Numbering Boundary Nodes

Size: px
Start display at page:

Download "Numbering Boundary Nodes"

Transcription

1 Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out th topology of th ntwork? This ppr onsirs spifi ntworks n thir Λ, n shows how th ounry nos wr pl in th originl ntwork. In othr wors, no mttr how th ounry nos r numr, n th informtion from Λ n out th ntwork still rovr? Most of th ntworks look t in this ppr r g onutivity ntworks whr urrnt t p, φ(p), is fin s suh: γ p,q (u p u q ) q p whr γ p,q is th onutivity of th g joining no p to q. Th Kirhhoff mtrix, K, for ntwork with n nos, is n n n symmtri mtrix whr K i,j = γ i,j whn i j K i,i = j i γ i,j It is usful to writ K in lok form whr th intrior nos fll in lok C n th ounry nos fll in A. [ ] A B K = B T C Thn th rspons mtrix, Λ is form y tking th Shur omplmnt of K in C. Tht is Λ = A BC 1 B T In orr to trmin sign onitions in Λ, slt two istint sts of ounry nos, P = (p 1, p 2,..., p k ) n Q = (q 1, q 2,..., q k ). Thn tλ(p ; Q) tk(i; I) = ( 1) { } k sgn(τ) γ() D α τ S k α E α 1 τ α=τ

2 shows wht th sign of t Λ(P ; Q) is. So if thr is only on istint piring twn th nos in P n th nos in Q, thn th sign of t Λ(P ; Q) is known. This kgroun informtion oms from [1]. This ppr looks t nnulr ntworks, mny of whih hv onutivitis onstnt on lyrs. Du to th symmtry of th ntworks, th orring of th ounry nos n foun in ths ss, minly us of th symmtris foun in Λ n sign onitions of Λ. 2 Annulr Ntwork with Thr Rys n Two Cirls Figur 1: G(3,2) First onsir G(3,2), tht is grph fin s suh: G(# of rys, # of irls), n ssum tht onutivity is onstnt on lyrs. Thn th rspons mtrix, Λ, is s follows: 2

3 whr α = Λ = Σ α α β γ γ α Σ α γ β γ α α Σ γ γ β β γ γ Σ δ δ γ β γ δ Σ δ γ γ β δ δ Σ 2 ( ) ( + + )( ) β = ( ) ( + + )( ) γ = ( ) ( + + )( ) n δ = ( ) 2 ( + + )( ) Σ = (Sum of th row ntris) Rgrlss of how th ounry nos r numr th rspons mtrix still ontins four istint ntris whih provi informtion out th strutur of th ntwork. Th informtion my not s ovious s for us th orring of th ntris in Λ is no longr th sm, ut th informtion is still thr. For instn, if λ x,y is β thn x n y r ounry nos on th sm ry. It is firly sy to intify th β trm in th rspons mtrix us it is th only trm tht shows up six tims n is in vry row n vry olumn. Now, whih nos ppr on th insi of th grph n whih r on th outsi? Thnilly, thr is no wy to tll twn th insi n outsi of this ntwork us it oul sily invrt. But, it is possil to tll whih thr nos r group togthr on th insi or outsi. Th trms in Λ tht show this r δ n α, h of whih r th two othr trms whih ppr six tims. So for vry x n y suh tht λ x,y is δ, thn thos x n y s r group togthr. Likwis for vry x n y suh tht λ x,y is α. Thr n mny iffrnt Λ mtris tht hv th sm strutur s th Λ for this ntwork. In orr for Λ to rspons mtrix for this ntwork, not only must th ov symmtris hol, ut ths sign onitions must lso hol, whr (x 1, x 2, x 3 ) r group togthr on th insi (or outsi) n (y 1, y 2, y 3 ) r th outsi, n (x 1, y 1 ), (x 2, y 2 ), n (x 3, y 3 ) r pir on th sm ry. 3

4 1. t Λ(x 1, x 2, x 3 ; y 1, y 2, y 3 ) < 0 2. t Λ(x 1, x 2, y 2 ; x 3, y 1, y 3 ) > 0 3. t Λ(x 1, x 2 ; y 1, y 2 ) > 0 4. t Λ(x 1, y 1 ; x 2, y 2 ) > 0 3 Annulr Ntwork with Thr Rys n Two Cirls (With Lss Symmtry) 1 f 10 g h j 12 3 k Figur 2: G(3,2) with lss symmtry 4

5 This is nothr G(3,2) grph, ut symmtri only with rspt to th yxis. Th rspons mtrix, Λ is s follows: Σ α α β δ δ α Σ ɛ σ ρ θ Λ = α ɛ Σ σ θ ρ β σ σ Σ γ γ δ ρ θ γ Σ ω δ θ ρ γ ω Σ whr α = (( g + 2g + 2g + 2g)h)/( g + 2g + 4g + 2g + 2g + 2g + 4g + 4g + 4g + + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + 2h + 2h + + 2h + 2h + 2h + 2gh + 2gh + 2gh + 2gh + 2gh + 2gh + + 2gh + 2gh) β = (f(2 + g + g + g + g + g + g + g + g)h)/( g + 2g + 4g + 2g + 2g + 2g + 4g + + 4g + 4g + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g h + 2h + 2h + 2h + 2h + 2gh + 2gh + 2gh + 2gh + + 2gh + 2gh + 2gh + 2gh) δ = ((2 + g + g + 2g + g)h)/( g + + 2g + 4g + 2g + 2g + 2g + 4g + 4g + 4g + + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + 2h + 2h + + 2h + 2h + 2h + 2gh + 2gh + 2gh + 2gh + 2gh + + 2gh + 2gh + 2gh) ɛ = ( 2 ( g + + 2g g g g g g g g g h j j + 8j j j gj gj + 4gj gj gj gj + + 8gj gj + 8gj + 8gj gj + 2 g 2 j + 2g 2 j + 2 g 2 j + + 2g 2 j + 2g 2 j + 2 g 2 j hj hj + 4hj hj hj ghj + 4ghj ghj + 4ghj + 4ghj ghj k k k gk + 4gk gk gk gk gk + 2 g 2 k hk ghk + 8jk + 8jk + 4gjk + 4gjk + 5

6 + 8gjk + 8gjk + 8gjk + 2g 2 jk + 2g 2 jk + 2g 2 jk + 4hjk + + 4hjk + 4ghjk + 4ghjk + 4ghjk)/( g + + 2g + 4g + 2g + 2g + 2g + 4g + 4g + 4g + + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + 2h + 2h + + 2h + 2h + 2h + 2gh + 2gh + 2gh + 2gh + 2gh + + 2gh + 2gh + 2gh) σ = (f(2 + g + g + g + g + h))/( g + + 2g + 4g + 2g + 2g + 2g + 4g + 4g + 4g + + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + 2h + 2h + + 2h + 2h + 2h + 2gh + 2gh + 2gh + 2gh + 2gh + + 2gh + 2gh + 2gh) ρ = (( g g + 3g g g g + 2 g g g g g + 2g + 2 g g + g g + 4g + 5g g + 2 g g 2 + g 2 + g g g 2 + g g h h + 2h + 2 h h + 2h h h gh gh + 2gh + 2gh gh + 2gh + + 2gh gh + 4j j j + 2gj gj gj + + 2gj gj + 4gj + 6gj gj + g 2 j + g 2 j + 2 g 2 j + + 2hj hj hj + 2ghj + 2ghj ghj k k + + 4k gk + 4gk gk gk gk + 2gk + 2gk + + 4gk + 2 g 2 k + g 2 k + g 2 k hk + 2hk + 2hk ghk + + 2ghk + 2ghk + 8jk + 4gjk + 4gjk + 8gjk + 2g 2 jk + 4hjk + + 4ghjk))/( g + 2g + 4g + 2g + + 2g + 2g + 4g + 4g + 4g + g 2 + g 2 + g 2 + g g 2 + g 2 + g 2 + g 2 + 2h + 2h + 2h + 2h + 2h + + 2gh + 2gh + 2gh + 2gh + 2gh + 2gh + 2gh + 2gh) θ = (( g + g g g + 2 g g g g g + 2 g + g + 2 g + + g h + 2 h + 2 h + 4j j j + 2gj gj gj + 2gj gj + 4gj + 6gj gj + g 2 j + g 2 j g 2 j + 2hj hj hj + 2ghj + 2ghj ghj k k + 4k gk + 4gk gk gk gk + 2gk + + 2gk + 4gk + 2 g 2 k + g 2 k + g 2 k hk + 2hk + 2hk + 6

7 + 2 2 ghk + 2ghk + 2ghk + 8jk + 4gjk + 4gjk + 8gjk + 2g 2 jk + + 4hjk + 4ghjk))/( g + 2g + 4g + 2g + + 2g + 2g + 4g + 4g + 4g + g 2 + g 2 + g 2 + g g 2 + g 2 + g 2 + g 2 + 2h + 2h + 2h + 2h + 2h + + 2gh + 2gh + 2gh + 2gh + 2gh + 2gh + 2gh + 2gh) γ = f( g + g + g + g + h + h + h))/( g + 2g + 4g + 2g + 2g + 2g + 4g + 4g + + 4g + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + 2h + + 2h + 2h + 2h + 2h + 2gh + 2gh + 2gh + 2gh + 2gh + + 2gh + 2gh + 2gh) ω = ( 2 ( g g + n g g g g g g + 2g g h h h h h h j j j gj gj gj + 4gj gj gj + 2 g 2 j hj hj hj hj ghj k k + 8k k k gk + 4gk gk gk gk + 4gk + + 4gk + 8gk gk gk gk + 2 g 2 k + 2g 2 k + 2 g 2 k + + 2g 2 k + 2g 2 k + 2 g 2 k hk + 4hk hk + 4hk + 4hk hk ghk + 4ghk ghk + 4ghk + 4ghk ghk + 8jk + + 8jk + 4gjk + 4gjk + 8gjk + 4gjk + 8gjk + 2g 2 jk + 2g 2 jk + + 2g 2 jk + 4hjk + 4hjk + 4hjk + 4ghjk + 4ghjk + 4ghjk)/( g + 2g + 4g + 2g + 2g + 2g + 4g + 4g + + 4g + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + g 2 + 2h + + 2h + 2h + 2h + 2h + 2gh + 2gh + 2gh + 2gh + 2gh + + 2gh + 2gh + 2gh) Σ = (Sum of th row ntris) Rgrlss of how th ounry nos r numr th rspons mtrix still ontins nin istint ntris whih provi informtion out th strutur of th ntwork. Th informtion my not s ovious s for us th orring of th ntris in Λ is no longr th sm, ut th informtion is still thr. Th first thing to noti in Λ is tht thr r thr ntris tht only ppr twi: β, ɛ, n ω. Upon furthr insption, β n istinguish from ɛ n ω us vry row n olumn tht ontins β lso ontins Σ n two pirs. Not this is only tru for β. So if λ x,y is β, thn ounry 7

8 nos x n y r ontin on th sm ry. Morovr x n y r on th non-symmtri ry. Consir th othr two ntris tht ppr only twi: ɛ n ω. If λ x,y is ɛ or ω thn x n y r group togthr on th insi or th outsi. Now on of th insi nos will pir with on of th outsi nos, ut whih on? In orr to trmin this, first slt on of th ounry nos not on th symmtri ry, ll it x. Nxt, slt th group of nos (y, z) tht os not ontin x. Tht is if x is on th insi, thn slt th group known to on th outsi. Thr r two hois, x n y n on th sm ry or x n z. If λ x,y > λ x,z, thn x n z r on th sm ry. Othrwis x n y r togthr. Th rmining two nos r on th lst ry. This is tru us θ > ρ u to t Λ(1, 2; 4, 5) > 0 n t Λ(2, 1, 4; 3, 5, 6) > 0. Now, whih nos r group togthr on th insi of th grph n whih r on th outsi? Thnilly, thr is no wy to tll twn th insi n outsi of this ntwork us it oul sily invrt. But, it is possil to tll whih thr nos r togthr on th insi or outsi, two r lry known u to ɛ n ω. To hlp simplify things ll th nos on th non-symmtri ry (x 1, x 2 ) n ll th two sts of nos tht r group togthr on th insi or outsi (y 1, y 2 ) n (z 1, z 2 ). Now thr r two options: (x 1, y 1, y 2 ) n (x 2, z 1, z 2 ) n group togthr or (x 1, z 1, z 2 ) n (x 2, y 1, y 2 ). If λ x1,y 1 λ x2,z 1 < λ x1,z 1 λ x2,y 1, thn (x 1, z 1, z 2 ) n (x 2, y 1, y 2 ) r th orrt grouping, othrwis (x 1, y 1, y 2 ) n (x 2, z 1, z 2 ) r th orrt grouping. This is tru us γα > σδ u to t Λ(1, 4; 2, 5) > 0. Not, in th inqulity y 2 n z 2 oul rpl y 1 n z 1 rsptivly us thy r th sm. Thr n mny iffrnt Λ mtris tht hv th sm strutur s th Λ for this ntwork. In orr for Λ to rspons mtrix for this ntwork, not only must th ov symmtris hol, ut ths sign onitions must lso hol, whr (x 1, x 2, x 3 ) r group togthr on th insi (or outsi) n (y 1, y 2, y 3 ) r on th outsi, n (x 1, y 1 ), (x 2, y 2 ), n (x 3, y 3 ) r pir on th sm ry, not (x 1, y 1 ) is th non-symmtri ry. 1. t Λ(x 1, x 2, x 3 ; y 1, y 2, y 3 ) < 0 2. t Λ(x 1, x 2, y 2 ; x 3, y 1, y 3 ) > 0 3. t Λ(x 2, x 1, y 1 ; x 3, y 2, y 3 ) > 0 4. t Λ(x 1, x 2 ; y 1, y 2 ) > 0 5. t Λ(x 2, x 3 ; y 2, y 3 ) > 0 6. t Λ(x 1, y 1 ; x 2, y 2 ) > 0 7. t Λ(x 2, y 2 ; x 3, y 3 ) > 0 4 Grph with Thr Hols 4.1 Compltly Symmtri Cs 8

9 Figur 3: Grph with Thr Hols Consir this grph with onutivitis on lyrs ompltly onstnt. Σ α β δ β γ γ β κ β δ κ α Σ γ β δ β β γ κ δ β κ β γ Σ α β δ κ γ β κ β δ δ β α Σ γ β κ β γ κ δ β β δ β γ Σ α β κ γ δ κ β Λ = γ β δ β α Σ γ κ β β κ δ γ β κ κ β γ Σ δ δ α β β β γ γ β κ κ δ Σ δ β α β κ κ β γ γ β δ δ Σ β β α β δ κ κ δ β α β β Σ γ γ δ β β δ κ κ β α β γ Σ γ κ κ δ β β δ β β α γ γ Σ whr α = ( ) ( + 3)( )( ) β = ( ) ( + 3)( )( ) 9

10 δ = ( ) ( + 3)( )( ) γ = ( ) ( + 3)( )( ) κ = 2 ( + 3)( )( ) Σ = (Sum of th row ntris) Agin, rgrlss of how th ounry nos r numr th rspons mtrix still ontins fiv istint ntris whih provi informtion out th strutur of th ntwork. Th informtion my not s ovious s for us th orring of th ntris in Λ is no longr th sm, ut th informtion is still thr. Th first thing to noti in Λ is tht α is th only ntry tht pprs just 12 tims in th mtrix. If λ x,y = α, thn x n y r pir on th sm ry. Nxt thr r thr trms, δ, γ, n κ tht ppr 24 tims h. If λ x,y = α, thn κ will in th sm olumn of th x th n y th rows. No othr lmnt will hv tht hrtristi. β is sy to fin us it pprs 48 tims in th mtrix. Now th qustion is how n γ istinguish from δ? Using two sign onitions of th ntwork, t Λ(1, 2; 5, 4) > 0 n t Λ(1, 2; 6, 3) > 0, it is known tht γ 2 > δ 2. If λ x,y = γ, thn x n y r group in th sm irl. Hn ll ounry nos in h irl r known. Thr n mny iffrnt Λ mtris tht hv th sm strutur s th Λ for this ntwork. In orr for Λ to rspons mtrix for this ntwork, not only must th ov symmtris hol, ut rtin sign onitions must lso hol. A list of som of ths sign onitions n foun in th ppnix. It is not omplt list u to th grt quntity of trminnts n omplxity of th ntwork. Th xtr symmtry in this ntwork my mn tht som of th trminnts in th ppnix r quivlnt. 4.2 Lss Symmtri Cs 10

11 f f f Figur 4: Grph with Thr Hols(with lss symmtry) Hr is nothr grph to onsir. Assum tht onutivity is onstnt on lyrs. Thn th rspons mtrix, Λ, is s follows: Σ α β γ β δ θ κ π ψ η µ α Σ δ β γ β κ θ π η ψ µ β δ Σ α β γ π θ κ µ ψ η γ β α Σ δ β π κ θ µ η ψ β γ β δ Σ α κ π θ η µ ψ Λ = δ β γ β α Σ θ π κ ψ µ η θ κ π π κ θ Σ σ σ ɛ τ τ κ θ θ κ π π σ Σ σ τ ɛ τ π π κ θ θ κ σ σ Σ τ τ ɛ ψ η µ µ η ψ ɛ τ τ Σ χ χ η ψ ψ η µ µ τ ɛ τ χ Σ χ µ µ η ψ ψ η τ τ ɛ χ χ Σ Rgrlss of how th ounry nos r numr th rspons mtrix still ontins fourtn istint ntris whih provi informtion out th strutur of th ntwork. Th informtion my not s ovious s for us th orring of th ntris in Λ is no longr th sm, ut th informtion is still thr. Th first thing to noti in Λ is tht in th uppr tringulr prt of th mtrix, β is th only trm tht pprs six tims in th uppr tringl n is only in four olumns. Hn β is istinguish from th othr ntris 11

12 of th mtrix. Now looking t th whol mtrix, τ n lso istinguish. In th mtrix, β pprs in six iffrnt rows n olumns; τ lso pprs in six iffrnt rows n olumns, non of whih ontin β. So, τ n β n intifi in Λ. Nxt look t th 6 6 sumtrix ontining only rows n olumns whih hv β. In this sumtrix thr r thr othr ntris: α, γ, n δ. γ n istinguish from th othr two y using som sign onitions of trminnts. γ is th only on of th thr, suh tht γ 2 < β 2. This is us t Λ(1, 2; 6, 3) > 0, t Λ(1, 4; 2, 3) > 0, n t Λ(1, 2; 5, 4) > 0. Now tht β n γ hv n intifi in Λ th rrngmnt of nos in th innr tringl n trmin. If λ x,y = β, thn x is two nos wy from y. If λ x,y = γ, thn x is thr nos wy from y. Using this informtion it is now known whih nos r pir on th intrior rys n two of th nos group togthr in h of th thr intrior irls. Anothr lmnt n intifi y tking th six y six sumtrix of vry row n olumn ontining τ. Within this mtrix, ɛ is th only lmnt ppring six tims n is in vry row n vry olumn. If λ x,y = ɛ thn x n y r on th sm outr ry. Upon furthr insption, it oms lr tht this sumtrix hs th sm strutur s G(3,2), thus hving four iffrnt lmnts. As in th G(3,2), σ n χ n not istinguish from h othr, ut thy r iffrnt ntris. Thus if λ x,y = σ, thn x n y r group togthr on th outsi irl or with th nos from th innr tringl. Similrly for λ x,y = χ. Furthrmor, it woul ni to know whih outr ry is group with h innr irl. For h of th innr irls, lt (x 1, y 1 ), (x 2, y 2 ), n (x 3, y 3 ) th pir of ounry nos tht r group togthr in on of th innr irls. Now is givn ry group with (x 1, y 1 ), (x 2, y 2 ), or (x 3, y 3 )? Slt on of th ounry nos on th outr ry, ll it z. If λ x1,z = λ y1,z, thn x 1, y 1, n z r group togthr in th sm innr irl. If λ x1,z λ y1,z, thn try th sm thing using (x 2, y 2 ) n (x 3, y 3 ); thy will only qul in on of ths ss. So h outr ry is group with on of th innr irls. In orr to trmin whih nos of th outr rys r in th outr irl n whih r in th innr irls trminnt must hk. Lt (x 1, x 2, x 3 ) n (y 1, y 2, y 3 ) th group togthr on th outr irl or in th innr irls, this is know from σ n χ. Now for th momnt, group x 1, x 2,n x 3 with y 1. Thn group y 2 with on of th lmnts in th innr irl group with y 1 ll it w, n with th two lmnts, (z 1, z 2 ), tht shr n innr ry tht onnts th two innr irls whih o not group with y 1. If t Λ(x 1, x 2, x 3, y 1 ; y 2, w, z 1, z 2 ) = 0, thn (x 1, x 2, x 3 ) r th nos on th outr irl n (y 1, y 2, y 3 ) r th nos in th innr irls. If it is not qul to zro, thn (x 1, x 2, x 3 ) r th nos in th innr irls n (y 1, y 2, y 3 ) r th nos on th outr irl. Thr n mny iffrnt Λ mtris tht hv th sm strutur s th Λ for this ntwork. In orr for Λ to rspons mtrix for this ntwork, not only must th ov symmtris hol, ut rtin sign onitions must lso hol. A list of som of ths sign onitions n foun in th ppnix. It is not omplt list u to th grt quntity of trminnts n omplxity of th ntwork. 12

13 5 Strutur of Entris in Λ Whil working with th rspons mtrix pttrn mrg. No mttr how lrg or smll th ntris wr, th off-igonl ntris wr ll rtios of th opposit of sums of monomils with positiv intgr offiints. n ntry in th r- Monomils with Positiv Coffiints 5.1 Lt λ i,j spons mtrix. It n writtn in th following form. λ i,j = mi,j, whn i j λ i,i = mi,i, whn i = j Whr m i,j,m i,i, n r sums of monomils with positiv intgr offiints. Proof: (y inution) In orr to go from th Kirhhoff mtrix, K, to th rspons mtrix, Λ, Gussin limintion n on on row t tim until Λ is th rsult. In othr wors tk th Shur omplmnt ut on lmnt t tim. In th first s this is oviously tru, tht is whn λ i,j is n lmnt of th Kirhhoff mtrix. This is us K i,j = γ i,j whn i j n K i,i = j i K i,j, n γ i,j is sum of positiv monomils with intgr offiints. Now ssum this is tru for λ i,j. So, λ i,j = mi,j whn i j n λ i,i = mi,i whn i = j. Whr m i,j, m i,i, n r sums of monomils with positiv intgr offiints. (This is th inutiv hypothsis.) Thn y Gussin limintion whn i j. So λ i,j = 1 λ i,j = m i,j m i,n m n,j m n,n ( mi,j m i,nm n,j ) m n,n m i,j + m i,n m n,j = m n,n m n,n y th inutiv hypothsis. Whn i = j, thn Thus th thorm hs n provn. λ i,i = 1 j i m i,j 6 G(3,2) with Vrtx Conutivity = m i,j 13

14 Figur 5: G(3,2) with vrtx onutivity Now onsir ntwork with vrtx onutivity inst of g onutivity. So th urrnt t no is fin s: γ q (u q u p ) q p whr γ q is th onutivity t no q. Using this finition of urrnt, thn th rspons mtrix, Λ, is s follows: Σ α α β γ γ α Σ α γ β γ Λ = α α Σ γ γ β δ κ κ Σ ɛ ɛ κ δ κ ɛ Σ ɛ κ κ δ ɛ ɛ Σ whr α = β = 2 ( ) ( + + )( ) ( ) ( + + )( ) 14

15 γ = δ = κ = ɛ = ( ) ( + + )( ) ( ) ( + + )( ) ( ) ( + + )( ) 2 ( )) ( + + )( ) Σ = (Sum of th row ntris) Rgrlss of how th ounry nos r numr th rspons mtrix still ontins six istint ntris whih provi informtion out th strutur of th ntwork. Th informtion my not s ovious s for us th orring of th ntris in Λ is no longr th sm, ut th informtion is still thr. Th first thing to rmmr is tht Λ is no longr symmtri. This is us Λ is for ntwork with vrtx onutivity. β n δ r th only two ntris tht ppr thr tims. If λ x,y = β or λ x,y = δ, thn x n y r pir on th sm ry. Now, whih nos ppr on th insi of th grph n whih r on th outsi? Thnilly, thr is no wy to tll twn th insi n outsi of this ntwork us it oul sily invrt. But, it is possil to tll whih thr nos r group togthr on th insi or outsi. Consir ll λ x,y = β, or ɛ. It os not mttr whih ntry is hosn, just tht on of th ntris tht only pprs thr tims. Thn ll x r group on th insi n ll y r group on th outsi. Thr n mny iffrnt Λ mtris tht hv th sm strutur s th Λ for this ntwork. In orr for Λ to rspons mtrix for this ntwork, not only must th ov symmtris hol, ut rtin sign onitions must lso hol. Rfrns [1] Curtis, E.B. n J.A. Morrow. Invrs Prolms for Eltril Ntworks, Worl Sintifi, Nw Jrsy,

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Binomials and Pascal s Triangle

Binomials and Pascal s Triangle Binomils n Psl s Tringl Binomils n Psl s Tringl Curriulum R AC: 0, 0, 08 ACS: 00 www.mthltis.om Binomils n Psl s Tringl Bsis 0. Intif th prts of th polnomil: 8. (i) Th gr. Th gr is. (Sin is th highst

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

What do you know? Listen and find. Listen and circle. Listen and chant. Listen and say. Lesson 1. sheep. horse

What do you know? Listen and find. Listen and circle. Listen and chant. Listen and say. Lesson 1. sheep. horse Animls shp T h i nk Wht o you know? 2 2:29 Listn n fin. hors Wht s this? Wht s this? It s got ig nos. It s ig n gry. It s hors! YES! 2 Wht r ths? Wht r ths? Thy v got two lgs. Thy r smll n rown. Thy r

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii - Nming frtions Chptr Frtions Eh shp rprsnts ONE whol. i ii Wht frtion is shdd? Writ s frtion nd in words. Wht frtion is not shdd? Writ s frtion nd in words. i ii i ii Writ s mny diffrnt frtions s you

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW Smll Pth Quiz ML n Dtss Cn you giv n xprssion tht rturns th lst / irst ourrn o h istint pri lmnt? Ltur 8 Strming Evlution: how muh mmory o you n? Sstin Mnth NICTA n UNSW

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings PAGES Primry Primry Mths Bsis Sris THE SUBTRACTION BOOK A prorssion o sutrtion skills writtn y Jillin Cokins INTRODUCTION This ook is intn to hlp sur th mthmtil onpt o sutrtion in hilrn o ll s. Th mstry

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Motivation. Problems. Puzzle 1

Motivation. Problems. Puzzle 1 Introution to Roust Algorithms Séstin Tixuil UPMC & IUF Motition Approh Fults n ttks our in th ntwork Th ntwork s usr must not noti somthing wrong hppn A smll numr of fulty omponnts Msking pproh to fult/ttk

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information