# Constructive Geometric Constraint Solving

Size: px
Start display at page:

Transcription

1 Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37

2 Prliminris CGCS p.2/37

3 Gomtri onstrint prolm C 2 D L BC L AC h α A L AB B 1 A gomtri onstrint prolm onsists o st o gomtri lmnts, {A, B, C, D, L AB, L AC, L BC }, st o gomtri onstrints in twn thm, n st o prmtrs, { 1, 2, α, h}. CGCS p.3/37

4 Gomtri onstrint solving A gomtri onstrint prolm n rprsnt y prit ϕ in irst orr logi. ϕ(a, B, C, D, L AB, L AC, L BC ) (A, B) = 1 on(a, L AB ) on(b, L AB ) on(a, L AC ) on(c, L AC ) on(d, L AC ) on(b, L BC ) on(c, L BC ) h(c, L AB ) = h (L AB, L BC ) = α (C, D) = 2 Gomtri onstrint solving onsists in proving th truth o th xistntilly quntii prit ϕ tht rprsnts th gomtri onstrint prolm. A B C D L AB L AC L BC ϕ(a, B, C, D, L AB, L AC, L BC ) CGCS p.4/37

5 Gomtri Constrint Grph 2 C 2 C A D L L AC AC h L AB 1 L BC D α B A h L AB 1 L BC α B A gomtri onstrint prolm n lso rprsnt y mns o gomtri onstrint grph G = (V, E) whr th nos in V r gomtri lmnts with two grs o rom n th gs in E V V r gomtri onstrints suh tht h o thm nls on gr o rom. CGCS p.5/37

6 Wll-onstrin grphs Thorm 1 (Lmn, 1970) Lt G = (P, D) gomtri onstrint grph suh tht th vrtis in P r points in th two-imnsionl Eulin sp n th gs in D P P r istn onstrints. G is gnrilly wll-onstrin i n only i or ll G = (P, D ), inu sugrph o G y th st o vrtis P P, 1. D 2 P 3, n 2. D = 2 P 3. p p p p r p p p p r r p p p p CGCS p.6/37

7 Struturlly wll-onstrin grphs A nssry onition or gomtri onstrint prolm to solvl is tht th ssoit onstrint grph must struturlly wll-onstrin. Lt G = (V, E) gomtri onstrint grph. 1. G is struturlly ovr-onstrin i thr is n inu sugrph with m V nos n mor thn 2m 3 gs. 2. G is struturlly unr-onstrin i it is not struturlly ovr-onstrin n E < 2 V G is struturlly wll-onstrin i it is not struturlly ovr-onstrin n E = 2 V 3. CGCS p.7/37

8 Construtiv Gomtri Constrint Solvrs CGCS p.8/37

9 Arhittur or Construtiv Gomtri Constrint Solvrs Astrt prolm Prmtrs ss. Anlyzr Inx sltor Astrt pln Inx ssign. Construtor Rliztion CGCS p.9/37

10 Arhittur or Construtiv Gomtri Constrint Solvrs p 3 2 h 1 l 1 p 1 1 p 2 Prmtrs ss. Anlyzr Inx sltor Astrt pln Inx ssign. Construtor Rliztion CGCS p.9/37

11 Arhittur or Construtiv Gomtri Constrint Solvrs p 3 2 h 1 l 1 p 1 1 p 2 Prmtrs ss. Anlyzr Inx sltor p 3 Inx ssign. l 1 p 1 p 2 p 3 Construtor Rliztion CGCS p.9/37

12 Arhittur or Construtiv Gomtri Constrint Solvrs p 3 2 h 1 l 1 p 1 1 p 2 Prmtrs ss. Anlyzr Inx sltor p 3 s 3 = +1 s 1 = 1 l 1 p 1 p 2 p 3 Construtor Rliztion CGCS p.9/37

13 Arhittur or Construtiv Gomtri Constrint Solvrs p 3 2 h 1 p 1 l 1 1 p 2 1 = 34 2 = 16 h 1 = 14 Anlyzr Inx sltor p 3 s 3 = +1 s 1 = 1 l 1 p 1 p 2 p 3 Construtor CGCS p.9/37

14 A lustr is st o two imnsionl gomtri lmnts with known positions with rspt to lol oorint systm. Clustrs P 1 P P 2 h L L 2 α L 1 P 3 L P 1 P 2 h 1 h 2 1 P 1 P 2 L 2 α h 2 P h 1 L 1 CGCS p.10/37

15 Tr omposition CGCS p.11/37

16 Thr r grphs tht n tr ompos {,,,,,} CGCS p.12/37

17 Thr r grphs tht n tr ompos {,,,,,} {,} {,,,} {,,} CGCS p.12/37

18 Thr r grphs tht n tr ompos {,,,,,} {,} {,,,} {,,} {,} {,} {,} CGCS p.12/37

19 Thr r grphs tht n tr ompos {,,,,,} {,} {,,,} {,,} {,} {,} {,,} {,} {,} {,} {,} {,} {,} CGCS p.12/37

20 St ompositions C 1 C2 V 1 V2 C 3 Lt C st with, t lst, thr irnt mmrs, sy,,. Lt {C 1, C 2, C 3 } thr susts o C. W sy tht {C 1, C 2, C 3 } is st omposition o C i 1. C 1 C 2 C 3 = C, 2. C 1 C 2 = {}, 3. C 2 C 3 = {} n 4. C 1 C 3 = {} V 3 Lt G = (V, E) grph n lt {V 1, V 2, V 3 } thr susts o V. {V 1, V 2, V 3 } is st omposition o G i it is st omposition o V n or vry g in E, V () V i or som i, 1 i 3. CGCS p.13/37

21 Tr omposition Lt G = (V, E) grph. A 3-ry tr T is tr omposition o G i 1. V is th root o T, 2. Eh intrnl no V V o T is th thr o xtly thr nos, sy {V 1, V 2, V 3 }, whih r st omposition o th sugrph inu y V, n 3. Eh l no ontins xtly two vrtis o V. A grph G is tr omposl i thr is tr omposition o G. CGCS p.14/37

22 Rution nlysis CGCS p.15/37

23 Thr r grphs tht n ru CGCS p.16/37

24 Thr r grphs tht n ru CGCS p.16/37

25 Thr r grphs tht n ru CGCS p.16/37

26 Thr r grphs tht n ru CGCS p.16/37

27 Thr r grphs tht n ru CGCS p.16/37

28 Thr r grphs tht n ru CGCS p.16/37

29 Thr r grphs tht n ru CGCS p.16/37

30 Thr r grphs tht n ru CGCS p.16/37

31 Thr r grphs tht n ru CGCS p.16/37

32 Thr r grphs tht n ru CGCS p.16/37

33 Lt G = (V, E) gomtri onstrint grph. W in th initil st o lustrs S G = {{u, v} (u, v) E}. Rution nlysis Lt S st o lustrs in whih thr r thr lustrs C 1, C 2, C 3 suh tht {C 1, C 2, C 3 } is st omposition o C. S r S is rution rul whr S = (S {C 1, C 2, C 3 }) C. Th gomtri onstrint prolm rprsnt y th gomtri onstrint grph G is solvl y rution nlysis i S G rus to th singlton {V }. I G is not struturlly ovr-onstrin, th strt rution systm inu y th rution rul r is trminting n onlunt whih implis th uniqu norml orm proprty n noniity. CGCS p.17/37

34 Th omin o solvl grphs y rution nlysis Lt G = (V, E) wll-onstrin gomtri onstrint grph. Th ollowing ssrtions r quivlnt: 1. G is tr omposl. 2. G is solvl y rution nlysis. CGCS p.18/37

35 Th omin o solvl grphs y rution nlysis {,,,,, } {, } {,,, } {,, } {, } {,, } {, } {, } {, } {, } {, } {, } {, } CGCS p.19/37

36 Th omin o solvl grphs y rution nlysis {,,,,, } {, } {,,, } {,, } {, } {,, } {, } {, } {, } {, } CGCS p.19/37

37 Th omin o solvl grphs y rution nlysis {,,,,, } {, } {,,, } {,, } {, } {, } {, } CGCS p.19/37

38 Th omin o solvl grphs y rution nlysis {,,,,, } {, } {,,, } {,, } CGCS p.19/37

39 Th omin o solvl grphs y rution nlysis {,,,,, } CGCS p.19/37

40 Domposition nlysis CGCS p.20/37

41 Thr r grphs tht n ompos CGCS p.21/37

42 Thr r grphs tht n ompos CGCS p.21/37

43 Thr r grphs tht n ompos CGCS p.21/37

44 Thr r grphs tht n ompos CGCS p.21/37

45 Thr r grphs tht n ompos CGCS p.21/37

46 Thr r grphs tht n ompos CGCS p.21/37

47 Thr r grphs tht n ompos CGCS p.21/37

48 Thr r grphs tht n ompos CGCS p.21/37

49 Thr r grphs tht n ompos CGCS p.21/37

50 Lt G = (V, E) gomtri onstrint grph. W in th initil st o lustrs O G = {V }. Domposition nlysis Lt O st o lustrs in whih thr is lustr C suh tht {C 1, C 2, C 3 } is st omposition o th sugrph o G inu y C. O o O is rution rul whr O = (O C) {C 1, C 2, C 3 }. Th gomtri onstrint prolm rprsnt y th gomtri onstrint grph G is solvl y omposition nlysis i O G rus to S G. Th rution rltion o inus n strt rution systm. CGCS p.22/37

51 Th omin o solvl grphs y omposition nlysis Lt G = (V, E) wll-onstrin gomtri onstrint grph. Th ollowing ssrtions r quivlnt: 1. G is tr omposl. 2. G is solvl y omposition nlysis. CGCS p.23/37

52 Th omin o solvl grphs y omposition nlysis {,,,,, } {, } {,,, } {,, } {, } {,, } {, } {, } {, } {, } {, } {, } {, } CGCS p.24/37

53 Th omin o solvl grphs y omposition nlysis {, } {,,, } {,, } {, } {,, } {, } {, } {, } {, } {, } {, } {, } CGCS p.24/37

54 Th omin o solvl grphs y omposition nlysis {, } {, } {,, } {, } {,, } {, } {, } {, } {, } {, } {, } CGCS p.24/37

55 Th omin o solvl grphs y omposition nlysis {, } {, } {,, } {, } {, } {, } {, } {, } {, } {, } CGCS p.24/37

56 Th omin o solvl grphs y omposition nlysis {, } {, } {, } {, } {, } {, } {, } {, } {, } CGCS p.24/37

57 Rormulting Own s lgorithm CGCS p.25/37

58 Own s lgorithm rlis on omputing trionnt omponnts... SPLIT REDUCE SPLIT REDUCE SPLIT... ut tr h split som wll hosn gs shoul rmov to ontinu th pross. It is iiult to unrstn whih gs shoul rmov n th rson why thy shoul rmov. CGCS p.26/37

59 Whih gs n why shoul thy rmov? Th trionnt omponnts lgorithm suivis th grph n s virtul gs to prsrv onntivity proprtis. To urthr suivi, Own s lgorithm rmovs virtul gs t ny rtiultion pir with no singl g n xtly on mor omplx sugrph. CGCS p.27/37

60 Th proprty to prsrv in omposition lgorithms is th iit Wht is ssntil to prsrv in th grph suivision pross is rigiity proprtis, not onntivity proprtis. Diit = 0 Diit untion o grph G = (V, E) is in s Diit(G) = (2 V 3) E Diit = 1 Diit = 0 At vry grph split, iit vlu shoul mintin. Thus nw gs must to ulill this rquirmnt. CGCS p.28/37

61 Two rsults show how iit n mintin Lt G wll-onstrin onstrint grph n G n G sprting grphs o G. Thn Diit(G) = Diit(G ) + Diit(G ) 1 I Diit(G ) > Diit(G ), G is unr-onstrin n G is wll-onstrin. Thror To mintin wll-onstrintnss on virtul g must to th sprting grph G. Th virtul g susums th rigiity proprtis u to th sprting grph G CGCS p.29/37

62 Exmpl o iit ompnstion Diit = 0 Compnstion Diit = 0 Diit = 1 Diit = 0 CGCS p.30/37

63 Exmpl o iit ompnstion Diit = 0 Compnstion Diit = 0 Diit = 1 Diit = 0 CGCS p.30/37

64 A nw ormultion o Own s omposition lgorithm A lr n simpl pplition o ivi-n-onqur. Uss sprting pirs to suivi th grph. Applis iit ompnstion to mintin rigiity strutur. un Anlysis(G) i Trionnt(G) thn S := BinryTr(G, nulltr, nulltr) ls G 1,G 2 := SprtingGrphs(G) i Diit(G 1 ) > Diit(G 2 ) thn G 1 := AVirtulEg(G 1 ) ls G 2 := AVirtulEg(G 2 ) i S := BinryTr(G, Anlysis(G 1 ), Anlysis(G 2 )) i rturn S n CGCS p.31/37

65 Th rsult o th nw ormultion is n s-tr Th nw lgorithm yils inry orm o th Own s tr. W nm it s-tr. SPLIT REDUCE REDUCE SPLIT SPLIT CGCS p.32/37

66 Th omin o Own s mtho Lt G = (V, E) wll-onstrin gomtri onstrint grph. Th ollowing ssrtions r quivlnt: 1. G is tr omposl. 2. G is s-tr omposl. CGCS p.33/37

67 Th omin o Own s mtho {,,,,,} {,} {,,,} {,,} {,} {,} {,,} {,} {,} {,} {,} {,} {,} CGCS p.34/37

68 Th omin o Own s mtho {,,,,,} {,} {,,,} {,,} {,} {,} {,,} {,} {,} {,} {,} {,} {,} CGCS p.34/37

69 Th omin o Own s mtho {,,,,,} {,} {,,,} {,,} {,} {,} {,,} {,} {,} {,} {,} {,} {,} CGCS p.34/37

70 Domin quivln o onstrutiv mthos CGCS p.35/37

71 Construtiv mthos hv th sm omin Lt G = (V, E) wll-onstrin gomtri onstrint grph. Th ollowing ssrtions r quivlnt: 1. G is tr omposl. 2. G is s-tr omposl. 3. G is solvl y rution nlysis. 4. G is solvl y omposition nlysis. Th lss o grphs ulliling th ov proprtis is nm th onstrutivly solvl grphs lss. CGCS p.36/37

72 Summry W hv introu th tr omposition o grph. Tr omposl grphs hrtriz th omin o rution nlysis, omposition nlysis n Own s mtho. Th omins o onstrutiv mthos r th sm. W hv lrii n rormult Own s lgorithm. Th rormult lgorithm pplis ivi-n-onqur shm n it is onptully simplr. Th output o this lgorithm is n s-tr. CGCS p.37/37

### Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

### Revisiting Decomposition Analysis of Geometric Constraint Graphs

Rvisitin Domposition Anlysis o Gomtri Constrint Grps R. Jon-Arinyo A. Soto-Rir S. Vil-Mrt J. Vilpln-Pstó Univrsitt Politèni Ctluny Dprtmnt Llnuts i Sistms Inormàtis Av. Dionl 647, 8, E 08028 Brlon [rort,

### An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

### , each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

### b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

### 12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

### 5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

### Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

### Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

### CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

### Problem solving by search

Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

### Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

### CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

### Planar Upward Drawings

C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

### (2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

. DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

### CS 241 Analysis of Algorithms

CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

### Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

### Present state Next state Q + M N

Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

### CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

### Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

### Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

### The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

### Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

### Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

### COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

### ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

### V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

### V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

### 0.1. Exercise 1: the distances between four points in a graph

Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

### Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

### Section 10.4 Connectivity (up to paths and isomorphism, not including)

Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

### 1 Introduction to Modulo 7 Arithmetic

1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

### Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

### CS September 2018

Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

### QUESTIONS BEGIN HERE!

Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

### CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

### Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

### # 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

### Trees as operads. Lecture A formalism of trees

Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

### Solutions to Homework 5

Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

### Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

### Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

### COMP108 Algorithmic Foundations

Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

### Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

### Seven-Segment Display Driver

7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

### QUESTIONS BEGIN HERE!

Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

### 5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

### Garnir Polynomial and their Properties

Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

### Graph Contraction and Connectivity

Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

### MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

### Minimum Spanning Trees

Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

### ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

### NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

### Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

### A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

### S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

### Computational Biology, Phylogenetic Trees. Consensus methods

Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

### Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

### CS 461, Lecture 17. Today s Outline. Example Run

Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

### Lecture 20: Minimum Spanning Trees (CLRS 23)

Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

### CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

### Properties of Hexagonal Tile local and XYZ-local Series

1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

### overconstrained well constrained underconstrained a b c d e f g h i j k

Using Grph Domposition or Solving Continuous CSPs Christin Blik 1, Brtrn Nvu 2, n Gills Tromttoni 1 1 Artiil Intllign Lortory, EPFL CH-1015 Lusnn, Switzrln {lik,trom}@li.i.pl.h 2 CERMICS, quip Contrints

### Quartets and unrooted level-k networks

Phylogntis Workshop, Is Nwton Institut or Mthmtil Sins Cmrig 21/06/2011 Qurtts n unroot lvl-k ntworks Philipp Gmtt Outlin Astrt n xpliit phylognti ntworks Lvl-k ntworks Unroot lvl-1 ntworks n irulr split

### More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

### learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

### EE1000 Project 4 Digital Volt Meter

Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

### Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

### MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

### Layout Decomposition for Triple Patterning Lithography

Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

### arxiv: v1 [cs.ar] 11 Feb 2014

Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

### Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

### CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

### Outline. Binary Tree

Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

### Decimals DECIMALS.

Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

### 1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

### Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

### Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

### Designing A Concrete Arch Bridge

This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

### Chapter 9. Graphs. 9.1 Graphs

Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

### FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

### CS553 Lecture Register Allocation 1

Low-Lvl Issus Lst ltur Livnss nlysis Rgistr llotion Toy Mor rgistr llotion Wnsy Common suxprssion limintion or PA2 Logistis PA1 is u PA2 hs n post Mony th 15 th, no lss u to LCPC in Orgon CS553 Ltur Rgistr

### Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

### Section 3: Antiderivatives of Formulas

Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

### (a) v 1. v a. v i. v s. (b)

Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

### CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

### Numbering Boundary Nodes

Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

### 12. Traffic engineering

lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

### Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

### Lecture II: Minimium Spanning Tree Algorithms

Ltur II: Mnmum Spnnn Tr Alortms Dr Krn T. Hrly Dprtmnt o Computr Sn Unvrsty Coll Cork Aprl 0 KH (/0/) Ltur II: Mnmum Spnnn Tr Alortms Aprl 0 / 5 Mnmum Spnnn Trs Mnmum Spnnn Trs Spnnn Tr tr orm rom rp s

### LEO VAN IERSEL TU DELFT

LEO VAN IERSEL TU DELFT UT LEO VAN IERSEL TU DELFT UT LEO VAN IERSEL TU DELFT TU/ CWI UT LEO VAN IERSEL TU DELFT TU/ CWI UT TUD LEO VAN IERSEL TU DELFT TU/ Tnzni & Kny yr LEO VAN IERSEL TU DELFT Nw Zln.5

### Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

### Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

### A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

### Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

### GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

### Can transitive orientation make sandwich problems easier?

Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

### N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt