arxiv: v1 [math.co] 15 Dec 2015

Size: px
Start display at page:

Download "arxiv: v1 [math.co] 15 Dec 2015"

Transcription

1 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity of Cliforni, Irvin, USA. ppstin@ui.u FrnUnivrsität Hgn, Grmny. philipp.kinrmnn@frnuni-hgn. Univrsity of Arizon, USA. koourov@s.rizon.u Univrsità gli Stui i Prugi, Itly. giuspp.liott@unipg.it Univrsity of Wtrloo, Cn. {luiw,hvosough}@uwtrloo. Univrsit. Grnol Alps, Frn. u.mignn@img.fr Univrsity of Mnito, Cn. jyoti@s.umnito. 8 Univrsity of Vitori, Cn. su@uvi. 9 Univrsity of Lthrig, Cn. wismth@ulth. Astrt. Motivt y pplitions in grph rwing n informtion visuliztion, w xmin th plnr split thiknss of grph, tht is, th smllst k suh tht th grph is k-splittl into plnr grph. A k-split oprtion sustituts vrtx v y t most k nw vrtis suh tht h nighor of v is onnt to t lst on of th nw vrtis. W first xmin th plnr split thiknss of omplt n omplt iprtit grphs. W thn prov tht it is NP-hr to rogniz grphs tht r -splittl into plnr grph, n show tht on n pproximt th plnr split thiknss of grph within onstnt ftor. If th trwith is oun, thn w n vn vrify k-splittlity in linr tim, for onstnt k. Introution Trnsforming on grph into nothr y rptly pplying n oprtion suh s vrtx/g ltion, g flip or vrtx split is lssi prolm in grph thory []. In this ppr, w xmin grph trnsformtions unr th vrtx split oprtion. Spifilly, k-split oprtion t som vrtx v insrts t most k nw vrtis v, v,..., v k in th grph, thn, for h nighor w of v, s t lst on g (v i, w) whr i [, k], n finlly lts v long with its inint gs. W fin k-split of grph G s grph tht is otin y pplying k-split to h vrtx of G t most on. W sy tht G is k-splittl into G k. If G is lss of grphs, w sy tht G is k-splittl into grph of G (or k-splittl into G ) if thr is k-split of G tht lis in G. W introu th G split thiknss of grph G s th minimum intgr k suh tht G is k-splittl into grph of G. Grph trnsformtion vi vrtx splits is importnt in grph rwing n informtion visuliztion. For xmpl, ssum tht w wnt to visuliz th sust rltion mong olltion S of n sts. Construt n n-vrtx grph G with vrtx for h st n n g whn on st is sust of nothr. A plnr rwing of this grph givs

2 D. Eppstin t l. {A,B,D} {A,B,C,D} {C,D,E} {C} {B,C,D} {A,C,D} {D} {C} {A} {A,B,D} {A,C,D,E} {D} {C,D,E} {A,B,C} () () Fig.. () A -split visuliztion of sust rltions mong sts. () Visuliztion of soil ntwork. Not th yllow lustrs t th lowr lft of th mp. ni visuliztion of th sust rltion. Sin th grph is not nssrily plnr, nturl pproh is to split G into plnr grph n thn visuliz th rsulting grph, s illustrt in Figur (). Lt s now onsir nothr intrsting snrio whr w wnt to visuliz grph G of soil ntwork, s Figur (). First, group th vrtis of th grph into lustrs y running lustring lgorithm. Now, onsir th lustr grph: vry lustr is no n thr is n g twn two lustr-nos if thr xists pir of vrtis in th orrsponing lustrs tht r onnt y n g. In gnrl, th lustr grph is non-plnr, ut w woul lik to rw th lustrs in th pln. Thus, w my n to split lustr into two or mor su-lustrs. Th rsulting lustr mp will onfusing if lustrs r rokn into too mny isjoint pis, whih ls to th qustion of minimizing th plnr split thiknss. Rlt Work. Th prolm of trmining th plnr split thiknss of grph G sms to rlt to th grph thiknss [], mpir-mp [] n k-splitting [] prolm. Th thiknss of grph G is th minimum intgr t suh tht G mits n g-prtition into t plnr sugrphs. On n ssum tht ths plnr sugrphs r otin y pplying t-split oprtion t h vrtx. Hn, thiknss is n uppr oun on th plnr split thiknss,.g., th thiknss n thus th plnr split thiknss of grphs with trwith ρ n mximum-gr- is t most ρ/ [] n [], rsptivly. Anlogously, th plnr split thiknss of grph is oun y its roriity, tht is, th minimum numr of forsts into whih its gs n prtition. W will ltr show tht oth prmtrs lso provi n symptoti lowr oun on th plnr split thiknss. A k-pir mp is k-split plnr grph, i.., h mpir onsists of t most k vrtis. In 89, Hwoo [] prov tht vry mutully jnt mpirs n rwn s -pir mp whr h mpir is ssign xtly two rgions. Ltr, Ringl n Jkson [9] show tht for vry intgr k st of k mutully jnt mpirs n rwn s k-pir mp. This implis n uppr oun of n/ on th plnr split thiknss of omplt grph on n vrtis. A rih oy of litrtur onsirs th plnriztion of non-plnr grphs vi vrtx splits [,,,], ut inst of minimizing th plnr split thiknss, ths rsults

3 On th Plnr Split Thiknss of Grphs fous on minimizing th totl numr of splits. Not tht uppr ouning th splitting numr, i.., th numr of totl vrtx splits, os not nssrily gurnt ny goo uppr oun on its plnr split thiknss. Knur n Ukrt [] stui th fol ovring numr tht is quivlnt to our prolm n stt svrl rsults for splitting grphs into str forsts, trpillr forsts, or intrvl grphs,.g., plnr grphs r -splittl into str forst, n plnr iprtit grphs s wll s outrplnr grphs r -splittl into str forst or trpillr forst. It follows from Shrinrmnn n Wst [] tht plnr grphs r - splittl into intrvl grphs n -splittl into trpillr forst, whil outrplnr grphs r -splittl into intrvl grphs. Our Contriution. In this ppr, w xmin th plnr split thiknss for non-plnr grphs. Initilly, w fous on splitting th omplt n omplt iprtit grphs into plnr grphs. W thn prov tht it is NP-hr to rogniz grphs tht r -splittl into plnr grph, whil w sri thniqu for pproximting th plnr split thiknss within onstnt ftor. Finlly, for oun trwith grphs, w prsnt thniqu to vrify k-splittlity in linr tim, for ny k O(). Plnr Split Thiknss of K n n K m,n In this stion, w fous on th plnr split thiknss of K n n K m,n, n on grphs with mximum gr. Unlss othrwis stt, y t-splittl grph w not grph with plnr split thiknss t.. Complt Grphs Lt f(g) th plnr split thiknss of th grph G. Rll tht Ringl n Jkson [9] show tht f(k n ) n/ for vry n. Sin (n/)-split grph ontins t most n / gs, n th lrgst omplt grph with t most n / gs is K n, this oun is tight. Bsis, for vry n <, it is strightforwr to onstrut -split grph of K n y lting ( n) vrtis from th -split grph of K. Hn, w otin th following thorm. Thorm (Ringl n Jkson [9]). If n, thn f(k n ) =, n if n, thn f(k n ) =. Othrwis, f(k n ) = n/. Lt K ny -split grph of K. Thn, K xhiits som usful strutur, s stt in th following lmm. Lmm. Any plnr ming Γ of K is tringultion, whr h vrtx of K is split xtly twi n no two vrtis tht orrspon to th sm vrtx in K n ppr in th sm f. Proof. K hs gs. Th -split oprtion ouls th numr of vrtis n prsrvs th numr of gs, so ny grph K hs vrtis n gs, th

4 D. Eppstin t l. 8 f f g g 8 8 f f 9 Fig.. Th -split grphs of K,, K, n K,8. For lrgr vrsions, s Figurs, n 8 in Appnix A lrgst possil for -vrtx plnr grph y Eulr s formul. Thrfor, if K is plnr, it must mximl plnr, with ll fs tringls. If two opis of th sm vrtx ppr on f, thn thos opis woul not jnt n tht f oul not tringl. Lt H th grph onsisting of opis of K tth t ommon vrtx v. Thn, H provis n xmpl of grph tht is not -splittl vn though its g ount os not prlu its possiility of ing -splittl. Lmm. Th grph H is not -splittl. Proof. Consir -split grph H of on opy of K. By Lmm., th vrtis v n v in H tht orrspon to th sm vrtx in K nnot ppr in th sm f. Sin v n split only on, th -split grph H of th othr opy of K must li insi som f tht is inint to ithr v or v. Without loss of gnrlity, ssum tht it is inint to som f inint to v. Not tht oth H n H n opy of v in som f whih is not inint to v. Sin oth H n H r tringultions, this woul introu rossing in ny -split grph of H.. Complt Biprtit Grphs Hrtsfil t l. [] show tht th splitting numr of K m,n, whr m, n, is xtly (m )(n )/. Howvr, thir onstrution os not gurnt tight ouns on th splitting thiknss of omplt iprtit grphs. For xmpl, if m is n vn numr, thn thir onstrution os not uplit ny vrtx of th st A with m vrtis, ut uss n+(m/ )(n ) vrtis to rprsnt th st B of n vrtis. Thrfor, t lst on vrtx in th st B is uplit t lst (n + (m/ )(n ))/n = m/ m/n + /n tims, for m n n. On th othr hn, w show tht K m,n is -splittl in som of ths ss, s stt in th following thorm. Thorm. Th grphs K,, K,, n K,8 r -splittl, n thir -split grphs r qurngultions, whih implis tht for omplt iprtit grphs K m,n, whr m =,,, thos r th lrgst grphs with plnr split thiknss.

5 On th Plnr Split Thiknss of Grphs Proof. Th suffiiny n osrv from th -split onstrution of K,, K,, n K,8, s shown in Figur. A plnr iprtit grph n hv t most n gs []. Sin th grphs K,, K, n K,8 ontin xtly (m + n) gs, thir -split grphs r qurngultions, whih in turn implis tht th rsult is tight. Th following thorm givs nssry onition for omplt iprtit grph to k-splittl s on th g ount rgumnt. Thorm. If k + k n n > 8k+, thn K n, n is not k- splittl. Proof. Not tht ny k-split grph H k of K n,m must plnr iprtit grph. Thrfor, if p n q r th numr of vrtis n gs in H k, rsptivly, thn th inqulity q p hols. Consir omplt iprtit grph K n, n tht is k-splittl. Th numr of gs in this grph is n ( n). Sin ny k-split grph of K n, n n hv t most k vrtis, w hv n( n) k n n + k () Th ftoriztion of th prvious polynomil () givs ( n n + k = n ) ( 8k + n + ) 8k +, whn k + k. Thrfor, Eqution () hols if n 8k+ or n + 8k+. Thorm hs th following onsquns. Corollry. If k < mn+ m+n, thn K n,m is not k-splittl. On n vrify this from Eqution () tht givs k n +n+ Corollry. If n k, thn K n,n is not k-splittl. = mn+ m+n. To vrify this, osrv tht K n,n hs = n vrtis n Eqution () givs n n(n)+k(n) = n +kn = (n k k )(n k+ k ). This onstrint os not hol whn n > k + k. Furthrmor, k > k + k, whih omplts th proof. Corollry. K k+,k +k is not k-splittl. To vrify this, osrv tht if n = k +, thn y Eqution () w otin (k + ) (k + ) + k k + k m k + k. Corollry. K k,m is k-splittl for vry intgr m.

6 D. Eppstin t l. Th proof for this lim is strightforwr from th osrvtion tht K,m is plnr. Th following tl summrizs th ov osrvtions y listing ll th omplt iprtit grphs whih oul k-splittl (i.., ths grphs stisfis th nssry onitions of Thorm ) for iffrnt vlus of k. k = k = k K n, n K n,m K n, n K n,m K n,k+ k n K,m K,m K,m 8 K 8,m K,m 8 K 9,m K,m K n k,m K,m K n>k,m kn n k. Grphs with Mximum Dgr Rll tht th plnr split thiknss of grph is oun y its roriity. By finition, ny mximum-gr- grph hs gnry t most n, thus, roriity t most. Hn, th plnr split thiknss of mximum-gr- grph is oun y. Morovr, sin vry -rgulr grph is plnr, th plnr split thiknss of ny grph with mximum gr is oun y /. Thrfor, th plnr split thiknss of mximum-gr- grph is t most. Th following thorm stts tht this oun is tight. Thorm. For ny nontrivil minor-los proprty P, thr xists grph G of mximum gr fiv whos P split thiknss is t lst. Proof. This follows from omintion of th following osrvtions:. Thr xist ritrrily lrg -rgulr grphs with girth Ω(log n) [].. Splitting grph nnot rs its girth.. For vry h, th K h -minor-fr n-vrtx grphs ll hv t most O(nh log h) gs [].. Evry grph with n vrtis, m gs, n girth g hs minor with O(n/g) vrtis n m n + O(n/g) gs []. Thus, lt h lrg nough tht K h os not hv proprty P. If G is suffiintly lrg n-vrtx -rgulr grph with logrithmi girth (Osrvtion ), thn ny -split of G will hv n vrtis n n/ gs. By Osrvtion, this -split will hv minor whos numr of gs is lrgr y logrithmi ftor thn its numr of vrtis, n for n suffiintly lrg this ftor will lrg nough to nsur tht K h minor xists within th -split of G (y Osrvtion ). Thus, G nnot -split into grph with proprty P. NP-hrnss n Approximtion Fri t l. [] show tht trmining th splitting numr of grph is NP-hr, vn whn th input is rstrit to ui grphs. Sin ui grphs r -splittl, thir 9 A grph G is k-gnrt if vry sugrph of G ontins vrtx of gr t most k.

7 On th Plnr Split Thiknss of Grphs hrnss proof os not rily imply th hrnss of -splittl grph rognition. In this stion, w show tht it is NP-hr to rogniz grphs tht r -splittl into plnr grph. W thn show tht th roriity of k-splittl grphs is oun y k + n tht tsting k-splittility is fix-prmtr trtl in th trwith of th givn grph.. NP-hrnss of -Splittility Th rution is from plnr -SAT with yl through th lus vrtis []. Spifilly, -SAT instn I is plnr if its orrsponing SAT-grph G = (X C, E) is plnr, whr X n C r th st of vrils n luss of I, rsptivly, n E = {(x, ) : x Corx C}. Krtohvíl t l. [] show tht th plnr -st rmins NP-omplt vn whn th SAT-grph with yl through th lus vrtis is plnr. For our onstrution, w will n to rstrit th splitting options for som vrtis. For vrtx v, tthing K to v mns insrting nw opy of K into th grph n intifying v with vrtx of this K. A vrtx tht hs K tth will ll K-vrtx. Lmm. If C is yl of K-vrtis thn in ny plnr -split, th yl C pprs intt, i.. for h g of C thr is opy of th g in th -split suh tht th opis r join in yl. Proof. Lt v vrtx of yl C. W will rgu tht th two gs inint to v in C r inint to th sm opy of v in th plnr -split. This implis tht th yl pprs intt in th plnr -split. Suppos th vrtis of C r v =,,..., t in tht orr, with n g (v, t ). As not rlir in th ppr, plnr -split of K must split ll vrtis, n no two opis of vrtx shr f in th plnr -split. Furthrmor, ny plnr -split of K is onnt. Lt H i th inu plnr -split of th K inint to i. Lt v n v th two opis of v in H. Suppos tht th opy of g (v, ) in th plnr -split is inint to v. Our gol is to show tht th opy of g (v, t ) in th plnr -split is lso inint to v. H must li in f F of H tht is inint to v. Sin thr is n g (, ), H must lso li in f F of H. Continuing in this wy, w fin tht H t must lso li in th f F. Thrfor, th opy of th g ( t, v) must inint to v in th plnr -split. Not tht th Lmm xtns to ny -onnt sugrph of K-vrtis. Givn n instn of plnr -SAT with yl through th lus vrtis, w onstrut grph s follows. W will mk K-vrtx j for h lus j, n join thm in yl s givn in th input instn. By th Lmm ov, this lus yl will ppr intt in ny plnr -split of th grph. Lt T ny othr yl of K-vrtis, isjoint from th lus yl. T will lso ppr intt in ny plnr -split, so w n intify th outsi of th yl T s th si tht ontins th lus yl. Th othr si is th insi.

8 8 D. Eppstin t l. v i v i j v i v i v i v i v i v i lj, l j, j l j, l j, v i () v i v i () v i l j, l j, () Fig.. () A vril ggt shown in th plnr onfigurtion orrsponing to v i = tru n () in th plnr onfigurtion orrsponing to v i = fls. () A lus ggt K with suivision vrtis l j,, l j,, l j, orrsponing to th litrls in th lus. Th hlf-gs join th orrsponing vril vrtis. For h vril v i, w rt vrtx ggt s shown in Figurs () () with six K-vrtis: two spil vrtis v i n v i n four othr vrtis forming vril yl vi, v i, v i, v i togthr with two pths v i, v i, vi n v i, v i, vi. Osrv tht, in n ming of ny plnr -split, th vrtx ggt will ppr intt, n xtly on of v i n v i must li insi th vril yl n xtly on must li outsi th vril yl. Our intn orrsponn is tht th on tht lis outsi is th on tht is st to tru. For h lus j with litrls l j,k, k =,,, w rt K lus ggt, s shown in Figur (), with fiv K-vrtis: two vrtis j, j n thr vrtis l j,k. Furthrmor, w suivi h g ( j, l j,k ) y vrtx l j,k tht is not K-vrtx. If litrl l j,k is v i, thn w n g (v i, l j,k ) n if litrl l j,k is v i, thn w n g ( v i, l j,k ). Finlly, w hin joining,,..., m, n w signt to our outr vrtx. This omplts th onstrution, whih n lrly rri out in polynomil tim. Figur shows n xmpl of th onstrution. Not tht th only non-k-vrtis r th l j,k s, whih hv gr n n split in on of thr wys s shown in Figurs () (). In h possiility, on g inint to l j,k is split off from th othr two. If th g to th vril ggt is split off from th othr two, w ll this th F-split. Osrv tht if, in th lus ggt for j, ll thr of l j,, l j,, l j, us th F-split (or no split), thn w fftivly hv gs from j to h of l j,, l j,, l j,, so th lus ggt is K whih must rmin intt ftr th -split n is not plnr. This mns tht in ny plnr -split of th lus ggt, t lst on of l j,, l j,, l j, must split with non-f-split. Lmm. If th formul is stisfil, thn th grph hs plnr -split. Proof. For vry litrl l j,k tht is st to fls, w o n F-split on th vrtx l j,k. For vry litrl l j,k tht is st to tru, w split off th g to l j,k ; s Figur (). For ny K-vrtx v inint to gs E v outsi its K, w split ll vrtis of th K s rquir for plnr -split of K ut w kp th gs of E v inint to th sm opy of v, whih w intify s th rl v.

9 On th Plnr Split Thiknss of Grphs 9 ' ' ' v v v v v v v v () l l l ' l ' ' l l l l l l l l l l v v v v l v l l v v l v () Fig.. () A grph tht orrspons to th -SAT instn φ = ( v v v ) (v v v ) (v v v ). () A plnriztion of th grph in () tht stisfis φ: v = tru, v = v = v = fls If vril v i is st to tru, w pl (rl) vrtx v i outsi th vril yl n w pl vrtx v i n its ngling gs insi th vril yl. If vril v i is st to fls, w pl vrtx v i outsi th vril yl n w pl vrtx v i n its ngling gs insi th vril yl. Consir lus j. It hs tru litrl, sy l j,. W hv split off th g from l j, to l j, whih uts on g of th K n prmits plnr rwing of th lus ggt s shown in Figur (), with l j, n its ngling g insi th yl, l j,, l j,. Bus w strt with n instn of plnr -SAT with yl through th lus vrtis, w know tht th grph of luss vrsus vrils plus th lus yl is plnr. W mk plnr ming of th split grph s on this, ming th vril n lus ggts s sri ov. Th rsulting ming is plnr. Lmm. If th grph hs plnr -split, thn th formul is stisfil.

10 D. Eppstin t l. l j, j l j, l j, j l j, j l j, l j, j j l j, l j, l j, j l j, j l j, l j, j l j, l j, l j, l j, l j, l j, l j, l j, l j, l j, l j, l j, () () () () Fig.. () () Th thr wys of splitting l j,; () is th F-split. () A plnr rwing of th lus ggt whn litrl l j, is st to tru n th split of vrtx l j, rsults in ngling g to l j,. Proof. Consir plnr ming of -split of th grph. As not ov, in h lus ggt, sy j, t lst on of th vrtis l j,k, k =,,, must split with non-f-split. Suppos tht vrtx l j,k is split with non-f-split. If litrl l j,k is v i thn w will st vril v i to tru; n if litrl l j,k is v i thn w will st vril v i to fls. W must show tht this is vli truth-vlu stting. Suppos not. Thn, for som i, vrtx v i is join to vrtx l j,k tht is split with non-f-split, n vrtx v i is join to vrtx l r,s tht is split with non-f-split. But thn w ssntilly hv n g from v i to vrtx of th j lus ggt n n g from v i to vrtx of th r lus ggt. Bus h lus ggt is onnt grph of K-vrtis, n th lus ggts r join y th lus yl, this givs pth of K-vrtis from v i to v i. Thn th vrtis of th vril ggt for v i form suivi K, of K-vrtis. This must rmin intt unr -splits n is non-plnr. Contrition to hving plnr -split of th grph. Thorm. It is NP-hr to i whthr grph hs plnr split thiknss.. Approximting Split Thiknss In this stion, w n th onpt of roriity. Th roriity (G) of grph G is th minimum intgr suh tht G mits omposition into (G) forsts. By finition, th plnr split thiknss of grph is oun y its roriity. W now show tht th roriity of k-splittl grph pproximts its plnr split thiknss within onstnt ftor. Lt G k-splittl grph with n vrtis n lt G k k-split grph of G. Sin G k is plnr, it hs t most kn gs. Thrfor, th numr of gs in n n-vrtx grph is lso t most (k+)(n ): for n t most k, this follows simply from th ft tht ny n-vrtx grph n hv t most n(n )/ gs, n for lrgr n this moifi xprssion is iggr thn kn. But Nsh-Willims [8] show tht th roriity of grph is t most (G) if n only if vry n-vrtx sugrph hs t most (G)(n ) gs. Using this hrtriztion n th oun on th numr of gs, th roriity is t most k +. Thorm. Th roriity of k-splittl grph is oun y k +, n thrfor pproximts its plnr split thiknss within ftor + /k.

11 On th Plnr Split Thiknss of Grphs Not tht th thiknss of grph is oun y its roriity, n thus lso pproximts th plnr split thiknss within ftor + /k.. Fix-Prmtr Trtility Although k-splittility is NP-omplt, w show in this stion tht it is solvl in polynomil tim for grphs of oun trwith. Th rsult pplis not only to plnrity, ut to mny othr grph proprtis. Thorm. Lt P grph proprty, suh s plnrity, tht n tst in moni son-orr grph logi, n lt k n w fix onstnts. Thn it is possil to tst in linr tim whthr grph of trwith t most w is k-splittl into P in linr tim. Proof. W us Courll s thorm [], oring to whih ny moni son-orr proprty n tst for oun-trwith grphs in linr tim. W moify th formul for P into formul for th grphs k-splittl into P. To o so, w n to l to istinguish th two npoints of h g of our givn grph G, within th moifi formul. Thus, w wrp th formul in xistntil quntifirs for n g st T n vrtx r, n w form th onjuntion of th formul with th onitions tht vry prtition of th vrtis into two susts is ross y n g, tht vry nonmpty vrtx sust inlus t lst on vrtx with t most on nighor in th sust, n tht, for vry g tht is not prt of T, thr is pth in T strting from r whos vrtis inlu th npoints of. Ths onitions nsur tht T is pth-first srh tr of th givn grph, in whih th two npoints of h g of th grph r rlt to h othr s nstor n snnt; w n orint h g from its nstor to its snnt []. With this orinttion in hn, w wrp th formul in nothr st of xistntil quntifirs, sking for k g sts, n w onitions to th formul nsuring tht ths sts form prtition of th gs of th givn grph. If w numr th split opis of h vrtx in k-splitting of th givn grph from to k, thn ths k g sts trmin, for h input g, whih opy of its nstrl npoint n whih opy of its snnt npoint r onnt in th grph rsulting from th splitting. Givn ths prliminry moifitions, it is strightforwr ut tious to moify th formul for P itslf so tht it pplis to th grph whos splitting is sri y th ov vrils rthr thn to th input grph. To o so, w n only rpl vry vrtx st vril y k suh vrils (on for h opy of h vrtx), xpn th formul into isjuntion or onjuntion of k opis of th formul for h iniviul vrtx vril tht it ontins, n moify th prits for vrtx-g inin within th formul to tk ount of ths multipl opis. Conlusion In this ppr, w hv xplor th split thiknss of grphs whil trnsforming thm to plnr grphs. W hv prov som tight ouns on th plnr split thiknss of

12 D. Eppstin t l. omplt n omplt iprtit grphs. In gnrl, w hv prov tht rognizing - splittl grphs is NP-hr, ut it is possil to pproximt th plnr split thiknss of grph within onstnt ftor. Furthrmor, if th trwith of th input grph is oun, thn for ny fix k, on n i k-splittility into plnr grphs in linr tim. Splitting numr hs n xmin lso on th projtiv pln [9] n torus [8]. Hn, it is nturl to stuy split thiknss on iffrnt surfs. W osrv tht ny grph tht n m on th torus or projtiv pln is -splittl. For th projtiv pln, us th hmisphr mol of th projtiv pln, in whih points on th qutor of th sphr r intifi with th opposit point on th qutor; thn xpn th hmisphr to sphr with two opis of h point, n hoos ritrrily whih of th two opis to us for h g. For th torus, rw th torus s squr with prioi ounry onitions, mk two opis of th squr, n whn n g rosss th squr ounry onnt it roun twn th two squrs. Rfrns. Bink, L.W., Hrry, F.: Th thiknss of th omplt grph. Cn. J. Mth. (), 8 89 (9). Borril, G., Eppstin, D., Zhu, P.: Plnr inu sugrphs of sprs grphs. In: Pro. n Int. Symp. Grph Drwing (GD ). Ltur Nots Comput. Si., vol. 88, pp.. Springr-Vrlg (). Courll, B.: Th moni son-orr logi of grphs. I. Rognizl sts of finit grphs. Inform. Comput. 8(), (99). Courll, B.: On th xprssion of grph proprtis in som frgmnts of moni sonorr logi. In: Immrmn, N., Kolitis, P.G. (s.) Pro. Dsr. Complx. Finit Mols, DIMACS, vol., pp.. Amr. Mth. So. (99). Dujmovi, V., Woo, D.R.: Grph trwith n gomtri thiknss prmtrs. Disrt Comput. Gom. (), (). Dunn, C.A., Eppstin, D., Koourov, S.G.: Th gomtri thiknss of low gr grphs. In: Snoyink, J., Boissonnt, J. (s.) Pro. th ACM Symp. Comput. Gom. (SOCG ). pp.. ACM (). Fri, L., Figuiro, C.M.H., Mnonç Nto, C.F.X.: Splitting numr is NPomplt. Disrt Appl. Mth. 8(-), 8 () 8. Hrtsfil, N.: Th toroil splitting numr of th omplt grph K n. Disrt Mth. (98) 9. Hrtsfil, N.: Th splitting numr of th omplt grph in th projtiv pln. Grphs Com. (), 9 (98). Hrtsfil, N., Jkson, B., Ringl, G.: Th splitting numr of th omplt grph. Grphs Com. (), 9 (98). Hwoo, P.J.: Mp olour thorm. Qurt. J. Mth., 8 (89). Huthinson, J.P.: Coloring orinry mps, mps of mpirs, n mps of th moon. Mth. Mg. (), (99). Knur, K., Ukrt, T.: Thr wys to ovr grph. Arxiv rport (), vill t Krtohvíl, J., Luiw, A., Nstril, J.: Nonrossing sugrphs in topologil lyouts. SIAM J. Disrt Mth. (), (99)

13 On th Plnr Split Thiknss of Grphs. Lirs, A.: Plnrizing grphs - A survy n nnott iliogrphy. J. Grph Algorithms Appl. (), (). Mnonç Nto, C.F.X., Shffr, K., Xvir, E.F., Stolfi, J., Fri, L., Figuiro, C.M.H.: Th splitting numr n skwnss of C n C m. Ars Com. (). Morgnstrn, M.: Existn n xpliit onstrutions of q + rgulr Rmnujn grphs for vry prim powr q. J. Com. Thory, Sris B (), (99) 8. Nsh-Willims, C.S.J.A.: Domposition of finit grphs into forsts. J. Lonon Mth. So. 9() (9) 9. Ringl, G., Jkson, B.: Solution of Hwoo s mpir prolm in th pln. J. Rin Angw. Mth., (98). Shinrmn, E.R., Wst, D.B.: Th intrvl numr of plnr grph: Thr intrvls suffi. J. Com. Thory, Sris B (), 9 (98). Thomson, A.: Th xtrml funtion for omplt minors. J. Com. Thory, Sris B 8(), 8 8 ()

14 D. Eppstin t l. A Th -split Grphs of K,, K, n K, Fig.. Th -split grph of K,.

15 On th Plnr Split Thiknss of Grphs f f 9 Fig.. Th -split grph of K,.

16 D. Eppstin t l. f g g f Fig. 8. Th -split grph of K,8.

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Can transitive orientation make sandwich problems easier?

Can transitive orientation make sandwich problems easier? Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Research Article On the Genus of the Zero-Divisor Graph of Z n

Research Article On the Genus of the Zero-Divisor Graph of Z n Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity,

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Witness-Bar Visibility Graphs

Witness-Bar Visibility Graphs Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Witnss-Br Visiility Grphs Crmn Cortés Frrn Hurto Alrto Márquz Jsús Vlnzul Astrt Br visiility grphs wr introu in th svntis s mol for som VLSI lyout prolms.

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Uniform 2D-Monotone Minimum Spanning Graphs

Uniform 2D-Monotone Minimum Spanning Graphs CCCG 2018, Winnipg, Cn, August 8 10, 2018 Uniorm 2D-Monoton Minimum Spnning Grphs Konstntinos Mstks Astrt A gomtri grph G is xy monoton i h pir o vrtis o G is onnt y xy monoton pth. W stuy th prolm o prouing

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Generalized swap operation for tetrahedrizations

Generalized swap operation for tetrahedrizations Gnrliz swp oprtion for ttrhriztions B. Lhnr 1, B. Hmnn 2, G. Umluf 3 1 Dprtmnt of Computr Sin, Univrsity of Kisrslutrn, Grmny lhnr@s.uni-kl. 2 Institut for Dt Anlysis n Visuliztion (IDAV), Dprtmnt of Computr

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information