Revisiting Decomposition Analysis of Geometric Constraint Graphs

Size: px
Start display at page:

Download "Revisiting Decomposition Analysis of Geometric Constraint Graphs"

Transcription

1 Rvisitin Domposition Anlysis o Gomtri Constrint Grps R. Jon-Arinyo A. Soto-Rir S. Vil-Mrt J. Vilpln-Pstó Univrsitt Politèni Ctluny Dprtmnt Llnuts i Sistms Inormàtis Av. Dionl 647, 8, E Brlon [rort, tonis, ss, josp]@lsi.up.s ABSTRACT Gomtri prolms in y onstrints n rprsnt y omtri onstrint rps wos nos r omtri lmnts n wos rs rprsnt omtri onstrints. Rution n omposition r tniqus ommonly us to nlyz omtri onstrint rps in omtri onstrint solvin. In tis ppr w irst introu t onpt o iit o onstrint rp. Tn w iv nw ormliztion o t omposition loritm u to Own. Tis nw ormliztion is s on prsrvin t iit rtr tn on omputin trionnt omponnts o t rp n is simplr. Finlly w pply tr ompositions to prov tt t lss o prolms solv y t ormliztions stui r n otr ormliztions rport in t litrtur is t sm. Ctoris n Sujt Dsriptors I.3.5 [Computr Grpis]: Computtionl Gomtry n Ojt Molin Gomtri Aloritms, Lnus, n Systms; F.2.2 [Anlysis o Aloritms n Prolm Complxity]: Nonnumril Aloritms n Prolms Gomtril Prolms n Computtions Gnrl Trms Tory, loritms Kywors Constrint solvin, omtri onstrints, rp-s onstrint solvin 1. INTRODUCTION Gomtri prolms in y onstrints n rprsnt y omtri onstrint rps wos nos r Prmission to mk iitl or r opis o ll or prt o tis work or prsonl or lssroom us is rnt witout provi tt opis r not m or istriut or proit or ommril vnt n tt opis r tis noti n t ull ittion on t irst p. To opy otrwis, to rpulis, to post on srvrs or to ristriut to lists, rquirs prior spii prmission n/or. SM 02, Jun 17-21, 2002, Srrükn, Grmny. Copyrit 2002 ACM /02/ $5.00. omtri lmnts n wos rs rprsnt omtri onstrints. For pplition wit potntilly lr onstrints systms, t iiny o t loritms or solvin t systm t n is n importnt issu. To i on t suitility o ivn onstrint solvin mto, its orrtnss must prov n t lss o prolms t mto n solv soul rtriz. Mny ttmpts to provi nrl, powrul n iint mtos or solvin systms o omtri onstrints v n rport in t litrtur. For n xtnsiv rviw in omtri onstrint solvin rr to Fuos [6] n Durn [3]. Amon t xistin mtos w ous on two tniqus ommonly us to nlyz omtri onstrint rps in omtri onstrint solvin, nrilly known s omposition n rution, rsptivly. Mor spiilly w r intrst in omposition n rution wr t nlysis is s on irt omtri intrprttion. Tr r otr ppros. S or xmpl Homnn t l. [7] or low-s omposition loritm. In [15], Own sri top-own loritm or omputin omposition o n ritrry rp. T loritm rursivly splits t rp into split omponnts, [8]. T loritm trmints wn t rps nnot split urtr. At t n o t nlysis t oriinl rp s n ompos into st o trinls. Fuos n Homnn, [6], rport on rp-onstrutiv ppro to solvin systms o omtri onstrints. T mto is s on n nlysis o t onstrint rp tt rivs squn o onstrution stps tt squntilly pls t omtri lmnts in t prolm wit rspt to otr. T nlysis s two prts. T irst prt is ottom-up rution nlysis wr stp in t squn orrspons to positionin tr rii omtri ois tt pirwis sr omtri lmnt, point or lin. T son prt is top-own omposition nlysis tt prous squn o ompositions tt orrspon to rvrs squn o rii omtri ois. In tis ppr w rormult t loritm rport y Own in [15] to solvin omtri onstrint prolms s on t omposition nlysis o t onstrint rp. First w introu t onpt o iit ssoit wit onstrint rp. T iit msurs t istn twn ivn onstrint rp n wll-onstrin rp inu y t sm st o nos. Tis onpt llows us to voi

2 t n or omputin trionnt omponnts yilin onptully simplr loritm. Tn w rll t tr omposition o onstrint rp, tool tt is usul to onptully nlyz onstrint rps. Finlly tr ompositions r ppli to rtriz t lss o prolms solv y t omposition nlysis stui r n to prov tt irnt ormliztions solv t sm lss o prolms. Stion 2 rviws si onpts rom rp tory n omtri onstrint rps. Stion 3 ls wit omposition nlysis. First w rll Own s loritm, tn w prsnt t nw ormliztion o t loritm. Stion 4 prsnts t tr omposition o onstrint rp. Stion 5 is vot to rtriz t lss o prolms solv y t omposition nlysis stui r n isusss t quivln o irnt ormliztions. W los wit ri summry in Stion PRELIMINARIES In tis stion w rll si trminoloy o rp tory, t onpt o omtri onstrint rp ssoit to omtri prolm in y onstrints, n som initions rlt to omtri onstrint rps. 2.1 Grp Conpts First w rll som si trminoloy o rp tory tt will us in t rst o t ppr. For n xtnsiv trtmnt s [2] n [8]. A rp G = (V, E) is si to onnt i vry vrtx is onnt to vry otr vrtx y t lst on pt o s. W sy tt vrtx o onnt rp G is n sprtion vrtx (rtiultion vrtx) i y rmovin, t rp splits into two or mor isonnt surps. I is n rtiultion no in G, tn tr r two vrtis u n v irnt rom su tt is on vry pt onntin u n v. A rp wit no rtiultion vrtis is ll ionnt. I u n v r ritrry irnt vrtis o ionnt rp G, tn tr r t lst two irnt pts in G onntin tm. A onnt rp n uniquly ompos into ionnt omponnts y splittin it t sprtion vrtis. Ao t l., [1], rport pt irst loritm tt iintly omputs su omposition. Lt n two vrtis in ionnt rp G. T s o G n ivi into sprtion lsss E 1, E 2,..., E n in s ollows, [8]. Two s r in t sm sprtion lss E i i tr is pt usin ot s n not ontinin or xpt, possily, s npoints. I t two vrtis n ivi t s into mor tn two sprtion lsss, tn t pir {, } is sprtion pir (rtiultion pir) o G. Morovr, i {, } ivis t s into two sprtion lsss, ontinin mor tn on, tn {, } is lso sprtion pir. A trionnt rp is rp wit mor tt two vrtis wit no sprtion pirs. In trionnt rp tr r t lst tr isjoint pts twn vry pir o non jnt vrtis. Lt {, } sprtion pir in t rp G tt inus t sprtion lsss E 1, E 2,..., E n. Assum 1 m n n lt E = m i=1 Ei n E = n i=m+1 Ei su tt E 2 n E 2. Tn w will rr to t rps G = (V (E ), E ) n G = (V (E ), E ) s t sprtin rps o G. T rps n G 1 = (V (E ), E {(, )}) G 2 = (V (E ), E {(, )}) r ll split rps o G. T (, ) is ll to not t split n is ll virtul. Assum tt t rp G n its split rps r rursivly split until otinin rps tt nnot split urtr. T st o ts rps ins t st o split omponnts o G. Not tt t split omponnts r trionnt rps n tt y mrin t split omponnts w rovr t oriinl rp. Hoprot n Trjn, [8], n Millr n Rmnrn, [14], rport on loritms to iintly omput sprtin rps n split omponnts o rp. 2.2 Gomtri Constrint Solvin n Grps In tis ppr w onsir onstrint prolms in y ivin st o omtri lmnts lik points, lins, lin smnts, irls n irulr rs, lon wit st o rltionsips, ll onstrints, lik istn, nl, inin n tnny twn ny two omtri lmnts. As xplin y Fuos, [4] n y Mt, [13], w my trnsorm t omtri onstrint prolm into on wr only points n lins wit pirwis istn n nl onstrints n to onsir. T omtri onstrint prolm n o s onstrint rp G = (V, E), wr t rp vrtis V r t omtri lmnts wit two rs o rom n t rp s E r t omtri onstrints, nlin on r o rom, [15, 6]. Fiur 1 sows omtri prolm in y onstrints n t omtri onstrint rp ssoit. A nssry onition or omtri onstrint prolm to solvl is tt t ssoit onstrint rp must wll-onstrin. Comintoril proprtis o wllonstrin rps v n rtriz y Lmn, [11]. Tnilly, t notion o wll-onstrin rp n ormliz s ollows, [6]. Dinition 1. Lt G = (V, E) omtri onstrint rp. 1. G is struturlly ovr-onstrin i tr is n inu surp wit m V vrtis n mor tn 2m 3 s. 2. G is struturlly unr-onstrin i it is not struturlly ovr-onstrin n E < 2 V G is struturlly wll-onstrin i it is not struturlly ovr-onstrin n E = 2 V 3. Not tt t ovr-onstrint s nls t sitution wr t sm rp is ovr-onstrin in on prt n unr-onstrint in notr t t sm tim. 3. DECOMPOSITION ANALYSIS First w rily rll t Own s loritm. Tn w iv nw ormliztion or t Own s loritm wi is simplr n tt will us in t ollowin stions.

3 A L AC 2 D C L AB L BC α B un Own(G) SC := SplitComponnts(G) S := or in SC o i Ruil() tn S := S Own(Ru()) ls S := S {} i on rturn S n 1 Fiur 2: Own s nlysis loritm. D L AC A 2 C L AB 1 α L BC Fiur 1: A omtri onstrint prolm n ssoit onstrint rp. 3.1 Own s Aloritm Own in [15] introu omtri onstrint solvin tniqu s on top-own nlysis o t omtri onstrint rp ssoit wit omtri prolm. T loritm s two stps. In irst stp, t loritm omputs t st o split omponnts S o t ivn rp G, [8]. Ts split omponnts r itr trinls or omplx trionnt rps, tt is, rps wit mor tn tr s. As omput, t omplx split omponnts r no urtr omposl. To ovrom tis prolm, in son stp t omplx split omponnts r trnsorm, i possil, y rmovin rom t rp on o t virtul s introu in t irst stp. Not tt virtul s r lwys inint to sprtion pirs. Tn t irst stp is rursivly ppli to t trnsorm split omponnts. T loritm trmints wn t rps nnot split urtr. I ny trionnt rp wit mor tn tr vrtis rmins, t prolm nnot solv qurtilly, tt is, t unrlyin qutions v r ir tn two. At t n o t nlysis, t oriinl rp s n ompos into st o trinls wos s r itr oriinl s or virtul s. I untion SplitComponnts(G) omputs t split omponnts o G, untion Ruil() ks wtr split omponnt soul urtr suivi, n untion Ru() rmovs unn virtul s o rp, Own s loritm n writtn s sown in Fiur 2. T nlysis pross ollow y Own s nlysis loritm is illustrt in Fiur 3. Virtul s r sown in B s lins. 3.2 T Nw Formliztion To ompos rp, Own s mto uss t loritm or inin trionnt omponnts rport y Hoprot n Trjn in [8], wi is s on prsrvin rp onntivity. As rsult, t split omponnts nrt y t omposition inlu xtr virtul s. To rursivly pply t omposition pross, Own s loritm must rmov ts xtr virtul s. In wt ollows w will prsnt n loritm to ompos onstrint rp in trionnt rps wit xtly tr vrtis, tt is, trinls. T loritm is s on ivi n onqur strty wi prsrvs t onstrint rp proprty o in wll-onstrin. T rsultin loritm is onptully simpl n sy to implmnt. As in [15] n [6], t loritm will s on suiviin t onstrint rp into two sprtin rps inu y sprtion pir. Wit t im o lrly sttin suivision ritrion, w strt y ivin som initions n rivin proprtis wi rlt wll-onstrin rps wit tir sprtin rps. Dinition 2. Lt G = (V, E) omtri onstrint rp. W in t Diit untion ssoit wit G y Diit(G) = (2 V 3) E T untion Diit omputs t irn twn t numr o s n or onstrint rp to wllonstrin n its tul numr o s. Not tt i G is not ovr-onstrin, Diit(G) 0 Lmm 1. Lt G onstrint rp n G n G sprtin rps. Tn Diit(G) = Diit(G ) + Diit(G ) 1 Proo. By inition, Diit(G) = (2 V 3) E ). Sin G n G r sprtion rps o G, tn V = V + V 2 n E = E + E. Tror, Diit(G) = 2( V + V 2) 3 ( E + E ) = (2 V 3 E ) + (2 V 3 E ) 1 = Diit(G ) + Diit(G ) 1

4 G SPLIT v 2 v 2 v 1 v 1 REDUCE REDUCE v 1 SPLIT SPLIT v 3 v 5 v 4 v5 v 1 v 4 v 3 Fiur 3: Own s loritm omputtion ppli to n xmpl rp.

5 Lmm 2. Lt G wll-onstrin rp n G n G sprtin rps. Tn i Diit(G ) > Diit(G ), G is unr-onstrin n G is wll-onstrin. Proo. Sin G is wll-onstrin, Diit(G) = 0 n sprtion rps, G n G, r not ovr-onstrin, tt is, Diit(G ) 0 n Diit(G ) 0. From Lmm 1 Diit(G) = Diit(G ) + Diit(G ) 1. Tus Diit(G ) + Diit(G ) = 1. Tn, Diit(G ) = 1 n Diit(G ) = 0, wi mns tt G is unr-onstrin n G wll-onstrin. Dinition 3. Lt G wll-onstrin onstrint rp n G n G sprtin rps. T moii split rps, G 1 n G 2, o G r in s ollows. I Diit(G ) > Diit(G ) tn G 1 = (V (E ), E {(, )}) n G 2 = G Lmm 3. Lt G = (V, E) onstrint rp n, G 1 = (V 1, E 1) n G 2 = (V 2, E 2) moii split rps. Tn Diit(G) = Diit(G 1) + Diit(G 2). Proo. Now E = E 1 + E 2 1. Lmm 1. Apply proo o Dinition 4. Lt G omtri onstrint rp. An s-tr S o G is inry tr o rps su tt: 1. t root is t rp G, 2. or no G in S its sutrs r root in t moii split rps G 1 n G 2 o G, n 3. t lvs r itr trinls or trionnt rps. As w will s in Stion 5 w r intrst in rps or wi tr r s-trs wos l nos r trinls us w know ow to solv t ssoit omtri onstrint prolm, [9, 15]. Dinition 5. W sy tt onstrint rp G is s-tr omposl i tr is n s-tr su tt its root is G n ll its lvs r trinls. Lt Trionnt(G) untion tt tsts wtr rp s sprtion pir, SprtinGrps(G) untion tt omputs t sprtin rps o G, (Rll tt sprtin rps o not inlu virtul s), n AVirtulE(G) untion tt s virtul inint to t sprtion pir us to omput t split rp G. Tn t omposition nlysis loritm s on prsrvin iits o rps n writtn s sown in Fiur 4. T input to t loritm is rp G ssoit to omtri onstrint prolm. T output is s-tr S wos root is G. Not tt i G is s-tr omposl t rsultin s-tr omposs G into trinls n t prolm is solv. Fiur 5 illustrts t viour o t nw omposition nlysis loritm ppli to t xmpl rp in Fiur 3. Not tt now only tos virtul s tt r stritly nssry to kp t iit proprty r inlu in t moii split rps, tror voiin t n or rp trnsormtion. Wn on o t sprtion lsss is sinl, it is inint to t vrtis in t sprtion pir. In tis s w prov t ollowin rsult. un Anlysis(G) i Trionnt(G) tn S := BinryTr(G, nulltr, nulltr) ls G 1,G 2 := SprtinGrps(G) i Diit(G 1) > Diit(G 2) tn G 1 := AVirtulE(G 1) ls G 2 := AVirtulE(G 2) i S := BinryTr(G, Anlysis(G 1), Anlysis(G 2)) i rturn S n Fiur 4: Nw loritm or omposition nlysis. Lmm 4. Lt G = (V, E) wll-onstrin omtri onstrint rp n {, } sprtion pir su tt (, ) E. Tn t sprtion rp wi ontins t (, ) is wll-onstrin. Proo. Lt {, } t sprtion pir in t rp G = (V, E) n E 1,..., E n 1, E n t sprtion lsss, wr E n ontins just t (, ). Lt E = m i=1 Ei n E = n 1 i=m+1 Ei. su tt E 2 n E 2. W v E = E + E + E n = E + E + 1 V = V (E ) + V (E ) 2 G wll-onstrin mns tt 2 V 3 E = 0. Sustitutin E n V y t xprssions ov n rrrnin trms (2 V (E ) 3 E ) + (2 V (E ) 3 E ) 2 = 0 Tr r two irnt ss. First lt (2 V (E ) 3 E ) = (2 V (E ) 3 E ) = 1 Sin lsss E i r roup ritrrily, ssum tt E = E E n. Tn V (E ) = V (E ) n E = E + 1. Tn t sprtion rps r G = (V (E ), E ) n G = (V (E ), E ). Tus t iit o t sprtion rp G = (V (E ), E ) is (2 V (E ) 3 E ) = 2 V (E ) 3 ( E + 1) = 2 V (E ) 3 E 1 = 0 Tror t sprtion rp G ontins (, ), is wll-onstrin n, sin Diit(G ) < Diit(G ), no virtul is to it. T son s ls to ontrition. Witout loss o nrlity, lt (2 V (E ) 3 E ) = 0, tt is, G is wllonstrin. Lt (2 V (E ) 3 E ) = 2. n ssum in E = E E n. Tis woul rsult in t sprtion rp G G in ovr-onstrin, tt is G woul ovr-onstrin wi is ontrition. Lmms 1, 2 n 3 lon wit Lmm 4 prov tt t loritm prsrvs t iit o t input rp.

6 G v 1 v 2 v 3 v 3 v4 v 5 Fiur 5: Domposition nlysis nrt y t nw loritm on t xmpl rp in Fiu 3.

7 v C C 2 Fiur 6: Grp wit r two vrtx v. C C 2 C 1 C3 Fiur 8: Lt: A st C. Rit: A st omposition o C. C 3 C 1 V 2 V3 Fiur 7: Suiviin rp into tr surps y usin tr vrtis, n. 3.3 Suivision Pttrn T loritm ivn in t prvious stion nlyzs onstrint rp y omposin it into two split rps inu y sprtion pir. Howvr, tr is notin ssntil in tis suivision mto. To, [16], rport on mto wr rps r suivi y isoltin vrtis o r two rom tir niors. In t, tis is prtiulr s o omposin trou sprtion pirs. Fiur 6 illustrts rp wit r two vrtx v. Not tt its niors, n, r sprtion pir. Tis suivision mto is rtr limit ut n stistorily omin wit otr mtos, lik tos in [8] or in [14], to omput mor nrl rp suivisions. Anotr mto suivis rp into tr surps y sltin tr vrtis su tt y rmovin tm t rp splits into tr onnt omponnts. S Fiur 7. W o not know ny iint loritm to slt t tr vrtis ut ty n lwys omput y usin rut or ppro. 4. TREE DECOMPOSITION In tis stion irst w in t onpt o st omposition tt rrs to wy o prtitionin ivn strt st. Tn w in t onpt o tr omposition o rp. Tis tool will us in Stion 5 to prov tt svrl onstrutiv omtri onstrint solvin mtos solv t sm lss o prolms. Dinition 6. Lt C st wit, t lst, tr irnt mmrs, sy,,. Lt {C 1, C 2, C 3} tr susts o C. W sy tt {C 1, C 2, C 3} is st omposition o C i 1. C 1 C 2 C 3 = C, 2. C 1 C 2 = {}, Fiur 9: Lt: Grp. Rit: St omposition o t rp. 3. C 1 C 3 = {} n 4. C 2 C 3 = {}. W sy tt {,, } r t tiv lmnts o t st omposition. Fiur 8 sows st n possil st omposition. Nxt w in t onpt o st omposition o rp, illustrt in Fiur 9. Dinition 7. Lt G = (V, E) rp. Lt V () not t vrtis in V tt r t npoints o E. Lt {V 1, V 2, V 3} tr susts o V. Tn {V 1, V 2, V 3} is st omposition o G i it is st omposition o V n or vry in E, V () V i or som i, 1 i 3. Rouly spkin, st omposition o rp G = (V, E), is st omposition o t st o vrtis V su tt os not rk ny in E. Fiur 10 lt sows rp G = (V, E) n Fiur 10 rit sows st omposition o V wi is not st omposition o G us vrtis inint to (, ) os not lon to ny st in t prtition. Lmm 5. Lt {V 1, V 2, V 3} st omposition o rp G n lt V 1 V 2 = {} n V 1 V 3 = {}. I V 1 > 2, tn {, } is sprtion pir o G. Proo. T surps o G inu y V i, or 1 i 3, v isjoint sts o s. By Dinition 6 V 1 (V 2 V 3) = {, }. Tus, rmovin {, } isonnts G. Tror {, } is sprtion pir. V 1

8 V 2 V 3 Fiur 10: Lt: Grp. Rit: St omposition wit rokn. V 1 {, } {, } {,,,,, } {,,, } {,, } {, } {,, } {, } {, } {, } {, } {, } {, } Fiur 12: Tr omposition o t rp in Fiur 11. Fiur 11: Colltion o st ompositions o t rp in Fiur 9. To los tis stion, w in t onpt o tr omposition o rp. Dinition 8. Lt G = (V, E) rp. A 3-ry tr T is tr omposition o G i 1. V is t root o T, 2. E no V V o T is t tr o xtly tr nos, sy {V 1, V 2, V 3 }, wi r st omposition o t surp o G inu y V, n 3. E l no ontins xtly two vrtis o V. A rp or wi tr is tr omposition is tr omposl rp. Fiur 11 sows olltion o st ompositions rursivly nrt or t tr omposl rp o Fiur 9. T orrsponin tr omposition is sown in Fiur 12. By Dinition 8, ll lvs o tr omposition T o rp G v rinlity two. 5. DOMAIN OF CONSTRUCTIVE GE- OMETRIC CONSTRAINT SOLVING TECHNIQUES Jon-Arinyo t l. sow in [10] tt t lss o tr omposl rps rtrizs t omin o two onstrutiv omtri onstrint solvin tniqus: rution n omposition nlysis s sri rsptivly in [6], n [10]. Hr, w will s tt t omposition nlysis stui in Stion 3 n rtriz lso y t xistn o tr omposition n tt it s t sm omin s t rution n omposition nlysis ov mntion. In wt ollows w will only onsir onstrint rps G ssoit wit wll-onstrin prolms. In ts onitions, s-trs r inry trs wos root is G, t otr nos r sprtion rps wit rspt to som sprtion pir o t prnt no n, t lvs r trinls or trionnt rps wit no rtiultion pirs. Aorin to t numr o virtul s in t trinls in t l nos o n s-tr, w lssiy tm in our irnt typs. S t son olumn in Tl Domin Crtriztion To rtriz t omposition nlysis stui in Stion 3 w prov two lmms. Lmm 6. I rp G is tr omposl, tn G is s-tr omposl. Proo. Assum tt T is tr omposition o G. W sll pro y inution on t strutur o T, [12]. Rr to Tl 1. Inution s: Lt G = (V, E) rp su tt V = {,, } n E = {(, ), (, ), (, )}. T tr T in t tir olumn o Tl 1 is tr omposition o G. Tn t tr in t ourt olumn is s-tr wos root is rp G = G 0 wit just on no rprsntin t trinl {,, }. Inution ypotsis: Lt G surp o G. I G is tr omposl tn G is s-tr omposl.

9 n G 0 Tr-omposition T S-tr S {,, } 0 G 0 {, } {, } {, } {,, } C G 1 1 {, } C 1 {, } {, } S 1 G 0 {,, } C G 2 2 S 2 G 1 {, } C 1 {, } C 2 {, } S 1 G 0 G 3 {,, } C S 3 G 2 3 S 2 G 1 {, } C 1 {, } C 2 {, } C 3 S 1 G 0 Tl 1: Typs o intrior nos in tr omposition n t quivlnt s-tr omposition.

10 un FromTrToS-Tr(T ) G 0 := ComputTrinl(T ) S := BinryTr(G 0, NullTr, NullTr) n := NumrOVirtulEs(G 0) or j in 1 to n o T j := Sutr(T, j) S j := FromTrToS-Tr(T j) G j := Root(S j) G j := MrGrps(G j, G j 1) S := BinryTr(G j, S j, S) n rturn S n Fiur 13: Computin s-tr S rom tr omposition T. Inution stp: I {C 1, C 2, C 3} is st omposition o C n {,, } t tiv lmnts, w v tt C = C {,, }, C 1 = C 1 {, }, C 2 = C 2 {, } n C 3 = C 3 {, }. Lt G rp n T tr omposition o G su tt its root is {,, } C n t roots o its sutrs r {, } C 1, {, } C 2 n {, } C 3. Assum tt C 1 n C 2 = C 3 =. Lt G 1 t surp inu y {, } C 1 in G. Lt T 1 t tr omposition o G 1. By Lmm 5, (, ) is sprtion pir o G tus G 1 is sprtion rp o G. Buil t otr sprtion rp G 2 s t rp G 2 = (V 2, E 2) wit V 2 = {,, } n E 2 = {(, ), (, )}. By Dinition 1, G 2 is unronstrin, tus y Lmm 2, G 1 is wll-onstrin. Now uil t moii split rps o G s G 0 = (V 2, E 2 {(, )}) n G 1. Sin G 1 is tr omposl, y t inution ypotsis it is s-tr omposl. Tror tr is s-tr, sy S 1, wos root is G 1. Hn t inry tr wos root is G n wos sutrs r G 0 n S 1 is s-tr. Tror G is s-tr omposl. Applyin t sm prour or ss C 2 n C 3 omplts t proo. I untion ComputTrinl(T ) omputs t trinl ssoit wit no o tr omposition, n untion MrGrps(G 1, G 2) ruils rp rom its moii split rps, Fiur 13 sows n loritm tt, s on Lmm 6, omputs s-tr S rom tr omposition T o rp G. Lmm 7. I rp G is s-tr omposl, tn G is tr omposl. Proo. Assum tt S is s-tr wos root is G. Ain w sll pro y inution on t strutur o S. Rr to Tl 1. Inution s: Lt G = (V, E) rp su tt V = {,, } n E = {(, ), (, ), (, )}. T s-tr S o G is tt ivn in t ourt olumn o Tl 1. Tn t tr ivn in t tir olumn is tr omposition o G. Inution ypotsis: Lt G surp o G. I G is s-tr omposl tn G is tr omposl. Inution stp: Lt S s-tr wos root is G n wos sutrs r G 0 n S 1. Assum tt G 0 = (V 0, E 0) wit V 0 = {,, } n E 0 = {(, ), (, )} {(, )} n lt G 1 = (V 1, E 1) t root o t s-tr S 1. By Dinition 4, G 0 n G 1 r t moii split rps o G wit rspt to t sprtion pir {, }. Sin G 1 is s-tr omposl, y inution ypotsis it is tr omposl. Tror tr is tr omposition T 1 o G 1. Buil tr omposition T su tt its sutrs r T 1, {, } n {, }. S Tl 1. Sutrs {, } n {, } sr t no. Sin {, } is sprtion pir o G, V 0 V 1 = {, }. But V 0, tus / V 1, {, } V 1 = {}, n {, } V 1 = {}. Tror T is tr omposition o G. Applyin t sm prour or ss in rows tr n our in Tl 1 omplts t proo. 5.2 Domin quivln Now, w will s tt t lss o s-tr omposl omtri onstrint rps n t lss o tr omposl rps r t sm. In otr wors, omtri onstrint prolm xprss y mns o omtri onstrint rp is solvl y Own s tniqu i n only i t rp is tr omposl. Sin w prov in [10] tt omtri onstrint rp is solvl y rution nlysis, [5], i n only i t rp is tr omposl, tis implis tt Own s tniqu n rution nlysis v t sm omin n tt its omin n rtriz y t lss o tr omposl rps. Torm 1. Lt G = (V, E) omtri onstrint rp. T ollowin ssrtions r quivlnt: 1. G is tr omposl. 2. G is s-tr omposl. 3. G is solvl y rution nlysis. 4. G is solvl y omposition nlysis. Proo. Jon-Arinyo t l. prov in [10] t quivln o ssrtions 1, 3 n 4. Lmm 6 provs tt 1 implis 2 n Lmm 7 provs tt 2 implis 1. Tis torm sows tt t onstrutiv mtos onsir r v t sm omin, tt is, ty solv t sm lss o prolms. Howvr, o tm xiits irnt proprtis lik iiny n vior wit rspt to unr-onstrin prolms, s [6], [10] n [15]. 6. SUMMARY W v introu t onpt o iit o onstrint rp. Bs on tis onpt, w v prsnt nw ormliztion or omposition nlysis loritm. W v prov its orrtnss. T i o prsrvin just t onstrint rp iit vois t n or nrl loritms to omput trionnt omponnts. Tus t rsultin omposition nlysis loritm is onptully simplr. W v us t tr omposition s nrl tool or omposition nlysis o onstrint rps. Spiilly, w v ppli it to prov tt irnt omposition nlysis ormliztions solv t sm lss o omtri onstrint prolms.

11 Aknowlmnts Tis rsr s n support y CICYT unr t projt TIC C Commnts o nonymous rrs lp to improv t ppr. 7. REFERENCES [1] Alr V. Ao, Jon E. Hoprot, n Jry D. Ullmn. T Dsin n Anlysis o Computr Aloritms. Computr Sin n Inormtion Prossin. Aison Wsly Pulisin Compny, Rin, MA, [2] Gry Crtrn n Lin Lsnik. Grps & Dirps. Cpmn & Hll, 3r ition, [3] C. Durn. Symoli n Numril Tniqus or Constrint Solvin. PD tsis, Puru Univrsity, Dprtmnt o Computr Sins, Dmr [4] I. Fuos. Constrint Solvin or Computr Ai Dsin. PD tsis, Puru Univrsity, Dprtmnt o Computr Sins, Auust [5] I. Fuos n C.M. Homnn. Corrtnss proo o omtri onstrint solvr. Intrntionl Journl o Computtionl Gomtry n Applitions, 6(4): , [6] I. Fuos n C.M. Homnn. A rp-onstrutiv ppro to solvin systms o omtri onstrints. ACM Trnstions on Grpis, 16(2): , April [7] C.M. Homnn, A. Lomonosov, n M. Sitrm. Gomtri onstrint omposition. In B. Brürlin n D. Rollr, itors, Gomtri Constrint Solvin n Applitions, ps Sprinr, Brlin, [8] J. E. Hoprot n R. E. Trjn. Diviin rp into trionnt omponnts. Tnil rport, Computr Sin Dprtmnt. Cornll Univrsity, It, NY. USA, Frury Nw rvision o TR [9] R. Jon-Arinyo n A. Soto-Rir. Cominin onstrutiv n qutionl omtri onstrint solvin tniqus. ACM Trnstions on Grpis, 18(1):35 55, Jnury [10] R. Jon-Arinyo, A. Soto-Rir, S. Vil-Mrt, n J. Vilpln. On t omin o onstrutiv omtri onstrint solvin tniqus. In R. Ďurikovič n S. Cznnr, itors, Sprin Conrn on Computr Grpis, ps IEEE Computr Soity, [11] G. Lmn. On rps n riiity o pln skltl struturs. Journl o Eninrin Mtmtis, 4(4): , Otor [12] Z. Mnn n R. Wlinr. T Dutiv Fountions o Computr Prormmin. Aison-Wsly Pu. Co., [13] N. Mt. Solvin inin n tnny onstrints in 2D. Tnil Rport LSI-97-3R, Dprtmnt LSI, Univrsitt Politèni Ctluny, [14] Gry L. Millr n Vijy Rmnrn. A nw rp trionntivity loritm n its prllliztion. Comintori, 12:53 76, [15] J. C. Own. Alri solution or omtry rom imnsionl onstrints. In Pro. o ACM Symposium on Fountions o Soli Molin, ps , Austin TX, USA, ACM. [16] P. To. A k-tr nrliztion tt rtrizs onsistny o imnsion ninrin rwins. SIAM J. Dis. Mt, 2(2): , 1989.

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures 1 (4, )-oosility o plnr rps wit orin struturs 4 5 Znr Brikkyzy 1 Cristopr Cox Mil Diryko 1 Kirstn Honson 1 Moit Kumt 1 Brnr Liiký 1, Ky Mssrsmit 1 Kvin Moss 1 Ktln Nowk 1 Kvin F. Plmowski 1 Drrik Stol

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014 Grp Aloritms n Comintoril Optimiztion Dr. R. Cnrskrn Prsntrs: Bnjmin Frrll n K. Alx Mills My 7t, 0 Mtroi Intrstion In ts ltur nots, w mk us o som unonvntionl nottion or st union n irn to kp tins lnr. In

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then: Assinmnts: DFA Minimiztion CMPU 24 Lnu Tory n Computtion Fll 28 Assinmnt 3 out toy. Prviously: Computtionl mols or t rulr lnus: DFAs, NFAs, rulr xprssions. Toy: How o w in t miniml DFA or lnu? Tis is t

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

A Tractable, Approximate, Combinatorial 3D rigidity characterization

A Tractable, Approximate, Combinatorial 3D rigidity characterization A Trtl, Approximt, Comintoril D riiity rtriztion Mr Sitrm Yon Zou Jun 0, 00 Astrt Tr is no known, trtl, rtriztion o D riiity o sts o points onstrin y pirwis istns or D istn onstrint rps. W iv omintoril

More information

Geometric constraints within Feature Hierarchies

Geometric constraints within Feature Hierarchies Gomtri onstrints witin Ftur Hirris Mr Sitrm Jin-Jun Oun Yon Zou Am Arr April 8, 005 Astrt W stuy t prolm o nlin nrl D n D vritionl onstrint rprsnttion to us in onjuntion wit tur irry rprsnttion, wr som

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT

24CKT POLARIZATION OPTIONS SHOWN BELOW ARE REPRESENTATIVE FOR 16 AND 20CKT 0 NOTS: VI UNSS OTRWIS SPII IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION IRUIT SMT USR R PORIZTION OPTION. NR: a. PPITION SPIITION S: S--00 b. PROUT SPIITION S: PS--00 c. PIN SPIITION

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

MCS100. One can begin to reason only when a clear picture has been formed in the imagination.

MCS100. One can begin to reason only when a clear picture has been formed in the imagination. 642 ptr 10 Grps n Trs 46. Imin tt t irmsown low is mp wit ountris ll. Is it possil to olor t mp wit only tr olors so tt no two jnt ountris v t sm olor? To nswr tis qustion, rw n nlyz rp in wi ountry is

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

c 2009 Society for Industrial and Applied Mathematics

c 2009 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 0, No. 0, pp. 000 000 2009 Soity or Inustril n Appli Mtmtis THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS HAL KIERSTEAD, BOJAN MOHAR, SIMON ŠPACAPAN, DAQING

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Applications: The problem has several applications, for example, to compute periods of maximum net expenses for a design department.

Applications: The problem has several applications, for example, to compute periods of maximum net expenses for a design department. A Gntl Introution to Aloritms: Prt III Contnts o Prt I: 1. Mr: (to mr two sort lists into sinl sort list.). Bul Sort 3. Mr Sort: 4. T Bi-O, Bi-Θ, Bi-Ω nottions: symptoti ouns Contnts o Prt II: 5. Bsis

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017 Dv Mount CMSC 45: Ltur Grph Bsis Thursy, Au, 07 Rin: Chpt. in KT (Klinr n Tros) n Chpt. in DBV (Dsupt, Ppimitriou, n Vzirni). Som o our trminoloy irs rom our txt. Grphs n Dirphs: A rph G = (V, E) is strutur

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Continuous Flattening of Convex Polyhedra

Continuous Flattening of Convex Polyhedra Continuous Flttnin o Conv Polr Jin-ii Ito 1, Ci Nr 2, n Costin Vîlu 3 1 Fult o Eution, Kummoto Univrsit, Kummoto, 860-8555, Jpn. j-ito@kummoto-u..jp 2 Lirl Arts Eution Cntr, Aso Cmpus, Toki Univrsit, Aso,

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

STRUCTURAL GENERAL NOTES

STRUCTURAL GENERAL NOTES UILIN OS: SIN LOS: RUTURL NRL NOTS NRL NOTS: US ROUP: - SSMLY USS INTN OR PRTIIPTION IN OR VIWIN OUTOOR TIVITIS PR MIIN UILIN O STION. SSONL. T UNTION O TIS ILITY IS NOT OR QUIPP OR OUPNY URIN WINTR/ TIN

More information

Yehuda Lindell Bar-Ilan University

Yehuda Lindell Bar-Ilan University Wintr Shool on Sur Computtion n iiny Br-Iln Unirsity, Isrl 3//2-/2/2 Br Iln Unirsity Dpt. o Computr Sin Yhu Linll Br-Iln Unirsity Br Iln Unirsity Dpt. o Computr Sin Protool or nrl sur to-prty omputtion

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Experiment # 3 Introduction to Digital Logic Simulation and Xilinx Schematic Editor

Experiment # 3 Introduction to Digital Logic Simulation and Xilinx Schematic Editor EE2L - Introution to Diitl Ciruits Exprimnt # 3 Exprimnt # 3 Introution to Diitl Loi Simultion n Xilinx Smti Eitor. Synopsis: Tis l introus CAD tool (Computr Ai Dsin tool) ll Xilinx Smti Eitor, wi is us

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Optimization of Multistage Interconnection Networks

Optimization of Multistage Interconnection Networks IEEE TRNSCTIONS ON COMPUTERS, VOL. C-34, NO. 3, MRCH 985 Dynmi ssiility Tstin n Pt Lnt Optimiztion o Multist Intronntion Ntworks 55 DHRM P. GRWL, SENIOR MEMBER, IEEE, ND J-SONG LEU, STUDENT MEMBER, IEEE

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

CS150 Sp 98 R. Newton & K. Pister 1

CS150 Sp 98 R. Newton & K. Pister 1 Outin Cok Synronous Finit- Mins Lst tim: Introution to numr systms: sin/mnitu, ons ompmnt, twos ompmnt Rviw o ts, ip ops, ountrs Tis tur: Rviw Ts & Trnsition Dirms Impmnttion Usin D Fip-Fops Min Equivn

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings PAGES Primry Primry Mths Bsis Sris THE SUBTRACTION BOOK A prorssion o sutrtion skills writtn y Jillin Cokins INTRODUCTION This ook is intn to hlp sur th mthmtil onpt o sutrtion in hilrn o ll s. Th mstry

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian)

Slide-and-swap permutation groups. Onyebuchi Ekenta, Han Gil Jang and Jacob A. Siehler. (Communicated by Joseph A. Gallian) msp INVOLVE 7:1 (2014) x.oi.or/10.2140/involv.2014.7.41 Sli-n-swp prmuttion roups Onyui Eknt, Hn Gil Jn n Jo A. Silr (Communit y Josp A. Gllin) W prsnt simpl til-sliin m tt n ply on ny 3-rulr rp, nrtin

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information