# Garnir Polynomial and their Properties

Size: px
Start display at page:

Transcription

1 Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07

2 Grnir Polynomil n thir Proprtis Yu Wng mil: In this ppr, w r stuying th polynomils in n vrils whih hv nily unr prmuttion of vrils. Th stuy in n vrils polynomils whih oul wily ppli in mny rs inluing rprsnttion thory, lgr n physis. W strt with som si notions lik symmtri polynomils whih o not hng th vlu unr prmuttions (for xmpl: x + x ), n nti-symmtri polynomils whih only hng th sign of th vlu unr prmuttions (for xmpl: x x ) to illustrt how prmuttions work s wll s som othr proprtis of ths polynomils. Thn w will fous on mor intrsting xmpls lik Grnir polynomils whih n xprss in trms of Young igrms. Grnir polynomils r polynomils of th form (x i x j )... (x s x t ), thy hv mny intrsting proprtis. In this ppr, w minly r out Grnir polynomils whih only involv four vrils t tim, n stuy th imnsion of thir spn. Symmtri polynomils Symmtri polynomils hv th sm vlu t ny prmuttions. Dfinition.0.. A polynomil f(x,..., x n ) is symmtri polynomil if for ll prmuttions φ, f(x,...x n ) = f(x φ(),...x φ(n) ).

3 W fin th polynomils of k s follows: k (x, x,..., x n ) = j j...j k n x j...x jk For k from to n, w n fin th following lmntry symmtri polynomils: (x, x,..., x n ) = x j j n (x, x,..., x n ) = x j x k... jk n n (x, x,..., x n ) = x x...x n Clrly, k is symmtri for ll k n n. Thorm.0.. Evry symmtri funtion in x... x n is polynomil in th lmntry symmtri polynomils k. Proof. W first fin n orr on monomils tht x x...x n n x x...x n n if n n ; or n = n n n n ; or n = n, n = n n n n ; n so on... For ny s = x x...x n n n t = x x...x n n, s n t r lwys omprl, so ithr s = t, or s > t or s t. For givn symmtri polynomil, w n lwys fin mximl monomil x j x j...x jn n, n w n lwys fin prout of lmntry symmtri polynomils k suh tht x j x j...xn jn is lso th mximl in it. For xmpl, givn x x x is th mximl lmnt, w n onstrut polynomil y multiplying (x, x, x ) (x, x, x ) (x, x, x ) (x, x, x )=(x x x ) (x x + x x + x x ) (x + x + x ). Multiplying th ling trm in h lmntry symmtri polynomil, w gt (x x x ) (x x ) (x ) = x x x, whih givs th mximl lmnt s w sir.

4 For symmtri polynomil f(x,..., x n ), if x x...x n n is th ling trm, w know tht... n. Sin f is symmtri, w n lwys mk this inqulity hol. If w sutrt this prout from th originl symmtri polynomil, it is ovious tht th mximl lmnt in th nw polynomil is stritly smllr thn th mximl lmnt in th ol on. Sin th numr of lmnts smllr thn th mximl lmnt is finit, y sutrting ths polynomils gin n gin, th originl polynomil will vntully om 0 in finit numr of stps. Hn, ll symmtri polynomils r polynomils in k. Antisymmtri polynomils Antisymmtri polynomils hng th sign n kp th vlu t ny prmuttions. In othr wors:f(x,..., x i,..., x j,..., x n )= f(x,..., x j,..., x i,..., x n ). Thorm.0.. W = ij(x i x j ) is ntisymmtri. Proof. Lt f(x,..., x s,..., x t,..., x n )= ij(x i x j ) n w prmut x s n x t. Dnot th nw polynomil y f(x,..., x t,..., x s,..., x n ). W n fin out tht th two polynomils hv som ommon ftors whih o not involv x s, x t, n thos whih hv on of thm ut th othr vril is for oth of x s, x t or ftr oth of thm. Dnot thm s C = (x i x j ) n i,j s,t C = (x m x n ), C = (x m x n ) Rpl th ommon ftors n w gt m=s or t,n>s,t n=s or t,ms,t f(x,..., x s,..., x t,..., x n )=C C C [(x s x s+ )...(x s x t )][(x s+ x t )...(x t x t )](x s x t ) n f(x,..., x t,..., x s,..., x n )=C C C [(x t x s+ )...(x t x t )][(x s+ x s )...(x t x s )](x t x s ). Thr r xtly (t s + ) ftors in th first rkt n son rkt, n thy r ngtiv vlu of h othr, this lvs us th lst ftor (x s x t ) n (x s x t ). So,f(x,..., x s,..., x t,..., x n )=( ) (t s+)+ f(x,..., x t,..., x s,..., x n ). It givs f(x,..., x s,..., x t,..., x n )= f(x,..., x t,..., x s,..., x n ) s w sign to hv.

5 Thorm.0.. Evry ntisymmtri polynomil f n writtn s f(x, x,..., x n ) = W g(x, x,..., x n ) whr W is fin in Thorm.0. n g is symmtri. Proof. First, w wnt to prov tht f is ivisil y (x i x j ) for ll i j. Assum tht x i = x j, thn f(x,..., x i,..., x j,..., x n ) = f(x,..., x j,..., x i,..., x n ). In ition f is ntisymmtri, w hv: f(x,..., x i,..., x j,..., x n ) = f(x,..., x j,..., x i,..., x n ). Comining ov two qutions givs f(x,..., x i,..., x i,..., x n ) = 0. So f is ivisil y (x i x j ) n thrfor ivisil y W. W rwrit th qution s f(x,x,...,x n) W = g(x, x,..., x n ), sin oth f(x, x,..., x n ) n W r ntisymmtri, w know tht g(x, x,..., x n ) os not hng th vlu unr prmuttions. Hn g is symmtri. Young Digrms A Young igrm is omintoril ojt usful in rprsnttion thory. A Young igrm is sust of (Z + ), suh tht if (i, j) is ontin in it, thn ll (, ) r ontin for i, j. (,) As w n s, sin (,) is ontin in this Young igrm, thn (, ) is lso ontin for,. Dfinition.0.. A Young tlu is wy to fill th igrm with numrs from to n (n is th numr of oxs). Dfinition.0.. A stnr Young tlu is Young tlu suh tht th numrs in th sm row n olumn r in inrsing orr from ottom to top n lft to right.

6 Th following is n xmpl of Young igrm (,,) n on of its Young tlu n on of its stnr Young tlu Young igrm Young tlu stnr Young tlu Grnir Polynomils Suppos tht T is stnr Young tlu. Dfinition.0.. W fin Grnir polynomil y th qution G T = In th following s, G(,,, ) = (x x )(x x ) i ov j (x i x j ). In th following thorm, w only onsir Young igrms with rows of lngth (n, ). Thorm.0.. If w prmut th vrils G(,,, ) G(,,, ) linr spn V n of ll G(,,, ) is prsrv y prmuttions. (so V n is rprsnttion of S n ). Thorm.0.. Th sis in V n is givn y G(,,, ) suh tht th orrsponing Young tlux r stnr. (so,,, n w n hv svrl s) Thorm.0.. Th numr of stnr Young tlux is qul to n(n ). Thorm.0. is lr. Lt s prov Thorm.0.: 5

7 Proof. In orr to prov Thorm.0., w wnt to prov tht th Grnir polynomils w gnrt from ny four numrs in th first y squr n writtn s th spn of Grnir polynomils whih orrspon to stnr Young tlux. W hv th following quivln rltions:.exhng numrs in th sm olumn is ntisymmtri. > G T = G T T T.Exhng th ntir olumn is symmtri. > G T = G T T T By using ths two rltions, w oul t lst nsur, n in th following Young tlu.? If, thn this Young tlu is stnr; w n to isuss th s >. W onstrut rltion s follow: + = 0 (x x )(x x ) + (x x )(x x ) (x x )(x x ) = 0 Sin w know tht > > >, on n hk tht th son n th thir Young tlux r stnr. From th prvious stps, w oul lwys mk > > n > >. 6

8 ? Lst, w n to hk whthr. If, it is stnr, so w n onsir th s tht. W onstrut rltion s follow: + = 0 (x x )(x x ) (x x )(x x ) + (x x )(x x ) = 0 Sin w know tht > >, > > >, on n hk tht th son n th thir Young tlux r stnr. Hn, Thorm.0. is prov. Nxt, w wnt to prov Thorm.0.: Proof. W will prov it y inution. First, w hk th s s tht only hs vrils. As shown low, thr r stnr Young tlux of vrils. Assum thr r n(n ) stnr Young tlux for n vrils. W now hk th numr of stnr Young tlux of (n + ) vrils. It is tru tht th iggst numr (n+) n only pl on th rightmost lnk, so w ivi it into two ss. 7

9 x n + n + s s For s, th numr of stnr Young tlux r th sm s th s for n vrils, whih is n(n ). For s, th smllst numr is finitly fill in th lft ottom ornr, n w only n to hoos th numr for x. As long s numr x is hosn, th rmining numrs will utomtilly fill in th rmining lnks in lin in n inrsing orr. Hn, it is (n ) hois. Sum up ths two ss, n(n ) + (n ) = (n+)(n ). W gt (n+)(n ) stnr Young tlux s w sir to hv. 5 Hook Lngth Bfor w introu Hook Lngth formul, w fin λ (i, j) n l λ (i, j) s follow: Suppos tht (i, j) is th ox in Young igrm, λ (i, j)=numr of oxs to th right of (i, j); l λ (i, j)=numr of oxs ov (i, j). Dfinition Th Hook Lngth formul for th Young tlu is xprss y: H λ = n! hλ (i,j), whr h λ(i, j) = λ (i, j) + l λ (i, j) +. Exmpl For th following Young igrm (6,,,), w hv th h λ (i, j) in th oxs s follow: 8

10 Thn th Hook Lngth formul H λ = n! hλ (i,j) 6! = =50050 Thorm Th numr of stnr Young tlux of shp λ is qul to H λ. This thorm is known in gnrl, hr w prov it for ny two-row Young igrm. Proof. Consir Young igrm with row lngths k n l (k l).in th Pi 5., n = k +l, th prout of hook lngth for th first row is h λ (, j) = k! n th prout of th hook lngth for th son row is h λ (, j) = (l+)!. By lultion, l k+ H λ = (k + l)! (l k + ) k!(l + )!. Lt im(k, l) th numr of stnr Young tlux with row lngths k n l. Knowing tht th lrgst numr n only fill in th rightmost oorint for stnr Young tlux, w n gt th rltion tht: im(k, l) = im(k, l) + im(k, l ). Chk th rltion y rpling y Hook Lngth formul, Right Hn Si= (k+l)! (l k+) k!(l+)! Lft Hn Si= (k+l )! (l k+) + (k+l )! (l k) (k )!(l+)! k!(l)! Now hking RHS-LHS, first w multiply h ftor y (k )!l! (k+l )!, thn (k )!l! (k+l)(l k+) (RHS-LHS)= l k+ l k = 0 (k+l )! k(l+) l+ k Sin (k )!l! (k+l )! 0, w hv RHS=LHS. Lst, w hk th s s k = : RHS= (l+)! (l +) (l+)! = l 9

11 LHS= (+l )! (l +) + (+l )! (l ) 0!(l+)!!(l)! = (l+)! + l! (l ) (l+)! (l)! = + (l ) = l It lso givs RHS=LHS, whih shows this rltion is orrt. k l + l-k+ Pi 5. Corollry For th Young igrm with row lngth (l, l,..., l n ),(l i > l j for i j), th numr of stnr Young tlux is y pplying th Hook Lngth Formul. ( n l i )! i l j + j i) i= ij(l n ((l i + n i)!) i= On n pply Hook Lngth Formul to prov th ov orollry. 6 Applition n Rlt Qustions Hr is qustion tht mny of us r fmilir. Suppos thr is y squr n w not th top-lft ornr A, ottom-right ornr B, () how mny wys to wlk from A to B? () How mny wys to wlk from A to B suh tht th whol pth is unr th igonl AB? A B For qustion(), w hv th following 6 wys: 0

12 () () () () (5) (6) For qustion (), w hv wys, thy r () n (5) in qustion (). How is this prolm rlt to Young tlux? Consir th y Young igrm, fill th numrs,,,. Thn w fin h numr from to, if th numr is in th top row, w mov right, n if th numr is in th ottom row, w mov own. Sin w r moving stps right n stps own, w will vntully gos to B. Following r th orrsponing Young tlux to qustion (). (Thr r mor thn on orrsponing Young tlu to h pth in (), ut w rrng th orr, so tht h row is in inrsing orr from lft to right. () () () () (5) (6) W n fin tht (),(5) is stnr.

13 Thorm For n n y n squr, th pth from top-lft ornr to ottom-right ornr unr th igonl is orrsponing to th y n stnr Young tlu. Proof. W not h vrtx (, ) for is th numr of oxs to th lft n is th numr of oxs ov it. Hn, w hv top-lft vrtx s (0,0), n ottom-right vrtx s (n, n), whil moving from (0,0) to (n, n) tks n stps right n n stps own, totlly n stps. As w wnt th whol pth unr th igonl, th vrtis (, ) w pss shoul hv th proprty tht. In th stnr Young tlux, in th sm olumn, th top numr is lwys lrgr thn th ottom numr. So th numr of stps w mov right nnot lrgr thn th numr of stps w mov own, this is quivlnt to.

### (2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

. DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

### 1 Introduction to Modulo 7 Arithmetic

1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

### Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

### Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

### 0.1. Exercise 1: the distances between four points in a graph

Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

### Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

### COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

### S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

### , each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

### The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

### CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

### Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

### b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

### Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

### Present state Next state Q + M N

Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

### Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

### Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

### CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

### COMP108 Algorithmic Foundations

Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

### Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

### An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

### DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

### Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

### Section 10.4 Connectivity (up to paths and isomorphism, not including)

Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

### # 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

### 12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

### 5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

### Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

### ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

### QUESTIONS BEGIN HERE!

Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

### Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

### Numbering Boundary Nodes

Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

### CS 461, Lecture 17. Today s Outline. Example Run

Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

### Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

### TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

### Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

### QUESTIONS BEGIN HERE!

Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

### Trees as operads. Lecture A formalism of trees

Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

### Formal Concept Analysis

Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

### Solutions to Homework 5

Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

### Constructive Geometric Constraint Solving

Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

### Last time: introduced our first computational model the DFA.

Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

### Seven-Segment Display Driver

7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

### CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

### CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

### Binomials and Pascal s Triangle

Binomils n Psl s Tringl Binomils n Psl s Tringl Curriulum R AC: 0, 0, 08 ACS: 00 www.mthltis.om Binomils n Psl s Tringl Bsis 0. Intif th prts of th polnomil: 8. (i) Th gr. Th gr is. (Sin is th highst

### INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

### Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

### SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

### V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

### V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

### CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

### CS September 2018

Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

### Planar Upward Drawings

C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

### 1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

### CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

### More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

### Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

### 12. Traffic engineering

lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

### FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

### Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

### MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

### Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

### Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

### Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

### a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

### Combinatorial Networks Week 1, March 11-12

1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

### Walk Like a Mathematician Learning Task:

Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

### Instructions for Section 1

Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

### UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

- Nming frtions Chptr Frtions Eh shp rprsnts ONE whol. i ii Wht frtion is shdd? Writ s frtion nd in words. Wht frtion is not shdd? Writ s frtion nd in words. i ii i ii Writ s mny diffrnt frtions s you

### Section 3: Antiderivatives of Formulas

Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

### Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

### Polygons POLYGONS.

Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

### This chapter covers special properties of planar graphs.

Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

### Minimum Spanning Trees

Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

### CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

### Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

### Steinberg s Conjecture is false

Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

### 5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

### Construction 11: Book I, Proposition 42

Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

### On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E

### Aquauno Video 6 Plus Page 1

Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

### Linear Algebra Existence of the determinant. Expansion according to a row.

Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

### NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

### Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

### Chapter 9. Graphs. 9.1 Graphs

Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

### Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

### Designing A Concrete Arch Bridge

This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

### MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

### Problem solving by search

Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

### Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

### Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

### OpenMx Matrices and Operators

OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

### 8Algebraic UNCORRECTED SAMPLE PAGES. techniques. What you will learn. Australian curriculum. Chapter 8A 8B 8C 8D 8E 8F

8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K Chptr Wht you will lrn 8Algri thniqus Epning inomil prouts Prt squrs n irn o prt squrs Ftorising lgri prssions Ftorising th irn o two squrs Ftoristion y grouping Ftorising

### Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

### Analysis for Balloon Modeling Structure based on Graph Theory

Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

### HIGHER ORDER DIFFERENTIAL EQUATIONS

Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

### Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion