IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

Size: px
Start display at page:

Download "IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces"

Transcription

1 IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml wlks of phylognti trsp unr th nrst nighor intrhng (NNI) mtri. W show tht th shortst pth through th NNI-trsp of n-lf trs is Hmiltonin for ll n. Tht is, thr is miniml pth tht visits ll inry trs xtly on, unr NNI movs. Inx Trms Phylognti Tr onstrution, Grph Thory, nlysis of lgorithms. INTRODUTION PHYLOGENETI trs pit th volutionry rltionships within st of tx, rprsnt s lf lls []. Th trs my root in whih s thy illustrt th nstry of th tx or unroot. In this ppr, w look t unroot phylognis. Fining th tr tht st fits th t, whr th t is st of tx n orr hrtrs, is ntrl gol of volutionry iology. Howvr, th numr of possil trs grows s n xponntil funtion of th numr of tx, n fining th optiml tr unr th ritri most us y iologists is NP-hr [], []. Du to th siz of th srh sp, xhustiv srh is oftn not possil, so huristi srh is oftn us to isovr th st tr. To systmtilly trvrs th sp, it is nssry tht it rrng in som mnnr. ommon rrngmnt is to link trs tht r singl mov prt unr som tr rrrngmnt oprtion; th rsulting grph is oftn ll trsp. Fousing on trs tht iffr y singl nrst nighor intrhng (NNI) mov, Dvi rynt sk for th lngth of th shortst wlk tht visits ll trs in NNI trsp []. It is known tht using mtris tht yil mor nighors thn NNI (nmly sutr prun n rgrft (SPR) n tr istion n ronntion (TR)) hv th shortst wlk possil: Hmiltonin pth [5]. Prvious to our urrnt work, th st known NNI-wlk of ll inry trs visit vry tr t most twi [5]. W show tht, for ll n, Hmiltonin pth xists on th sp of ll inry trs on n lvs unr th NNI mtri, sttling rynt s hllng. W follow th strtgy of prvious work in xpning Hmiltonin K. Goron is with th Dprtmnt of Mth & omputr Sin, Lhmn ollg, ity Univrsity of Nw York, ronx, Nw York, 068; Support y n unrgrut rsrh fllowship from th Louis Stoks llin for Minority Prtiiption in Rsrh, NSF # E. For is with th Dprtmnt of omputr Sin, th Grut ntr, ity Univrsity of Nw York, Nw York, Nw York 006. K. St. John is with th Dprtmnt of Mth & omputr Sin, Lhmn ollg n th Dprtmnt of omputr Sin, th Grut ntr, ity Univrsity of Nw York; orrsponing uthor: stjohn@lhmn.uny.u; Support provi y NSF Grnt # pths on n-lf trs to th sp of ll inry trs on (n + ) lvs [5]. This i os not work irtly for NNI-wlks ut n mploy with sutl twist. Inst of vloping wlks on th xpnsion of singl n-lf tr, w look t ll trs tht n rt from susqunt tripls of n-lf trs on th Hmiltonin pth for th smllr sp. Using th Hmiltonin pth of th smllr sp s kon, w n thn glu togthr th unions of th xpnsions to form Hmiltonin pth on th (n + )-lf trs. Sin vry NNI mov n simult y n SPR or TR mov, this ppr provis n ltrntiv proof for th xistn of Hmiltonin pths for th SPR n TR trsps. KGROUND W rifly fin inry phylognti trs n th ssoit trms us in this ppr. For mor til trtmnt, s Smpl n Stl []. Phylognti trs pit volutionry rltionships twn tx pl t th lvs. Trs n root, in whih s thy illustrt th nstry of th tx, or unroot. W look t unroot inry phylognti trs (hrftr rfrr to s trs). Formlly, s fin y Roinson: Dfinition : [6]: (inry) phylognti tr is grph G on olltion of lll nos L (th tx) n unlll intrior vrtis. Th lll nos form th lvs of th tr n, thrfor, hv vlny on, n h intrior vrtx hs vlny thr. W will us wll-known ft out th numr of unroot inry trs: Lmm : [6]: For n tx, thr r (n 5)!! = (n 5)(n ) 5 possil unroot trs. Not tht for ll n, (n 5)!! is ivisil y thr. W will us this hrtristi of trsp to prtition pths of n-lf trs into tripls. W will lso xmin pirs of lvs: Dfinition : siling pir, or hrry, is pir of lvs whos inint gs shr ommon vrtx. Diffrn msurs on trs inu mtri sps on th st of n-lf trs. W will fous on mtris tht msur shp iffrns twn trs (n ignor

2 IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK T l n+ l n+ D D D l n+ Fig.. Th lft si shows NNI trnsformtions. To trnsform into T or vi-vrs, intrhng th sutr with th sutr ontining th lf l n+. To trnsform T into or vi-vrs, ithr intrhng th sutr ontining th lf l n+ with th sutr ontining n D or intrhng th sutr ontining with th sutr ontining., T n r ll nighors in NNI trsp. Th right si illustrts how pth in NNI trsp will rprsnt in this ppr. Not tht th top sris of movs is quivlnt to moving from to T to, s in th lft si of th figur. Th ottom right rprsnts th sm movs with th urv g rprsnting th pth of th (n + ) st lf, l n+. iffrns in th lngths of gs or rnhs). Ths mtris inu isrt sp tht n rprsnt y grph: Dfinition : Givn st of trs T = {, T,..., T k } with n lvs lll y S, G = (T, E), or trsp, is th grph G with vrtis lll y T n th gs E onnting vrtis tht r nighors istn on prt unr givn mtri. rynt s hllng fouss on nrst nighor intrhng (NNI). Othr populr mtris inlu sutr prun rgrft (SPR) n tr istion n ronntion (TR) [7]. Dfinition : [7]: nrst nighor intrhng (NNI) swps ny two sutrs onnt to opposit ns of n g (s Figur ). Th NNI istn ( NNI ) twn two trs is th minimum numr of NNI oprtions tht trnsforms on of th trs into th othr. W not tht th NNI oprtion is symmtri in tht ny NNI tr rrrngmnt oprtion n rvrs. Ths movs fin nighorhoos on th sp: Dfinition 5: Lt isrt tr mtri. Th st of ll trs T m whr (T, T m ) is th -nighorhoo (or simply nighorhoo) of T. n n-lf tr hs n intrnl gs. Using n NNI mov, nw tr n form y swpping on of th four sutrs on opposit sis of th intrnl g (s Figur ). Only two of ths swps will prou nw trs, n thus vry n-lf tr hs (n ) nighors in NNI trsp. Th hllng on whih w fous is phrs in trms of wlks, w will us this trm intrhngly with th ommon trm from grph thory: pths. Dfinition 6: []: n NNI-wlk is squn, T,..., T k of unroot inry phylognti trs whr h onsutiv pir of trs iffr y singl NNI mov. Dfinition 7: [8]: Hmiltonin pth in grph is simpl pth tht visits vry no xtly on. This pth n rprsnt s n orr st of nos, v, v,..., v n, whr v i is onnt to v i+ y n g. Dtrmining whthr n ritrry grph hs Hmiltonin pth is NP-hr [8]. Howvr, for mny lsss of grphs (for xmpl, omplt grphs), Hmiltoniity n trmin sily in polynomil tim. MIN RESULTS W prov tht Hmiltonin pth xists through th st of n-lf trs unr th NNI mtri, for ll n. Th proof onstruts Hmiltonin pth of th (n + )-lf trsp from Hmiltonin pth of th n-lf trsp (s Figur ). This is on y tking susqunt tripls from th pth of th n-lf trsp n ontruting pth through ll (n + )-lf trs tht rt from thos thr trs (formlly fin s th xpnsion of trs, low). Sin vry (n + )-lf tr longs to xtly on suh xpnsion of tripl, linking th pths of th xpnsions yils pth tht visits vry (n + )- lf tr xtly on. Dfinition 8: Lt T n n-lf tr n n g of T. Th xpnsion of n g,, is th (n+)-lf tr, T (), gnrt whn nw lf is to tht g. Lt th xpnsion of n n-lf tr, T, th st of (n + )-lf trs tht n gnrt from xpning ll gs of T (s Figur ). If two trs iffr y only singl NNI mov, thn th gs of th trs r intil, xpt for singl g, tht w ll th g of iffrn. Formlly: Dfinition 9: onsir two trs, n T, tht iffr y on NNI mov. Lt, th g of iffrn, th singl g in th symmtri iffrn twn th st of gs of n th st of gs of T.

3 IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Fig.. Th proof of th min rsult onstruts Hmiltonin pths of th (n + )-lf trsp from Hmiltonin pths of th n-lf trsp. This is on y using Hmiltonin pth of th smllr sp (ol pth) s kon for pth of th lrgr sp. For vry tripl of trs in th pth of th smllr sp, pth is rt through its xpnsion. n xmpl of pth through tripl is ox. Th vrious trs in th xpnsions of th tripl r visit in ll orr. Ths pths r link to form th Hmiltonin pth of th (n + )-lf trsp. W not tht th siz of th xpnsion of n n-lf tr is inpnnt of th givn tr topology n pns only on th numr of intrnl gs. Likwis, in inry tr, th numr of intrnl gs is funtion of th numr of lvs. For givn tr T with n lvs, thr r n trs with n + lvs ontin in th xpnsion of T. W first prov svrl usful lmms out xpnsions of gs: Lmm : Lt T n unroot inry tr, n lt n jnt gs on T. T ( ) n T ( ) iffr y on NNI mov. Proof: Lt n jnt gs in n n-lf tr. Lt S th sutr whos root g is inint with n. Th ition of nw lf, l n+, rts two nw gs:, whih onnts th nw lf no to th tr n, whih sprts S n l n+. In T ( ), l n+ is twn n n S is twn n. Th opposit ours in th T ( ). In tht s, S is twn n n l n+ is twn n. Tht is, T ( ) n T ( ) hv th sm tr topology sv for th rrngmnt roun. Sin th nw txon n th root sutr r on opposit sis of, n intrnl rnh, swpping thm osts only on NNI mov. Thrfor, T ( ) n T ( ) iffr y on NNI mov. Lmm : Lt n T two unroot inry trs whr n T iffr y on NNI mov. Lt n g tht is not th g of iffrn,. () n T () iffr y on NNI mov. Proof: Lt,,, n D th four sutrs whos root gs r inint to, twn n T. y finition, th rrngmnt of th four sutrs in iffr from thir rrngmnt in T. ssum, without loss of gnrlity, tht is n g of, n not y th sutr rt y th ition of th nw lf to in. Not tht is intil in () n T (). Th rrngmnt of,,, n D roun is th only iffrn twn th two trs. Thrfor, () n T () iffr y on NNI mov. Whn fousing on tripl of onsutiv trs on Hmiltonin pth of n-sp, thr r mny sutrs whih r intil ross ll thr trs. Th nxt lmm shows how th xpnsions of ths sutrs n trvrs suh tht h no in th xpnsions is visit only on (s Figur ): Lmm : Lt, T, n thr unroot inry n-lf trs whr n T r NNI nighors n whr T n r NNI nighors. Lt S i som root sutr on T i whr i =,, or. If S = S = S, th union of th xpnsions of th gs in S, S, n S hs Hmiltonin pth suh tht th wlk strts on T i (p i ), whr p i is th root g of S i, n ns on T j (p j ), whr p j is th root g of S j n i j. Proof: W pro y inution on th siz of th sutr. s s: Th sutr hs two lvs n thr gs: p i, whih onnts th root no to th intrnl no; l i, whih onnts th intrnl no to lf no; n r i, whih onnts th intrnl no to th othr lf no. ll thr gs r jnt. y Lmm, th xpnsions of ths gs r NNI nighors. Sin n T r on NNI mov prt, (p ) n T (p ) r NNI nighors y Lmm. Th rst of th gs follow suit. Tht is, T z (y z ) n T z+ (y z+ ) r NNI nighors whr y {p, l, r} n z {, }. W n numrt th possil wlks tht strt on T i (p i ) n n t T j (p j ) whr i j (s Figur ). W intify th pth through th (n + )-lf trs y th g tht is xpn: p l r r r l l p p, p l r r r p l l p, p r r p l l l r p. W not tht sin th gs r not irt, h of th ov thr pths oul trvrs in rvrs. Thus, w hv Hmiltonin pth of th xpnsions of th gs of th sutrs tht gins on T i (p i ) n ns on

4 IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Fig.. Expnsion of n unroot tr on n lvs to (n + )-lf trs. Whn n =, thr r fiv possil gs to whih to tth nw lf, rsulting in fiv 5-lf trs in th xpnsion of th initil tr. T j (p j ) whr i j. Inutiv Stp: ssum tht th sutr, S i, hs thr or mor lvs n t lst fiv gs: p i, whih onnts th root no to n intrnl no; n gs l i n r i whih r inint with p i. y Lmm, th xpnsions of ths gs r NNI nighors. Furthr, sin n T r on NNI mov prt, (p ) n T (p ) r NNI nighors y Lmm. Th rst of th gs follow suit. Tht is, T z (y z ) n T z+ (y z+ ) r NNI nighors whr y {p, l, r} n z {, }. W show tht Hmiltonin pth n strt on T i (p i ) n n on T j (p j ) whr i j. Without loss of gnrlity, ssum tht l i is th root g of th innr sutr, i. Lt T (,, ) th union of th xpnsions of ll th gs in,, n xpt for th xpnsions of two of th root gs, l i n l j, whos visit w xpliitly show. y th inutiv hypothsis, Hmiltonin pth n strt on T i (l i ), n n on T j (l j ) whr i j. s I: S i is omplx root sutr with lf tth to th root. r i onnts th first intrnl no to lf (s Figur ). Th following r pths of th union strting t T i (p i ) n ning t T j (p j ), i j: p r l T (,, ) l r r p p, p r l T (,, ) l r r p p, p p r r l T (,, ) l r p. s II: S i is omplx root sutr with nothr omplx root sutr tth to its root. r i onnts th first intrnl no to nothr omplx sutr, D i. Th following r pths of th union strting t T i (p i ) n ning t T j (p j ), i j: p r T (D, D, D ) r l T (,, ) l p p, p r T (D, D, D ) r l T (,, ) l p p, p r T (D, D, D ) r p l T (,, ) l p. This omplts th proof. Lmm fouss on th union of th xpnsions of gs in root sutrs tht r intil ross tripl of susqunt trs in pth of th n-lf trsp, giving multipl pths tht n trvrs tht union from iffrnt strting n stopping points. Th following lmm shows how ths pths n glu togthr to form pth for th unions of th xpnsions of th omplt trs. Th iffiulty in th proof is th lining up of th npoints of pths to rt singl longr pth. Sin Lmm provis pths from ny root g of intil sutrs, it suffis to show how to trvrs th gs of iffrn in th xpnsions. Lmm 5: Lt, T, n thr unroot inry trs whr n T r NNI nighors n whr T n r NNI nighors. For ny g of, thr xists Hmiltonin pth of th union of th xpnsions of, T, n strting t (). Proof: Lt, T, n thr unroot inry trs whr n T r NNI nighors n whr T n r NNI nighors. Lt th g of iffrn twn n T, n lt th g of iffrn twn T n. Lt th xpnsion of sutr, S, in n n-lf tr, T, th union of th xpnsions of th gs in S. Lt n g in. W will onstrut wlk tht trvrss, xtly on, vry tr in th union of th xpnsions of, T, n. Th lotion of, whos xpnsion, (), is th strting point, trmins our strtgy for uiling th Hmiltonin pth. Dnot y n th sutrs tht rsult from rmoving (ut not its npoints) from. If on of th sutrs, sy, is intil ross, T, n, thn nithr nor is in, n y Lmm, thr is Hmiltonin pth ross th union of th xpnsions of,, n, ginning t in n ning t in T i whr i = or. So, ssum tht nithr nor is intil ross ll trs. W pro y ss on th rltiv lotions of th gs of iffrn, or, to : s I: ssum tht is on th pth twn n (tht is, is th losr g of iffrn to ). Lt,..., m th pth twn n in,

5 IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK 5 T T T T T T Fig.. Lft: s s I for Lmm. Th lls on th rrows n sutrs init th orr of th trvrsl. S x is root hrry tht is th sm ross, T, n. Not tht th pth through th xpnsions of th gs in S x n nott s sris of NNI movs, moving th lf in th xpnsions through th vrious gs in S x Right: Th thr wlks show tht Hmiltonin pth n strt t T i (p i ) n n on T j (p j ) whr i j. n lt S, S,..., S m th sutrs long th pth. y hypothsis, th sutrs, S, S,..., S m, our in ll thr trs. W pply Lmm to h of th sutrs n link th rsulting pths y visiting th th xpnsion of th sutr, S i, follow y th xpnsion of th pth g, i+, in, T, n, for h i, rting pth tht xtns to T ( ) or ( ). W my ssum tht our pth thus fr ns t ( ). Lt not th sutr, intil in, T n, tht w hv trvrs thus fr. Th root g of is inint with. Lt D th sutr whos root g is inint with in T n (tht is, n D r on th sm si of in T n ) n lt F n G th rmining sutrs whos root gs r inint with in T n (tht is, F n G r on th opposit si of from n D in T n ). Sin th root gs, r n r D, of n D r jnt in, w n mov from (r ) to (r D ) without hving to trvrs th xpnsion of (tht trvrsl is optionl). If D os not ontin, it is intil ross ll thr trs n w n pply Lmm to yil n xtnsion of our pth tht trvrss th union of th xpnsions of ll thr opis of D, ning in. iffrs from roun, so th root g of in is not inint with D, ut with on of th othr two sutrs, sy F. To simplify th rgumnt, w will ssum tht F os not ontin th g (if F os ontin, th proof follows y slightly mor omplit, ut similr, rgumnt). W n similrly xtn our pth to th union of th xpnsions of th sutr F in, T, n, ning in. In ition, us D n F r on opposit sis of in, our pth must first visit ( ). W now hv pth tht trvrss th xpnsion of thr out of four of th sutrs whos root gs r inint with n ( ). To rh th finl of th four sutrs, G, w ross ( ), thn T ( ). From thr, w visit th xpnsion of th root g of G, whih w trvrs y n rgumnt similr to th on ov. W not tht if D, ov, h ontin, thn w woul us th rgumnt for trvrsing ( ), T ( ), n ( ) to trvrs ( ), T ( ), n ( ). On w hv trvrs th xpnsion of th thr opis of G, w hv pth tht visits ll th gs of, T, n, n thus ll trs in th union of th xpnsions of thos trs. s II: W must lso onsir th s whr lis on th pth twn th gs of iffrns, n. Whil th rgumnt for this s is similr to tht ov, thr is th itionl iffiulty of strting in th mil. It is nssry to trvrs th pth from to n still hv unvisit gs upon whih to rturn so tht th othr si of n lso visit. This n omplish y trvrsing only th pth gs (n non of th tth sutrs) in th tr until th g of iffrn is rh. Th pth is thn uilt, s ov, ut on th rturn, th sutrs on th pth r link y visits to th pth gs in only T n. On tht stion of th xpnsions of th trs hs n visit, th rmining trs in th union of th xpnsions r visit (nmly th union of th xpnsion of whr is th sutr rsulting from rmoving n tht ontins ). Th rsult is Hmiltonin pth of th union of th xpnsions of, T, n. s III: Not th spil s whr =. In this s, n T r NNI nighors, T n r NNI nighors, n n r NNI nighors. Suh s is simplifi vrsion of th prvious ss, n thus is ovr ov. Thorm : For ll n, thr xists Hmiltonin pth through th n-lf NNI trsp. Proof: y inution on n, th numr of lvs. s s: Whn n =, (n 5)!! =. Lt th four lvs,,, n. Thn, without loss of gnrlity, in sprts, from, ; in T sprts, from, ; n in sprts, from,. n T r NNI nighors, n T n r NNI nighors. y

6 IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK 6 th prvious lmm, thr is Hmiltonin pth through th -lf NNI trsp (s Figur ). Inutiv Stp: ssum thr is Hmiltonin pth through th n-lf NNI trsp. Th wlk visits th orr st of trs,, T,,... T (n 5)!!. y th finition of Hmiltonin pth, T x n T x+ r NNI nighors whr x < (n 5)!!. y th prvious lmm, th union of th xpnsions of th triplt T y, T y+, n T y+ hs Hmiltonin pth whr y = z n z (n 5)!!. us (n 5)!! is ivisil y whn n, thr is n orr st of sussiv triplts, R, R,..., R (n 5)!!, whr R is th triplt of trs, T,, n R (n 5)!! is th triplt T (n 5)!!, T (n 5)!!, T (n 5)!!. Th unions of xpnsions on h of ths triplts hs Hmiltonin pth. onsir T y, th thir tr in triplt R v, n T y+, th first tr in R v+. T y n T y+ r NNI nighors. Thn, y Lmm, T y (), whr is not, is n NNI nighor of T Y + (). Th n of th Hmiltonin pth through n xpnsion of triplt n thus onnt to th ginning of th Hmiltonin pth through th xpnsion of th suing triplt. s shown ov, thr is n orr st of triplts whih ovrs n-lf trsp with Hmiltonin pth. Th xpnsions of h of ths triplts hs Hmiltonin pth, n h of th wlks n link y singl NNI mov. Thrfor, Hmiltonin pth xists through th (n + )-lf NNI trsp. ONLUSION W hv shown tht th shortst wlk on th sp of inry phylognti trs with n lvs unr th NNI mtri is Hmiltonin pth. Sin visiting h no xtly on is th miniml pth lngth possil, this nswrs rynt s First omintoril hllng on th lngth of th shortst wlk of trs unr th NNI mtri. In ition, sin vry NNI mov n simult y n SPR or TR mov, this lso givs n ltrntiv proof to th Hmiltonin pths of SPR n TR trsp [5]. Our itrtiv pproh to uiling Hmiltonin pth for th sp of trs with n + lvs from pth of th smllr sp of trs with n lvs os not yil n lgorithm for prouing Hmiltonin pth irtly nor o w s n ovious wy to o this. 5 KNOWLEDGMENTS Th uthors woul lik to thnk th nonymous rviwrs for thir thoughtful n hlpful ommnts, whih grtly improv this ppr. For spirit isussions, th uthors thnk th mmrs of th Trsp Working Group t UNY: ln Josph rs, nn Mri lor, Kin rown, Jun stillo, Smnth Dly, John DJsus, Mihl Hintz, Dnil Ippolito, Jinni L, Jon Mr, Olivr Mnz, Diqun Moor, n Rhl Sprtt. This work ws support y grnts from th US Ntionl Sin Fountion progrms in mthmtil iology n omputtionl mthmtis (NSF #09-090) n th Nw York ity Louis Stoks llin for Minority Prtiiption in Rsrh (NSF #07-09). REFERENES []. Smpl n M. Stl, Phylogntis, sr. Oxfor Ltur Sris in Mthmtis n its pplitions. Oxfor: Oxfor Univrsity Prss, 00, vol.. [] L. Fouls n R. Grhm, Th Stinr prolm in phylogny is NP-omplt, vns in ppli Mthmtis, vol., no., pp. 9, 98. [] S. Roh, short proof tht phylognti tr ronstrution y mximum liklihoo is hr, IEEE/M Trnstions on omputtionl iology n ioinformtis, vol., no., pp. 9 9, 006. [] D. rynt, Pnny nt: mthmtil hllng, 008, [5]. J. J. rs, J. DJsus, M. Hintz, D. Moor, n K. St. John, Wlks in phylognti trsp, Informtion Prossing Lttrs, vol., pp , 0. [6] D. Roinson, omprison of ll trs with vlny thr, Journl of omintoril Thory, Sris, vol., no., pp. 05 9, 97. [7]. L. lln n M. Stl, Sutr trnsfr oprtions n thir inu mtris on volutionry trs, nnls of omintoris, vol. 5, no., pp. 5, 00. [8] T. H. ormn,. E. Lisrson, R. L. Rivst, n. Stin, Introution to lgorithms, n. mrig, M: MIT Prss, 00. rif uthor iogrphis Kvughn Goron is pursuing hlors gr in omputr sin t Lhmn ollg, ity Univrsity of Nw York (UNY). H riv hlors gr in iohmistry from inghmpton Univrsity. His rsrh intrsts inlu omputtionl iology n nturl lngug prossing. ontt him t kvughn.goron@l.uny.u. Eri For is otorl nit t th UNY Grut ntr n lturr t Lhmn ollg, UNY. For hols mstrs gr in linguistis from th Grut ntr. His rsrh intrsts inlu omputtionl linguistis n ioinformtis. ontt him t for@g.uny.u. Kthrin St. John is profssor of mthmtis n omputr sin t Lhmn ollg, UNY n hols ppointmnts to th otorl fultis of nthropology n omputr sin t th Grut ntr of UNY, s wll s th invrtrt zoology n plontology ivisions of th mrin Musum of Nturl History. St. John riv hr otorl gr from UL. Hr rsrh intrsts inlu omputtionl iology, rnom struturs, n lgorithms. Sh

7 IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK 7 is mmr of M, MS, n SIM. ontt hr t stjohn@lhmn.uny.u.

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

On Contract-and-Refine Transformations Between Phylogenetic Trees

On Contract-and-Refine Transformations Between Phylogenetic Trees On Contrt-n-Rfin Trnsformtions Btwn Phylognti Trs Gnshkumr Gnpthy Vijy Rmhnrn Tny Wrnow Astrt Th infrn of volutionry trs using pprohs whih ttmpt to solv th mximum prsimony (MP) n mximum liklihoo (ML) optimiztion

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

BMC Bioinformatics. Open Access. Abstract

BMC Bioinformatics. Open Access. Abstract BMC Bioinformtis BioM Cntrl Rsrh A topologil trnsformtion in volutionry tr srh mthos s on mximum liklihoo omining p-ecr n nighor joining Mo-Zu Guo, Jin-Fu Li* n Yng Liu Opn Ass Arss: Dprtmnt of Computr

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Quartets and unrooted level-k networks

Quartets and unrooted level-k networks Phylogntis Workshop, Is Nwton Institut or Mthmtil Sins Cmrig 21/06/2011 Qurtts n unroot lvl-k ntworks Philipp Gmtt Outlin Astrt n xpliit phylognti ntworks Lvl-k ntworks Unroot lvl-1 ntworks n irulr split

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

CSI35 Chapter 11 Review

CSI35 Chapter 11 Review 1. Which of th grphs r trs? c f c g f c x y f z p q r 1 1. Which of th grphs r trs? c f c g f c x y f z p q r . Answr th qustions out th following tr 1) Which vrtx is th root of c th tr? ) wht is th hight

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Discovering Frequent Graph Patterns Using Disjoint Paths

Discovering Frequent Graph Patterns Using Disjoint Paths Disovring Frqunt Grph Pttrns Using Disjoint Pths E. Gus, S. E. Shimony, N. Vntik {hu,shimony,orlovn}@s.gu..il Dpt. of Computr Sin, Bn-Gurion Univrsity of th Ngv, Br-Shv, Isrl Astrt Whrs t-mining in strutur

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information