 g (,h) nnot inludd, othrwis, yl is formd 1 d f 9 10 (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn

23 Kruskl s lgorithm - MST 8 11 h 7 8 i 7 1 g 1 (d,f) nnot inludd, othrwis, yl is formd d f 9 10 (h,g) 1 (i,) (g,f) (,) (,f) (,d) 7 (h,i) 7 (,) 8 (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn 3

24 Kruskl s lgorithm - MST (h,g) d (i,) 9 (g,f) 11 1 (,) i 7 (,f) 8 10 (,d) 7 h 1 g f (h,i) 7 (,) 8 MST is found whn ll dgs r xmind (,h) 8 (d,) 9 (f,) 10 (,h) 11 (d,f) 1 itli: hosn

25 Kruskl s lgorithm - MST Kruskl s lgorithm is grdy in th sns tht it lwys ttmpt to slt th smllst wight dg to inludd in th MST 5

26 Exris Find MST for this grph d 6 f 5 ordr of (dgs) sltion: 6

27 Psudo od // Givn n undirtd onntd grph G=(V,E) T = nd E = E whil E do gin nd pik n dg in E with minimum wight if dding to T dos not form yl thn dd to T, i.., T = T { } rmov from E', i.., E = E \ { } Tim omplxity? Cn tstd y mrking vrtis 7

28 Dijkstr s lgorithm

29 Singl-sour shortst-pths Considr (un)dirtd onntd grph G Th dgs r llld y wight Givn prtiulr vrtx lld th sour Find shortst pths from th sour to ll othr vrtis (shortst pth mns th totl wight of th pth is th smllst) 9

30 Exmpl Dirtd Grph G (dg ll is wight) is sour vrtx 5 5 d d thik lins: shortst pth dottd lins: not in shortst pth 30

31 Singl-sour shortst pths vs MST Shortst pths from Wht is th diffrn twn MST nd shortst pths from? 5 5 d 5 d MST 31

32 Algorithms for shortst pths Algorithms thr r mny lgorithms to solv this prolm, on of thm is Dijkstr s lgorithm, whih ssums th wights of dgs r non-ngtiv 3

33 Id of Dijkstr s lgorithm sour hoos th dg lding to vrtx s.t. ost of pth to sour is min Mind tht th dg ddd is NOT nssrily th minimum-ost on 33

34 Dijkstr s lgorithm Input: A dirtd onntd wightd grph G nd sour vrtx s Output: For vry vrtx v in G, find th shortst pth from s to v Dijkstr s lgorithm runs in itrtions: in th i-th itrtion, th vrtx whih is th i-th losst to s is found, for vry rmining vrtis, th urrnt shortst pth to s found so fr (this shortst pth will updtd s th lgorithm runs) 3

35 Dijkstr s lgorithm Suppos vrtx is th sour, w now show how Dijkstr s lgorithm works d f 6 6 h 19 k 35

36 Dijkstr s lgorithm Evry vrtx v kps lls: (1) th wight of th urrnt shortst pth from ; () th vrtx lding to v on tht pth, initilly s (, -) 9 15 (, -) 1 d (, -) 5 (, -) 0 30 (, -) f (, -) 6 6 (, -) h 19 k (, -) 36

37 (15, (, -) ) (, (9, ) -) (1, (, -) ) Dijkstr s lgorithm For vry nighor u of, updt th wight to th wight of (,u) nd th lding vrtx to. Choos from,, d th on with th smllst suh wight. hosn 9 15 nw vlus 1 d ing onsidrd (, -) 18 shortst pth f (, -) 6 6 (, -) h 19 k (, -) 37

38 Dijkstr s lgorithm For vry un-hosn nighor of vrtx, updt th wight nd lding vrtx. Choos from ALL un-hosn vrtis (i..,, d, h) th on with smllst wight. 9 nw vlus hosn 15 (15, ) 1 d (9, ) (1, ) ing onsidrd (, -) 18 shortst pth f (, -) 6 6 (33, (, -) ) h 19 k (, -) 38

39 Dijkstr s lgorithm If nw pth with smllst wight is disovrd,.g., for vrtis, h, th wight is updtd. Othrwis, lik vrtx d, no updt. Choos mong d,, h hosn (15, ) nw vlus 1 d (9, ) (1, ) ing onsidrd 18 (, (,-) ) shortst pth f (, -) 6 6 (33, (3, ) ) h 19 k (, -) 39

40 Dijkstr s lgorithm Rpt th produr. Aftr d is hosn, th wight of nd k is updtd. Choos mong, h, k. Nxt vrtx hosn is h (15, ) nw vlus 1 d (9, ) (1, ) ing onsidrd 18 (, (35, ) d) shortst pth hosn (3, ) f (, -) 6 6 h 19 k (59, (, -) d) 0

41 Dijkstr s lgorithm Aftr h is hosn, th wight of nd k is updtd gin. Choos mong, k. Nxt vrtx hosn is. (9, ) 9 (1, ) (15, ) d nw vlus ing onsidrd 18 hosn (35, (3, d) h) shortst pth f 11 (, -) 16 (3, ) h k (51, (59,d) h) 1

42 Dijkstr s lgorithm Aftr is hosn, th wight of f nd k is updtd gin. Choos mong f, k. Nxt vrtx hosn is f. (9, ) 9 (1, ) (15, ) d nw vlus ing onsidrd 18 (3, h) shortst pth hosn f 11 (5, (, -) ) 16 (3, ) h k (51, (50, h) )

43 Dijkstr s lgorithm Aftr f is hosn, it is NOT nssry to updt th wight of k. Th finl vrtx hosn is k. (9, ) 9 (1, ) (15, ) d nw vlus ing onsidrd 18 (3, h) shortst pth f 11 (5, ) 16 hosn (3, ) h k (50, ) 3

44 Dijkstr s lgorithm At this point, ll vrtis r hosn, nd th shortst pth from to vry vrtx is disovrd. (9, ) 9 (1, ) (15, ) d nw vlus ing onsidrd 18 (3, h) shortst pth f 11 (5, ) 16 (3, ) h k (50, )

45 Exris Shortst pths from (,-) 10 3 (,-) d (,-) 6 f (,-) (,-) 5 ordr of (dgs) sltion: Compr th solution with slid #6 5

46 Dijkstr s lgorithm To dsri th lgorithm using psudo od, w giv som nottions Eh vrtx v is llld with two lls: numri ll d(v) indits th lngth of th shortst pth from th sour to v found so fr nothr ll p(v) indits nxt-to-lst vrtx on suh pth, i.., th vrtx immditly for v on tht shortst pth 6

47 Psudo od // Givn grph G=(V,E) nd sour vrtx s for vry vrtx v in th grph do Tim omplxity? st d(v) = nd p(v) = null st d(s) = 0 nd V T = whil V \ V T do // thr is still som vrtx lft gin hoos th vrtx u in V \ V T with minimum d(u) st V T = V T { u } for vry vrtx v in V \ V T tht is nighor of u do nd if d(u) + w(u,v) < d(v) thn // shortr pth is found st d(v) = d(u) + w(u,v) nd p(v) = u 7

48 Dos Grdy lgorithm lwys rturn th st solution?

49 Knpsk Prolm Input: Givn n itms with wights w 1, w,, w n nd vlus v 1, v,, v n, nd knpsk with pity W. Output: Find th most vlul sust of itms tht n fit into th knpsk Applition: A trnsport pln is to dlivr th most vlul st of itms to rmot lotion without xding its pity 9

50 Exmpl 1 pity = 50 w = 10 v = 60 w = 0 v = 100 w = 30 v = 10 itm 1 itm itm 3 knpsk totl totl sust wight vlu φ 0 0 {1} {} {3} {1,} {1,3} {,3} 50 0 {1,,3} 60 N/A 50

51 Grdy pproh pity = 50 w = 10 v = 60 w = 0 v = 100 w = 30 v = 10 itm 1 itm itm 3 knpsk Grdy: pik th itm with th nxt lrgst vlu if totl wight pity. Rsult: itm 3 is tkn, totl vlu = 10, totl wight = 30 itm is tkn, totl vlu = 0, totl wight = 50 itm 1 nnot tkn Tim omplxity? Dos this lwys work? 51

52 Exmpl pity = 10 w = 7 v = w = 3 v = 1 w = v = 0 w = 5 v = 5 itm 1 itm itm 3 itm knpsk totl totl sust wight vlu φ 0 0 {1} 7 {} 3 1 {3} 0 {} 5 5 {1,} 10 5 {1,3} 11 N/A {1,} 1 N/A totl totl sust wight vlu {,3} 7 5 {,} 8 37 {3,} 9 65 {1,,3} 1 N/A {1,,} 15 N/A {1,3,} 16 N/A {,3,} 1 N/A {1,,3,} 19 N/A 5

53 Grdy pproh pity = 10 w = 7 v = w = 3 v = 1 w = v = 0 w = 5 v = 5 itm 1 itm itm 3 itm knpsk Grdy: pik th itm with th nxt lrgst vlu if totl wight pity. Rsult: itm 1 is tkn, totl vlu =, totl wight = 7 itm 3 nnot tkn itm nnot tkn itm is tkn, totl vlu = 5, totl wight = 10 not th st!! 53

54 Grdy pproh v/w = 6 v/w = v/w = 10 v/w = 5 pity = 10 w = 7 v = w = 3 v = 1 w = v = 0 w = 5 v = 5 itm 1 itm itm 3 itm knpsk Grdy : pik th itm with th nxt lrgst (vlu/wight) if totl wight pity. Rsult: itm 3 is tkn, totl vlu = 0, totl wight = itm 1 nnot tkn itm is tkn, totl vlu = 65, totl wight = 9 itm nnot tkn Work for Eg 1? 5

55 Grdy pproh v/w = 6 v/w=5 v/w = pity = 50 w = 10 v = 60 w = 0 v = 100 w = 30 v = 10 itm 1 itm itm 3 knpsk Grdy: pik th itm with th nxt lrgst (vlu/wight) if totl wight pity. Rsult: itm 1 is tkn, totl vlu = 60, totl wight = 10 itm is tkn, totl vlu = 160, totl wight = 30 itm 3 nnot tkn Not th st!! 55

56 Lsson Lrnd: Grdy lgorithm dos NOTlwys rturn th st solution

### CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

### An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

### Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

### Minimum Spanning Trees

Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

### Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

### V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

### CS 461, Lecture 17. Today s Outline. Example Run

Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

### CS 241 Analysis of Algorithms

CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

### b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

### Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

### V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

### Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

### CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

### 12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

### 5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

### Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

### Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

### CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

### Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

### Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

### CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

### CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

### Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

### Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

### Garnir Polynomial and their Properties

Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

### Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

### Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

### (a) v 1. v a. v i. v s. (b)

Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

### Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

### 0.1. Exercise 1: the distances between four points in a graph

Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

### # 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

### Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

### Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

### Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

### 5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

### Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

### GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

### CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

### Problem solving by search

Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

### CSI35 Chapter 11 Review

1. Which of th grphs r trs? c f c g f c x y f z p q r 1 1. Which of th grphs r trs? c f c g f c x y f z p q r . Answr th qustions out th following tr 1) Which vrtx is th root of c th tr? ) wht is th hight

### Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

### Minimum Spanning Trees

Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

### 12. Traffic engineering

lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

### Last time: introduced our first computational model the DFA.

Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

### Final Exam Solutions

CS 2 Advancd Data Structurs and Algorithms Final Exam Solutions Jonathan Turnr /8/20. (0 points) Suppos that r is a root of som tr in a Fionacci hap. Assum that just for a dltmin opration, r has no childrn

### Planar Upward Drawings

C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

### A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

### Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

### Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

### ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

### Weighted Matching and Linear Programming

Wightd Mtching nd Linr Progrmming Jonthn Turnr Mrch 19, 01 W v sn tht mximum siz mtchings cn b found in gnrl grphs using ugmnting pths. In principl, this sm pproch cn b pplid to mximum wight mtchings.

### Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

### Seven-Segment Display Driver

7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

### Section 3: Antiderivatives of Formulas

Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

### UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

- Nming frtions Chptr Frtions Eh shp rprsnts ONE whol. i ii Wht frtion is shdd? Writ s frtion nd in words. Wht frtion is not shdd? Writ s frtion nd in words. i ii i ii Writ s mny diffrnt frtions s you

### The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

### NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

### Constructive Geometric Constraint Solving

Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

### Section 10.4 Connectivity (up to paths and isomorphism, not including)

Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

### More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

### COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

### CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

### Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

### 13. Binary tree, height 4, eight terminal vertices 14. Full binary tree, seven vertices v 7 v13. v 19

0. Spnning Trs n Shortst Pths 0. Consir th tr shown blow with root v 0.. Wht is th lvl of v 8? b. Wht is th lvl of v 0? c. Wht is th hight of this root tr?. Wht r th chilrn of v 0?. Wht is th prnt of v

### Two Graph Algorithms On an Associative Computing Model

Two Grph Algorithms On n Assoitiv Computing Modl Mingxin Jin Dprtmnt of Mthmtis nd Computr Sin Fyttvill Stt Univrsity, Fyttvill, NC 801 Emil: mjin@unfsu.du Astrt - Th MASC (for Multipl Assoitiv Computing)

### Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017.

0//0 Prvw Spnnng Tr Spnnng Tr Mnmum Spnnng Tr Kruskl s Algorthm Prm s Algorthm Corrctnss of Kruskl s Algorthm A spnnng tr T of connctd, undrctd grph G s tr composd of ll th vrtcs nd som (or prhps ll) of

### , each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

### QUESTIONS BEGIN HERE!

Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

### Multi-Section Coupled Line Couplers

/0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

### Weighted Graphs. Weighted graphs may be either directed or undirected.

1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

### 1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

### Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

/3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

### Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

### 10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms

0/0/ CS/ENGRD 0 Ojt- Orint Prormmin n Dt Strutur Fll 0 Dou Jm Ltur 9: DFS, BFS & Shortt Pth Toy Rhility Dpth-Firt Srh Brth-Firt Srh Shortt Pth Unwiht rph Wiht rph Dijktr lorithm Rhility Alorithm Dpth Firt

### 1 Introduction to Modulo 7 Arithmetic

1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

### Instructions for Section 1

Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

### DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

### Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

### Numbering Boundary Nodes

Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

### CS September 2018

Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

### DFA (Deterministic Finite Automata) q a

Big pictur All lngugs Dcidl Turing mchins NP P Contxt-fr Contxt-fr grmmrs, push-down utomt Rgulr Automt, non-dtrministic utomt, rgulr xprssions DFA (Dtrministic Finit Automt) 0 q 0 0 0 0 q DFA (Dtrministic

### Computational Biology, Phylogenetic Trees. Consensus methods

Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

### Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

### FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

### (Minimum) Spanning Trees

(Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

### Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

3 3 4 8 6 3 3 4 8 6 3 3 4 8 6 () (d) 3 Sarching Linkd Lists Sarching Linkd Lists Sarching Linkd Lists ssum th list is sortd, but is stord in a linkd list. an w us binary sarch? omparisons? Work? What if

### Graph Contraction and Connectivity

Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

### a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

### Present state Next state Q + M N

Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

### MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

### S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

### ( ) Geometric Operations and Morphing. Geometric Transformation. Forward v.s. Inverse Mapping. I (x,y ) Image Processing - Lesson 4 IDC-CG 1

Img Procssing - Lsson 4 Gomtric Oprtions nd Morphing Gomtric Trnsformtion Oprtions dpnd on Pil s Coordints. Contt fr. Indpndnt of pil vlus. f f (, ) (, ) ( f (, ), f ( ) ) I(, ) I', (,) (, ) I(,) I (,

### Formal Concept Analysis

Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

### EE1000 Project 4 Digital Volt Meter

Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

### Week 3: Connected Subgraphs

Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

### Linked-List Implementation. Linked-lists for two sets. Multiple Operations. UNION Implementation. An Application of Disjoint-Set 1/9/2014

Disjoint Sts Data Strutur (Chap. 21) A disjoint-st is a olltion ={S 1, S 2,, S k } o distint dynami sts. Eah st is idntiid by a mmbr o th st, alld rprsntativ. Disjoint st oprations: MAKE-SET(x): rat a

### Walk Like a Mathematician Learning Task:

Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

### N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt