Uniform 2D-Monotone Minimum Spanning Graphs

Size: px
Start display at page:

Download "Uniform 2D-Monotone Minimum Spanning Graphs"

Transcription

1 CCCG 2018, Winnipg, Cn, August 8 10, 2018 Uniorm 2D-Monoton Minimum Spnning Grphs Konstntinos Mstks Astrt A gomtri grph G is xy monoton i h pir o vrtis o G is onnt y xy monoton pth. W stuy th prolm o prouing th xy monoton spnning gomtri grph o point st P tht (i) hs th minimum ost, whr th ost o gomtri grph is th sum o th Eulin lngths o its gs, n (ii) hs th lst numr o gs, in th ss tht th Crtsin Systm xy is spii or rly slt. Builing upon prvious rsults, w sily otin tht th two solutions oini whn th Crtsin Systm is spii n r oth qul to th rtngl o inlun grph o P. Th rtngl o inlun grph o P is th gomtri grph with vrtx st P suh tht two points p, q P r jnt i n only i th rtngl with ornrs p n q os not inlu ny othr point o P. Whn th Crtsin Systm n rly hosn, w not tht th two solutions o not nssrily oini, howvr w show tht thy n oth otin in O( P 3 ) tim. W lso giv simpl 2 pproximtion lgorithm or th prolm o omputing th spnning gomtri grph o k root point st P, in whih h root is onnt to ll th othr points (inluing th othr roots) o P y y monoton pths, tht hs th minimum ost. 1 Introution A squn o points in th Eulin pln q 0, q 1,..., q t is ll y monoton i th squn o thir y oorints, i.. y(q 0 ), y(q 1 ),..., y(q t ), is ithr rsing or inrsing, with y(p) noting th y oorint o th point p. A gomtri pth Q = (q 0, q 1,..., q t ) is ll y monoton i th squn o its vrtis, i.. th squn q 0, q 1,..., q t, is y monoton. I Q is y monoton or som xis y thn Q is ll monoton. Lt G = (P, E) gomtri grph. I h p, q P r onnt y y monoton pth thn G is ll y monoton. I G is y monoton or som xis y thn G is ll uniorm monoton (ollowing th trminology o [22]). Uniorm monoton grphs wr ll This rsrh ws innilly support y th Spil Aount or Rsrh Grnts o th Ntionl Thnil Univrsity o Athns. Shool o Appli Mthmtil n Physil Sins, Ntionl Thnil Univrsity o Athns, Athns, Gr, kmst@mth.ntu.gr 1 monoton grphs y Anglini [3]. I h p, q P r onnt y monoton pth, whr th irtion o monotoniity might ir or irnt pirs o vrtis, thn G is ll monoton. Monoton grphs wr introu y Anglini t l. [4]. Drwing n (strt) grph s monoton (gomtri) grph hs n topi o rsrh [3, 4, 5, 13, 24]. Th Monoton Minimum Spnning Grph prolm, i.. th prolm o onstruting th monoton spnning gomtri grph o givn point st tht hs th minimum ost, whr th ost o gomtri grph is th sum o th Eulin lngths o its gs, ws rntly introu (ut not solv) in [22] n it rmins n opn prolm whthr it is NP-hr. Sin th mor gnrl (without th rquirmnt o monotoniity) Eulin Minimum Spnning Tr prolm n solv in Θ( P log P ) tim [27], this onstituts grt irntition tht is inu y th ition o th proprty o monotoniity. A point st P is k root i thr xist k points r 1, r 2,..., r k P istinguish rom th othr points o P whih r ll th roots o P. A gomtri grph G = (P, E) is ll k root i P is k root n its roots r th roots o P. A k root gomtri grph G is k root y monoton i h root r P n h point p P \ {r} r onnt y y monoton pths. Similrly, G is k root uniorm monoton (ollowing th trminology o [22]) i it is k root y monoton or som xis y. For simpliity, w my lso not point sts or gomtri grphs tht r 1 root simply s root. A polygon tht is 2 root y monoton, in whih its roots r its lowst n highst vrtis, n tringult in linr tim [11]. L n Prprt [16] prpross suivision S o th pln suh tht th rgion in whih qury point longs n oun quikly, y (i) xtning th gomtri grph ouning S to 2 root y monoton plnr gomtri grph in whih th roots r th highst n lowst vrtis o S, n (ii) onstruting st o pproprit y monoton pths rom th lowst to th highst vrtx o S. Aitionlly, L n Prprt [16] not tht 2 root plnr gomtri grph, whr ll vrtis hv irnt y oorints, in whih th roots r th highst n lowst vrtis o th grph is 2 root y monoton i n only i h non-root vrtx hs oth nighor ov it n nighor low it. Furthrmor, root gomtri grph G = (P, E), whr ll vrtis hv irnt y oorints, with

2 30 th Cnin Conrn on Computtionl Gomtry, 2018 (singl) root r tht is not th highst or lowst point o P is root y monoton i n only i h non-root vrtx p hs nighor q suh tht y(q) is twn y(r) (inlusiv) n y(p) [22]. Aitionlly, root uniorm monoton grphs n iintly rogniz [22]. Th k root y monoton (uniorm monoton) minimum spnning grph (ollowing th trminology o [22]) o k root point st P is th k root y monoton (uniorm monoton) spnning grph o P tht hs th minimum ost. Th root y monoton (uniorm monoton) minimum spnning grph 1 o root point st P n prou in O( P log 2 P ) (rsp., O( P 2 log P )) tim [22]. Th prolm o rwing root tr s root y monoton minimum spnning grph is stui in [20]. Th ( P root) y monoton minimum spnning grph o point st P is th gomtri pth tht trvrss ll th points o P y moving north, rom th lowst point to th highst point o P [22]. Rgring th prolm o prouing th k root y monoton minimum spnning grph o k root point st P, with 1 < k < P, it is n opn prolm, pos in [22], whthr it is NP-hr. Th rstrit thrs tr prolm ws introu in [12] n is rlt to th root y-monoton minimum spnning grph prolm onstrin to root point sts P in whih th y oorint o th root is zro n th y oorints o th othr points o P r ll ngtiv (or ll positiv). Th input o th rstrit thrs tr prolm is omplt grph with root whr h g hs ost n h vrtx hs vlu n th gol is to output th spnning tr in whih th pth rom th root to h vrtx rss in vlu tht hs th minimum ost. Th rstrit thrs tr prolm is grily solvl [12, Corollry 2.6]. A gomtri pth Q = (q 0, q 1,..., q t ) is xy monoton i th squn o its vrtis is oth x monoton, i.. th squn x(q 0 ), x(q 1 ),..., x(q t ), is monoton, n y monoton. Q is 2D-monoton (ollowing th trminology o [22]) i it is x y monoton or som orthogonl xs x, y. A gomtri grph G = (P, E) is 2D-monoton (ollowing th trminology o [22]) i h pir o points o P is onnt y 2D-monoton pth. 2D-monoton pths/grphs wr ll ngl-monoton pths/grphs y Bonihon t l. [8]. Bonihon t l. [8] show tht iing i gomtri grph G = (P, E) is 2D-monoton n on in O( P E 2 ) tim. Tringultions with no otus intrnl ngls r 2D-monoton grphs [10, 19]. Thr xist point sts or whih ny 2D-monoton spnning grph is not plnr [8]. Th prolm o onstruting 2D-monoton grphs with symptotilly lss thn qurti gs ws stui y Luiw n Monl [18]. It is n opn prolm, pos in [22], whthr th 2Dmonoton spnning grph o point st P tht hs th 1 In [22] it is shown tht it is tully tr. minimum ost n iintly omput. Th (root) xy monoton n (root) uniorm 2Dmonoton (using th trminology o [22]) grphs r in similr to th (root) y monoton n (root) uniorm monoton grphs. Diing i root gomtri grph G = (P, E) is root xy monoton (uniorm 2D-monoton) n on in O( E ) (rsp., O( E log P )) tim [22]. Aitionlly, th root xy monoton (uniorm 2D-monoton) spnning grph o root point st P tht hs th minimum ost 2 n omput in O( P log 3 P ) (rsp., O( P 2 log P )) tim [22]. W ous on th proution o th xymonoton minimum spnning grph (xy MMSG) o point st P, i.. th xy-monoton spnning grph o P tht hs th minimum ost, n th proution o th uniorm 2D monoton minimum spnning grph (2D UMMSG) o point st P, i.. th uniorm 2D monoton spnning grph o P tht hs th minimum ost. W lso stuy th orrsponing prolms rgring th proution o th spnning grphs with th lst numr o gs, i.. th proution o th xy-monoton spnning grph with th lst numr o gs n th proution o th uniorm 2D monoton spnning grph with th lst numr o gs. A urv C is inrsing-hor [15, 26] i or h p 1, p 2, p 3, p 4 trvrs in this orr long it, th lngth o th lin sgmnt p 1 p 4 is grtr thn or qul to th lngth o p 2 p 3. Almri t l. [1] introu inrsinghor grphs whih r th gomtri grphs or whih h two vrtis r onnt y n inrsing-hor pth. Inrsing-hor grphs r wily stui [1, 6, 10, 21, 23]. Th prolm o prouing inrsing-hor spnning grphs (whr Stinr points my ) o point st P ws stui in [1, 10, 21]. Th pproh mploy in [1, 10, 21], ws to onnt th points o P y 2D-monoton pths sin s not y Almri t l. [1] 2D-monoton pths r lso inrsing-hor pths. Lt P point st n lt p, q P thn p n q r rtngulrly visil i th rtngl with ornrs p n q os not inlu ny othr point o P. Furthrmor, th rtngl o inlun grph o P is th gomtri grph spnning P suh tht pq is n g o th grph i n only i p n q r rtngulrly visil. Alon t l. [2] not rtngulrly visil points s sprt points n th rtngl o inlun grph s th sprtion grph. Computing th rtngl o inlun grph G = (P, E) o P n on in O( P log P + E ) tim [25]. Thr xist point sts P or whih th numr o gs o thir rtngl o inlun grph is Ω( P 2 ) [2]. Th rtngl o inlun grph os not rmin th sm i th Crtsin Systm is rott [14, Proposition 3]. 2 In [22] it is shown tht it is tully tr, not s th root xy monoton (uniorm 2D-monoton) minimum spnning tr in [22] n rvit s th root xy MMST (rsp., root 2D UMMST ) in [22].

3 CCCG 2018, Winnipg, Cn, August 8 10, 2018 Drwing n strt grph s rtngl o inlun grph hs n stui [17]. Our Contriution. Builing upon prvious rsults, w sily otin tht givn point st P th xy MMSG o P is qul to th xy monoton spnning grph o P tht hs th lst numr o gs n r oth qul to th rtngl o inlun grph o P. W not tht givn point st P th 2D UMMSG o P os not nssrily oini with th uniorm 2D-monoton spnning grph o P tht hs th lst numr o gs. W lso show tht oth th 2D UMMSG o P n th uniorm 2D-monoton spnning grph o P tht hs th lst numr o gs n prou in O( P 3 ) tim. Aitionlly, w giv simpl 2 pproximtion lgorithm or th prolm o prouing th k root y monoton minimum spnning grph o k root point st. 2 Prliminris 2.1 xy Monoton Minimum Spnning Grphs Anglini [3] not th ollowing Ft rgring y monoton grphs. Ft 1 (Anglini [3]) Lt G = (P, E) y monoton grph whr no two points o P hv th sm y oorint n lt p, q P suh tht or h r P \ {p, q} th squn p, r, q is not y monoton. Thn, p n q r jnt in G. Ft 1 is sily xtn in th ontxt o xy monoton grphs. Mor spiilly, lt G = (P, E) xy-monoton grph n p, q P suh tht or h r P \ {p, q} th squn o points p, r, q is not xy monoton, thn p n q r jnt in G. Alon t l. [2] not tht th points p, q o point st P r rtngulrly visil i n only i or h r P \{p, q} th squn o points p, r, q is not xy monoton. Hn, th rtngl o inlun grph o P is sugrph o G. Liott t l. [17, Lmm 2.1] show tht th rtngl o inlun grph o point st is xy monoton grph 3. From th prvious two sntns, rgring th rtngl o inlun grph, w otin th ollowing Corollry. Corollry 1 Lt P point st. Th xy MMSG o P n th xy monoton spnning grph o P tht hs th lst numr o gs oini n thy r oth qul to th rtngl o inlun grph o P. 3 Thnilly spking, Liott t l. [17] show tht th rtngl o inlun grph o point st is grph suh tht h two vrtis r onnt y pth lying insi th rtngl in y ths vrtis ut upon rul ring th pth tht is otin in thir proo is xy monoton. W rll tht th rtngl o inlun grph G = (P, E) o P n prou in O( P log P + E ) tim [25] whih is optiml [25] n tht thr xist point sts P or whih th rtngl o inlun grph hs siz Ω( P 2 ) [2] s wll s point sts or whih it hs linr siz [2]. 2.2 Root Uniorm 2D-Monoton Grphs Mstks n Symvonis [22] stui th prolm o rognizing root uniorm 2D-monoton grphs. Thy initilly not th ollowing Ft. Ft 2 (Osrvtion 8 in [22]) Lt G gomtri grph G = (P, E) with root r. I on rotts Crtsin Systm x y, thn G my om root x y monoton whil prviously it ws not, or vi vrs, only whn th y xis oms (or lvs th position whr it prviously ws) prlll or orthogonl to 1. lin pssing through r n point p P \ {r}. 2. n g pq E, whr p, q r. Bs on Ft 2, Mstks n Symvonis [22] gv rottionl swp lgorithm not s th root uniorm 2D-monoton rognition lgorithm in [22]. Ft 3 ([22]) Th root uniorm 2D-monoton rognition lgorithm i) omputs, in O( E log P ) tim, st o suiint Crtsin Systms, o siz O( E ), whih r ssoit with (1) lins pssing through r n point p P \ {r} n (2) gs pq E, whr p, q r. ii) tsts, in O( E ) totl tim 4, i G is root x y monoton or som Crtsin Systm x y in th prviously omput st o suiint Crtsin Systms. Ft 4 (Thorm 1 in [22]) Lt P root point st thn th root y monoton minimum spnning grph o P n otin in O( P log 2 P ) tim. 3 Th 2D-UMMSG Prolm W now l with th onstrution o th 2D UMMSG n th uniorm 2D monoton spnning grph with 4 Thnilly spking in [22] it is shown tht th rmining stps, i.. th stps tr th omputtion o th suiint Crtsin Systms, o th root uniorm 2D-monoton rognition lgorithm tk O( E log P ) totl tim. Intrnlly in th root uniorm 2D-monoton rognition lgorithm givn in [22], or h p P \ {r} it is stor th st o jnt points to p tht r in th rtngl w.r.t. th Crtsin Systm x y with ornrs p n r, whih is not s A(p, x, y ) in [22]. Furthrmor, it is stor th st o points p P \ {r} or whih A(p, x, y ) > 0 whih is not s B(x, y ) in [22]. Howvr, only th rinlitis o ths sts r nssry [22, Lmm 9], hn i inst o th sts A(p, x, y ), p P n B(x, y ) thir rinlitis r stor, th rmining stps o th root uniorm 2D-monoton rognition lgorithm tk O( E ) totl tim.

4 30 th Cnin Conrn on Computtionl Gomtry, 2018 th lst numr o gs. W initilly show tht th 2D UMMSG o point st P n otin in O( P 3 ) tim. For this, w mploy rottionl swp thniqu. Our pproh rgring th onstrution o th 2D UMMSG is similr to th pproh mploy or th lultion o th root uniorm 2D monoton spnning grph tht hs th minimum ost in [22]. W ssum tht no thr points o P r ollinr n no two lin sgmnts pq n p q, p, p, q, q P, r prlll or orthogonl. Lt P point st n p point o P. Lt RV (p, x, y ) not th sust o points o P tht r rtngulrly visil rom p w.r.t. th Crtsin Systm x y. S or xmpl, Figur 1(). Proposition 2 I w rott Crtsin Systm x y ountrlokwis, thn th x y MMSG o P hngs only whn y rhs or movs wy rom lin prpniulr or prlll to lin pssing through two points o P. Proo. I w rott th Crtsin Systm x y ountrlokwis thn th RV (p, x, y ) or point p P hngs only whn y rhs or movs wy rom lin prpniulr or prlll to lin pssing through two points o P ;.g. s Figur 1. From th prvious n sin th RV (p, x, y ), p P, quls to th st o jnt vrtis o p in th x y MMSG o P (Corollry 1), w otin th Proposition. y p () g h i y j x p () g h i j x y p () Figur 1: In () RV (p, x, y ) = {,,,, g, h, i}. In () th y oms prlll to th n now is not rtngulrly visil rom p. Finlly, in () th y hs lt th position whr it prviously ws orthogonl to th n now oms rtngulrly visil rom p. Lt S = {s [0, π 2 ) : lin o slop s is prpniulr or prlll to lin pssing through two points o P }. g h i j x Lt S = {s 1, s 2,..., s l } with l = ( ) P 2 suh tht 0 s1 < s 2 <... < s l < π 2. W now in th st S suiint s to qul to {s 1, 1+s 2 s 2, s 2, 2+s 3 s 2,..., s l, l + π 2 2 }. Lt x 1 y 1, x 2 y 2,..., x 2l y 2l th Crtsin Systms in whih th vrtil xis hs slop in S suiint, orr w.r.t. th slop o thir vrtil xis. Thorm 3 Th uniorm 2D monoton minimum spnning grph o point st P n omput in O( P 3 ) tim. Proo. From Proposition 2 n th prvious initions w otin th ollowing Proposition. Proposition 4 Th uniorm 2D monoton minimum spnning grph o P is on o th x y MMSG o P ovr ll Crtsin Systms x y with y o slop in S suiint. W now giv O( P 3 ) tim rottionl swp lgorithm. Th lgorithm initilly omputs th x 1 y 1 MMSG o P n thn it otins h x i+1 y i+1 MMSG o P rom th x i y i MMSG o P. Throughout th prour th Crtsin Systm x opt y opt in whih th lgorithm nountr th minimum ost solution so r is stor. In its lst stp, th lgorithm romputs th x opt y opt MMSG o P, whih sin it is qul to th rtngl o inlun grph G = (P, E) w.r.t. th Crtsin Systm x opt y opt (Corollry 1) it n omput in O( P log P + E ) tim [25]. Th ruil proposition (whih w show ltr) tht mks th tim omplxity o th lgorithm qul to O( P 3 ) is tht h trnsition rom th x i y i MMSG o P to th x i+1 y i+1 MMSG o P tks O( P ) tim. For h two points p, q o P lt I(p, q, x i, y i ) th numr o points o P \ {p, q} tht r inlu in th rtngl w.r.t. th Crtsin Systm x i y i with opposit vrtis p n q. Thn, RV (q, x i, y i ) n quivlntly in using th quntitis I(p, q, x i, y i ), p P \ {q}, s ollows: p RV (q, x i, y i ) i I(p, q, x i, y i ) = 0. W stor th RV (q, x i, y i ), q P, i = 1,2,..., 2l in th t strutur rv(q) whih is implmnt s n rry o P oolns. W lso stor th I(p, q, x i, y i ), p, q P, i = 1,2,..., 2l in th vril i(p, q). Computing th Crtsin Systms x i y i, i = 1, 2,..., 2l n on in O( P 2 log P ) tim. Aompni with h Crtsin Systm x i y i is th pir o points (p i, q i ) suh tht p i q i is ithr prlll or prpniulr to th y i xis or th y i 1 xis. Ihino n Sklnsky [14] not tht mploying rng tr [7, 9] tht ontins th points o P on n lult i) th rtngl o inlun grph o P, n ii) th I(p, q, x, y), p, q, P, or Crtsin Systm xy. Applying th prviously mntion pproh, not y Ihino n Sklnsky [14], r otin i) th rtngl o inlun grph o P w.r.t. th Crtsin Systm x 1 y 1 (whih y Corollry 1 quls to th x 1 y 1 MMSG o P ), n ii) th I(p, q, x 1, y 1 ), p, q, P.

5 CCCG 2018, Winnipg, Cn, August 8 10, 2018 W now show tht w n upt ll th rv(p), p P, suh tht rom qul to RV (p, x i 1, y i 1 ), p P, thy om qul to RV (p, x i, y i ), p P, in O( P ) totl tim. For h p P \ {p i, q i } th upt o rv(p) tks O(1) tim. This is tru, sin only th points p i n q i hv to tst or inlusion to or rmovl rom rv(p). Mor spiilly, w hv to tst i or on o thm, sy p i, th rtngl with ornrs p n p i ontins (or it os not ontin) q i w.r.t. th Crtsin Systm x i y i whil it i not ontin (or it ontin) it w.r.t. x i 1 y i 1. I this is tru, thn th i(p i, p) hngs n p i hs to tst or mmrship in rv(p) n inlu to or rmov rom rv(p). Rgring rv(p i ), th upt tks O( P ) tim, sin or h othr point q P \ {p i, q i } w hv to tst i th rtngl with ornrs q n p i ontins (or it os not ontin) q i w.r.t. th Crtsin Systm x i y i whil it i not ontin it (or it ontin it) w.r.t. th x i 1 y i 1 n i so upt oth th i(q, p i ) n th xistn o q in rv(p i ) i nssry. Similrly, rv(q i ) n upt in O( P ) tim. W not tht th prour o otining th 2D UMMSG n trivilly moii suh tht th uniorm 2D-monoton spnning grph o point st P with th lst numr o gs n otin in O( P 3 ) tim. Sin or n ritrry Crtsin Systm x y th x y MMSG o P is qul to th x y monoton spnning grph o P with th lst numr o gs (Corollry 1), th only moiition whih is nssry is tht in th trnsition rom th Crtsin Systm x i y i to th Crtsin Systm x i+1 y i+1 w hk i th x i+1 y i+1 monoton spnning grph o P with th lst numr o gs hs th lst numr o gs mong ll th prou solutions so r. In Figur 2 is givn point st P or whih th 2D UMMSG o P is irnt rom th uniorm 2D monoton spnning grph o P with th lst numr o gs. In Figur 3 w giv point st P or whih th (nonuniorm) 2D monoton spnning grph o P with th lst numr o gs os not oini to th (nonuniorm) 2D monoton spnning grph o P tht hs th minimum ost. Rgring rognizing uniorm 2D-monoton grphs, w not tht th O( E log P ) tim rottionl swp lgorithm givn in [22], whih is i gomtri grph G = (P, E) with spii vrtx r s root is root uniorm 2D monoton, n sily xtn into O( P 2 log P + P E ) tim rottionl swp lgorithm tht is i G is uniorm 2D monoton. Mor spiilly, in orr to i i G is uniorm 2D monoton, th P root gomtri grphs (p 1, G), (p 2, G),..., (p P, G) whr (p i, G) is th gomtri grph G with root p i n {p 1, p 2,..., p P } is th vrtx st o G, r onsir. A Crtsin Systm x y is rott ountrlokwis. From Ft 2, it ol () () Figur 2: Th points, n orm right ngl. Aitionlly, th points, n orm right ngl. Th slop o is smllr thn th slop o. Th uniorm 2D monoton spnning grph with th lst numr o gs is otin whn th y xis oms prpniulr to th n is shown in (). On th othr hn th 2D UMMSG is otin whn th y xis oms prpniulr to th n is shown in (). () () Figur 3: Th slop o is π 4 whil th slop o is 3π 4. In () is pit th 2D monoton spnning grph o P with th lst numr o gs. In () is illustrt th 2D monoton spnning grph o P tht hs th minimum ost. lows tht on o ths P root gomtri grphs oms root x y monoton whil prviously it ws not, or vi vrs, only whn th y xis oms (or lvs th position whr it ws prviously) prlll or orthogonl to lin pssing through two points o P. Hn, O( P 2 ) Crtsin Systms n to onsir, whih n omput in O( P 2 log P ) tim. Whn th y oms (or lvs th position tht it prviously ws) prlll or prpniulr to lin pssing through th points p, q P thn y Ft 2 th sttus, i.. ing root x y monoton, o th root gomtri grphs (p, G) n (q, G) my hng. Hn, th stps o th root uniorm 2D-monoton rognition lgorithm givn in [22] or hnling th vnt ssoit with th urrnt Crtsin Systm x y rgring th root gomtri grphs (p, G) n (q, G), r ppli. Furthrmor, i pq E thn y Ft 2 it ollows tht th sttus, i.. ing root x y monoton, o h (r, G), r P \ {p, q}, my lso hng. Hn, or h (r, G), r P \ {p, q}, th stps o th root uniorm 2D-monoton rognition lgorithm givn in [22] or hnling th vnt ssoit with th urrnt Crtsin Systm x y r ppli. Sin, th rmining stps, i.. tr th lultion o th suiint xs, o th root uniorm 2D-monoton rognition lgorithm, givn in [22], rgring ny o ths P root

6 30 th Cnin Conrn on Computtionl Gomtry, 2018 gomtri grphs tk O( E ) tim (Ft 3), pplying th rmining stps rgring ll ths P root gomtri grphs, tks O( P E ) totl tim. 4 A 2 Approximtion Algorithm or th k Root y Monoton Minimum Spnning Grph Prolm W now stuy th prolm o prouing th k root y monoton minimum spnning grph o k root point st P, whr 1 < k < P. W ssum tht no two points hv th sm y oorint. Lt P point st n, R thn P y> is th sust o points o P whos y oorint is grtr thn. Similrly r in P y, P y< n P y. P <y< is th sust o points o P whos y oorint is twn n. Similrly r in P <y, P y< n P y. In [22, Lmm 1] it is not tht th root y monoton minimum spnning grph o root point st P with root r is th union o th root y monoton minimum spnning grphs o (i) P y y(r) n (ii) P y y(r). Th prvious Ft is xtn to th ollowing Lmm. Lmm 5 Lt P k root point st, with 1 < k < P, whr r 1, r 2,..., r k r th roots o P suh tht y(r 1 ) < y(r 2 ) <... < y(r k ). Th k root y monoton minimum spnning grph o P is th union o 1. th root y monoton minimum spnning grph o P y y(r1). 2. th root y monoton minimum spnning grph o P y y(rk ). 3. th 2 root y monoton minimum spnning grph o P y(ri) y y(r i+1), 1 i k 1. Thorm 6 Givn k root point st P, with 1 < k < P, w n otin in O( P log 2 P ) tim k root y monoton spnning grph o P with ost t most twi th ost o th k root y monoton minimum spnning grph o P. Proo. For 2 root point st P with roots r 1 n r 2 tht r th lowst n highst points o th point st, rsptivly, w prov th ollowing Lmm. Lmm 7 Givn 2 root point st P with roots r 1 n r 2 tht r th lowst n highst points o th point st, rsptivly, w n otin in O( P log 2 P ) tim 2 root y monoton spnning grph o P with ost t most twi th ost o th 2 root y monoton minimum spnning grph o P. Proo. Initilly, w mploy Ft 4 to P onsiring it to hv only th root r 1 n otin th gomtri grph G 1. Thn, w mploy Ft 4 to P onsiring it to hv only th root r 2, otining G 2. In th inl stp w rturn th union o G 1 n G 2. G 1 G 2 is 2 root y monoton sin G 1 (G 2 ) is root y monoton with root r 1 (rsp., r 2 ). W now show tht G 1 G 2 hs ost t most twi th ost o th 2 root y monoton minimum spnning grph G opt o P. Sin, in G opt ll th points p r onnt with r 1 (r 2 ) y y monoton pths it ollows tht its ost is grtr thn or qul to th ost o G 1 (rsp., G 2 ). Hn, th ost o G 1 G 2 whih is lss thn or qul to th sum o th osts o G 1 n G 2 is t most twi th ost o G opt. From Lmm 5, Ft 4 n Lmm 7 w otin th Thorm. A 2 root plnr gomtri grph G = (P, E) with roots r 1, r 2 s.t. y(r 1 ) < y(p) < y(r 2 ), p P \ {r 1, r 2 }, is 2 root y monoton i n only i or h p P \ {r 1, r 2 } thr xist q 1, q 2 Aj(p) with y(q 1 ) < y(p) < y(q 2 ) [16]. Furthrmor, root gomtri grph G = (P, E) with (singl) root r tht is not th highst or lowst point o P is root y monoton i n only i or h p P \ {r} thr xists q Aj(p) suh tht y(q) is twn y(r) (inlusiv) n y(p) [22]. W xtn th prvious two Propositions to th ollowing quivlnt hrtriztion o k root y monoton grphs whr th lttr implis n iint rognition lgorithm or k root y monoton grphs. Proposition 8 Lt G = (P, E) k root gomtri grph, whr 1 < k < P, with roots r 1, r 2,..., r k suh tht y(r 1 ) < y(r 2 ) <... < y(r k ). G is k root y monoton i n only i 1. or h p P y<y(r1) thr xists q Aj(p) s.t. y(q) (y(p), y(r 1 )]. 2. or h p P y>y(rk ) thr xists q Aj(p) s.t. y(q) [y(r k ), y(p)). 3. or h p P y(ri)<y<y(r i+1) thr xist q 1, q 2 Aj(p) s.t. y(q 1 ) [y(r i ), y(p)) n y(q 2 ) (y(p), y(r i+1 )], i = 1, 2,..., k thr xists q Aj(r 1 ) s.t. y(q) (y(r 1 ), y(r 2 )]. 5. thr xists q Aj(r k ) s.t. y(q) [y(r k 1 ), y(r k )). 6. thr xist q 1, q 2 Aj(r i ) s.t. y(q 1 ) [y(r i 1 ), y(r i )) n y(q 2 ) (y(r i ), y(r i+1 )], 2 i k 1. 5 Furthr Rsrh Dirtions Givn point st P n th 2D monoton spnning grph o P tht hs th lst numr o gs prou in polynomil tim? Dos thr xist t pproximtion lgorithm, t < 2, or th k root y monoton minimum spnning grph prolm? Aknowlgmnt: I woul lik to thnk Prossor Antonios Symvonis or his vlul ontriution in vloping th rsults prsnt in this ppr.

7 CCCG 2018, Winnipg, Cn, August 8 10, 2018 Rrns [1] S. Almri, T. M. Chn, E. Grnt, A. Luiw, n V. Pthk. Sl-pprohing grphs. In W. Diimo n M. Ptrignni, itors, Grph Drwing - GD 2012, volum 7704 o LNCS, pgs Springr, [2] N. Alon, Z. Füri, n M. Kthlski. Sprting pirs o points y stnr oxs. Eur. J. Com., 6(3): , [3] P. Anglini. Monoton rwings o grphs with w irtions. In. Pross. Ltt., 120:16 22, [4] P. Anglini, E. Colsnt, G. Di. Bttist, F. Frti, n M. Ptrignni. Monoton rwings o grphs. J. Grph Algorithms Appl., 16(1):5 35, [5] P. Anglini, W. Diimo, S. Koourov, T. Mhliz, V. Roslli, A. Symvonis, n S. Wismth. Monoton rwings o grphs with ix ming. Algorithmi, 71(2): , [6] Y. Bhoo, S. Durohr, S. Mhrpour, n D. Monl. Exploring inrsing-hor pths n trs. In J. Gumunsson n M. Smi, itors, Proings o th 29th Cnin Conrn on Computtionl Gomtry, CCCG 2017, pgs Crlton Univrsity, Ottw, Ontrio, Cn, [7] J. L. Bntly n H. A. Murr. Eiint worsts t struturs or rng srhing. At In., 13: , [8] N. Bonihon, P. Bos, P. Crmi, I. Kostitsyn, A. Luiw, n S. Vronshot. Gril tringultions n ngl-monoton grphs: Lol routing n rognition. In Y. Hu n M. Nöllnurg, itors, Grph Drwing n Ntwork Visuliztion - 24th Intrntionl Symposium, GD 2016, Athns, Gr, Sptmr 19-21, 2016, Rvis Slt Pprs, volum 9801 o LNCS, pgs Springr, [9] M. Brg, O. Chong, M. J. vn Krvl, n M. H. Ovrmrs. Computtionl gomtry: lgorithms n pplitions. Springr, 3r ition, [10] H. R. Dhkori, F. Frti, n J. Gumunsson. Inrsing-hor grphs on point sts. J. Grph Algorithms Appl., 19(2): , [11] M. R. Gry, D. S. Johnson, F. P. Prprt, n R. E. Trjn. Tringulting simpl polygon. In. Pross. Ltt., 7(4): , [12] N. Guttmnn-Bk n R. Hssin. On two rstrit nstors tr prolms. In. Pross. Ltt., 110(14-15): , [13] D. H n X. H. Optiml monoton rwings o trs. SIAM Journl on Disrt Mthmtis, 31(3): , [14] M. Ihino n J. Sklnsky. Th rltiv nighorhoo grph or mix tur vrils. Pttrn Rognition, 18(2): , [15] D. G. Lrmn n P. MMulln. Ars with inrsing hors. Mthmtil Proings o th Cmrig Philosophil Soity, 72: , Sptmr [16] D. T. L n F. P. Prprt. Lotion o point in plnr suivision n its pplitions. SIAM J. Comput., 6(3): , [17] G. Liott, A. Luiw, H. Mijr, n S. Whitsis. Th rtngl o inlun rwility prolm. Comput. Gom., 10(1):1 22, [18] A. Luiw n D. Monl. Angl-monoton grphs: Constrution n lol routing. CoRR, s/ , [19] A. Luiw n J. O Rourk. Angl-monoton pths in non-otus tringultions. In J. Gumunsson n M. Smi, itors, Proings o th 29th Cnin Conrn on Computtionl Gomtry, CCCG 2017, pgs Crlton Univrsity, Ottw, Ontrio, Cn, [20] K. Mstks. Drwing Root Tr s Root y Monoton Minimum Spnning Tr. CoRR, s/ , [21] K. Mstks n A. Symvonis. On th onstrution o inrsing-hor grphs on onvx point sts. In 6th Int. Con. on Inormtion, Intllign, Systms n Applitions, IISA 2015, Coru, Gr, July 6-8, 2015, pgs 1 6. IEEE, [22] K. Mstks n A. Symvonis. Root uniorm monoton minimum spnning trs. In D. Fotkis, A. Pgourtzis, n V. Th. Pshos, itors, Algorithms n Complxity - 10th Intrntionl Conrn, CIAC 2017, Athns, Gr, My 24-26, 2017, Proings, volum o LNCS, pgs , Full Vrsion:rXiv: v2, [23] M. Nöllnurg, R. Prutkin, n I. Ruttr. On sl-pprohing n inrsing-hor rwings o 3-onnt plnr grphs. Journl o Computtionl Gomtry, 7(1):47 69, 2016.

8 30 th Cnin Conrn on Computtionl Gomtry, 2018 [24] A. Oikonomou n A. Symvonis. Simpl ompt monoton tr rwings. In F. Frti n K.-L. M, itors, Grph Drwing n Ntwork Visuliztion - 25th Intrntionl Symposium, GD 2017, Boston, MA, USA, Sptmr 25-27, 2017, Rvis Slt Pprs, volum o LNCS, pgs Springr, [25] M. H. Ovrmrs n D. Woo. On rtngulr visiility. J. Algorithms, 9(3): , [26] G. Rot. Curvs with inrsing hors. Mthmtil Proings o th Cmrig Philosophil Soity, 115:1 12, Jnury [27] M. I. Shmos n D. Hoy. Closst-point prolms. In 16th Annul Symposium on Fountions o Computr Sin, Brkly, Cliorni, USA, Otor 13-15, 1975, pgs IEEE Computr Soity, 1975.

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Research Article On the Genus of the Zero-Divisor Graph of Z n

Research Article On the Genus of the Zero-Divisor Graph of Z n Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity,

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Witness-Bar Visibility Graphs

Witness-Bar Visibility Graphs Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Witnss-Br Visiility Grphs Crmn Cortés Frrn Hurto Alrto Márquz Jsús Vlnzul Astrt Br visiility grphs wr introu in th svntis s mol for som VLSI lyout prolms.

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13 4//3 RAM Mol 5-853: Algorithms in th Rl Worl Lolity I: Ch-wr lgorithms Introution Sorting List rnking B-trs Bur trs Stnr thortil mol or nlyzing lgorithms: Ininit mmory siz Uniorm ss ost Evlut n lgorithm

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Straight-line Grid Drawings of 3-Connected 1-Planar Graphs

Straight-line Grid Drawings of 3-Connected 1-Planar Graphs Stright-lin Gri Drwings o 3-Connt 1-Plnr Grhs M. Jwhrul Alm 1, Frnz J. Brnnurg 2, n Sthn G. Koourov 1 1 Drtmnt o Comutr Sin, Univrsity o Arizon, USA {mjlm, koourov}@s.rizon.u 2 Univrsity o Pssu, 94030

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

CS553 Lecture Register Allocation 1

CS553 Lecture Register Allocation 1 Low-Lvl Issus Lst ltur Livnss nlysis Rgistr llotion Toy Mor rgistr llotion Wnsy Common suxprssion limintion or PA2 Logistis PA1 is u PA2 hs n post Mony th 15 th, no lss u to LCPC in Orgon CS553 Ltur Rgistr

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Can transitive orientation make sandwich problems easier?

Can transitive orientation make sandwich problems easier? Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms 0/0/ CS/ENGRD 0 Ojt- Orint Prormmin n Dt Strutur Fll 0 Dou Jm Ltur 9: DFS, BFS & Shortt Pth Toy Rhility Dpth-Firt Srh Brth-Firt Srh Shortt Pth Unwiht rph Wiht rph Dijktr lorithm Rhility Alorithm Dpth Firt

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW Smll Pth Quiz ML n Dtss Cn you giv n xprssion tht rturns th lst / irst ourrn o h istint pri lmnt? Ltur 8 Strming Evlution: how muh mmory o you n? Sstin Mnth NICTA n UNSW

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information