# FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

Size: px
Start display at page:

Download "FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *"

Transcription

1 CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if nd r rg. xpr., thn U, nd * r rg. xpr.) Sts of strings Sts of strings (sust of ) By dfinition By dfinition Lngugs Rgulr lngugs (sust of) Closd undr, conctntion nd * (if L1 nd L2 r rg. lngugs., thn L1 U L2, L1L2 nd L1* r rg. lng.) THEOREM: Rgulr lngug IFF ccptd y som FSA lngugs Closd undr, conctntion nd * FSA rcogniz (ccpt) Strings ovr n lpht If L1 nd L2 r ccptd y som FSA, thn L1 L2, L1L2 nd L1* r ccptd y som FSA 1

2 Thorm : Th clss of lngugs ccptd y finit utomt is closd undr. union. conctntion c. Kln str d. complmnttion. intrsction Proof. union Lt M1 = (K1,, 1, s1, F1), M2 = (K2,, 2, s2, F2), W construct non-dtrministic utomton M = (K,,, s, F), whr K = K1 K2 {s} F = F1 F2 = 1 2 { (s,, s1), (s,, s2)} W introduc nw strt stt s, nd M gusss whthr th input is for M1 or M2. Formlly, if w є * thn (s,w) * M (q, ) for som q є F iff ithr (s1, w) * M1 (q, ) for som q є F1 or (s2, w) * M2 (q, ) for som q є F2 Hnc M ccpts w iff M1 ccpts w or M2 ccpts w, thus L(M) = L(M1) L(M2). conctntion W will construct n utomton M tht ccpts L(M) = L(M1) L(M2) Lt M1 = (K1,, 1, s1, F1), M2 = (K2,, 2, s2, F2), W construct non-dtrministic utomton M = (K,,, s, F), whr K = K1 K2 s = s1 F = F2 = 1 2 { (q,, s2) q є F 1} Hr th id is th connct ll finl stts of M1 with mpty links to th strt stt of M2. 2

3 Formlly, if w є * thn (s,w) * M (q, ) for som q є F iff w = uv, nd (s1, u) * M1 (q, ) for som q є F1, i.. u є L(M1) (s2, v) * M2 (q, ) for som q є F2, i.. v є L(M2) Hnc M ccpts w iff M1 ccpts prt of w nd thn M2 ccpts th rmining prt thus L(M) = L(M1) L(M2) c. Kln str Lt M1 = (K1,, 1, s1, F1), ccpting L(M1) W construct M tht ccpts L(M) = L(M1)* in th following wy: M = (K,,, s, F), whr K = K1 {s} F = F1 {s} = 1 {(s,, s1)} { (q,, s1) q є F 1} Th id hr is to hv nw strt stt connctd to s1 with n mpty link, so tht M ccpts th mpty string, nd to hv -trnsitions from ll finl stts of M1 to s1, so tht onc string hs n rd, th computtion cn rsum from th initil stt. d. complmnttion Lt M = (K,, δ, s, F), ccpting L(M). Th complmnt of L(M) is * - L(M). It is ccptd y dtrministic FSA constructd in th following wy: M = (K,, δ, s, K F) M is idnticl to M xcpt tht th finl nd non-finl stts r intrchngd. Thus string tht is ccptd y M will not ccptd y M nd vic vrs.. intrsction Hr w pply th qulity L1 L2 = * - (( * - L1) ( * - L2)) 3

4 Th closdnss undr intrsction follows from th closdnss undr union nd complmnttion. How to construct M (w considr dtrministic complt utomt): Lt M1 = (K1,, 1, s1, F1), M2 = (K2,, 2, s2, F2), W construct dtrministic utomton M = (K,,, s, F), whr K = K1 x K2 s = (s1,s2) F = {(q, p) q є F 1, p є F 2 } = { (q1, p1),, (q2,p2)) (q1,, q2) є 1,(p1,,p2) є 2 } Lt M1 nd M2 r ccpting L(M1) nd L(M2) rspctivly. Th nw utomton M hs to ccpt strings { w w L(M1) L(M2)}, i.. oth M1 nd M2 on w hv to stop in finl stts. How to construct FSA Rul 1: An FSA tht ccpts string of on lttr: Whn pplying Rul 2, Rul 3, nd Rul 4 low, ssum tht n FSA hs on finl stt only. If thr r mor finl stts, w cn rplc thm y intrnl stts nd link thm to nw finl stt y th mpty string. Rul 2: Squntil linking of two FSAs W link th finl stt of th first FSA with th strting stt of th scond FSA y n mpty link. Th finl stt of th first FSA is not finl stt in th nw FSA. Th strting stt of th scond FSA is not nymor strting stt in th nw FSA. Thus w otin nw FSA. If th first FSA ccpts L1 nd th scond FSA ccpts L2, thn th nw FSA will ccpt L1L2 Rul 3: Prlll linking of two FSAs. Introduc nw strting stt. 4

5 . Link th nw strting stt with th strting stts of ch FSA y n mpty link (th strting stts of th two FSAs r no mor strting stts) c. Introduc nw finl stt d. Link th finl stts of ch FSA to th nw finl stt y n mpty link. Th finl stts of th two FSAs r no mor finl stts. If th first FSA ccpts L1 nd th scond FSA ccpts L2, th nw FSA will ccpt L1 L2 Rul 4: Kln str on FSA. Givn n FSA tht ccpts th lngug L, how do w uild n FSA ht ccpts L*? W link its strting stt to its finl stt y n mpty link, nd its finl stt to its strting stt y n mpty link. Rul 5: Complmnttion Hr w simpl intrchng th finl nd th non-finl stts Rul 6: Intrsction S prt ) in th thorm ov. Exmpl 1: Build n FSA tht ccpts ( U *)* 1. W uild n FSA tht ccpts '' - FSA1 (Rul 1) 2. W uild n FSA tht ccpts '' - FSA2 (Rul 1) 3. W link ths two FSA squntilly - FSA3 (Rul 2) 5

6 Hr w cn simplify th FSA: 4. Nxt w uild n FSA tht ccpts (sm s in 2.) - FSA4 (Rul 1) 5. Th FSA tht ccpts * will FSA5 (Rul 4) 6. Now w link in prlll FSA3 nd FSA5. Th nw FSA is FSA6 (Rul 3) 6

7 7 7. Lst w uild FSA7 = FSA6* (Rul 4) Exmpl 2: Construct utomton tht ccpts L1 L2, whr L1 = {w * w contins vn numr of s} L2 = {w * w contins odd numr of s}

8 Lt M1 ccpt L1, nd M2 ccpt L2. W will dscri M1 nd M2 y trnsition tls: M1: K1 = {q1, q2} S1 = q1 F1 = {q1} q1 q2 q1 q2 q1 q2 M2: K2 = {p1, p2} S2= p1 F2 = {p2} p1 p1 p2 p2 p2 p1 Th nw utomton M will hv th following stts: K = {(q1, p1), (q1, p2), (q2, p1), (q2, p2)} S = (q1, p1) F = {(q1, p2)} Th trnsition tl is: (q1, p1) ( q2, p1) (q1, p2) (q1, p2) ( q2, p2) (q1, p1) (q2, p1) ( q1, p1) (q2, p2) (q2, p2) ( q1, p2) (q2, p1) W will show now tht th string is ccptd, whil th strings nd will not ccptd 8

9 ((q1, p1), ) ((q2, p1), ) ((q1, p1), ) ((q1, p2), ) ((q2, p2), ) ((q1, p2), ) ((q1, p1), ) ((q1, p2), ) (q1, p2) is finl stt in M, so th string is ccptd ((q1, p1), ) ((q2, p1), ) ((q1, p1), ) ((q1, p2), ) ((q1, p1), ) (q1,p1) is not finl stt, so is not ccptd ((q1, p1), ) ((q2, p1), ) ((q2, p2), ) ((q2, p1), ) ((q2, p2), ) (q2, p2) is not finl stt, so is not ccptd 9

### CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

### Last time: introduced our first computational model the DFA.

Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

### Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser

Nots on Finit Automt Dprtmnt of Computr Scinc Profssor Goldrg Txtooks: Introduction to th Thory of Computtion y Michl Sipsr Elmnts of th Thory of Computtion y H. Lwis nd C. Ppdimitriou Ths nots contin

### Finite Automata. d: Q S Q. Finite automaton is M=(Q, S, d, q 0, F) Ex: an FA that accepts all odd-length strings of zeros: q 0 q 1. q i. q k.

Finit Automt Bsic id: FA is mchin tht chngs stts whil procssing symols, on t tim. Finit st of stts: Q = {q 0, q 1, q 3,..., q k } Trnsition function: Initil stt: Finl stts: d: Q S Q q 0 Q F Q Finit utomton

### DFA (Deterministic Finite Automata) q a

Big pictur All lngugs Dcidl Turing mchins NP P Contxt-fr Contxt-fr grmmrs, push-down utomt Rgulr Automt, non-dtrministic utomt, rgulr xprssions DFA (Dtrministic Finit Automt) 0 q 0 0 0 0 q DFA (Dtrministic

### INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

### Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

### Minimum Spanning Trees

Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

### Non-Deterministic Finite Automata

Non-Deterministic Finite Automt http://users.comlb.ox.c.uk/luke. ong/teching/moc/nf2up.pdf 1 Nondeterministic Finite Automton (NFA) Alphbet ={} q1 q2 2 Alphbet ={} Two choices q1 q2 3 Alphbet ={} Two choices

### Non Deterministic Automata. Formal Languages and Automata - Yonsei CS 1

Non Deterministic Automt Forml Lnguges nd Automt - Yonsei CS 1 Nondeterministic Finite Accepter (NFA) We llow set of possible moves insted of A unique move. Alphbet = {} Two choices q 1 q2 Forml Lnguges

### 1 Nondeterministic Finite Automata

1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you

### Lecture 08: Feb. 08, 2019

4CS4-6:Theory of Computtion(Closure on Reg. Lngs., regex to NDFA, DFA to regex) Prof. K.R. Chowdhry Lecture 08: Fe. 08, 2019 : Professor of CS Disclimer: These notes hve not een sujected to the usul scrutiny

### The Course covers: Lexical Analysis Syntax Analysis Semantic Analysis Runtime environments Code Generation Code Optimization. CS 540 Spring 2013 GMU 2

CS 540 Spring 2013 Th Cours covrs: Lxicl Anlysis Syntx Anlysis Smntic Anlysis Runtim nvironmnts Cod Gnrtion Cod Optimiztion CS 540 Spring 2013 GMU 2 Pr-rquisit courss Strong progrmming ckground in C, C++

### Formal Languages and Automata

Moile Computing nd Softwre Engineering p. 1/5 Forml Lnguges nd Automt Chpter 2 Finite Automt Chun-Ming Liu cmliu@csie.ntut.edu.tw Deprtment of Computer Science nd Informtion Engineering Ntionl Tipei University

### Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Chpter Five: Nondeterministic Finite Automt Forml Lnguge, chpter 5, slide 1 1 A DFA hs exctly one trnsition from every stte on every symol in the lphet. By relxing this requirement we get relted ut more

### 1 Finite Automata and Regular Expressions

1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

### Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

Non Deterministic Automt Linz: Nondeterministic Finite Accepters, pge 51 1 Nondeterministic Finite Accepter (NFA) Alphbet ={} q 1 q2 q 0 q 3 2 Nondeterministic Finite Accepter (NFA) Alphbet ={} Two choices

### Non-deterministic Finite Automata

Non-deterministic Finite Automt Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd T. vn Lrhoven Institute for Computing nd Informtion Sciences Intelligent

### a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

### Lecture 09: Myhill-Nerode Theorem

CS 373: Theory of Computtion Mdhusudn Prthsrthy Lecture 09: Myhill-Nerode Theorem 16 Ferury 2010 In this lecture, we will see tht every lnguge hs unique miniml DFA We will see this fct from two perspectives

### 1 Introduction to Modulo 7 Arithmetic

1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

### Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

### Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

### CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

CMPSCI 250: Introduction to Computtion Lecture #31: Wht DFA s Cn nd Cn t Do Dvid Mix Brrington 9 April 2014 Wht DFA s Cn nd Cn t Do Deterministic Finite Automt Forml Definition of DFA s Exmples of DFA

### Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Theory of Computtion Regulr Lnguges (NTU EE) Regulr Lnguges Fll 2017 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of Finite Automt A finite utomton hs finite set of control

### Present state Next state Q + M N

Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

### Instructions for Section 1

Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

### The Equitable Dominating Graph

Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

### TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

### Lecture 4: Lexical and Syntax Analysis

CS 515 Progrmming Lngug nd Compilrs I Lctur 4: Lxicl nd Syntx Anlysis Zhng (Eddy) Zhng Rutgrs Univrsity Fll 2017, 9/26/2017 1 2 Lctur 4A: Lxicl nd Syntx Anlysis II (Th lcturs r sd on th slids copyrightd

### AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

25. Finite Automt AUTOMATA AND LANGUAGES A system of computtion tht only hs finite numer of possile sttes cn e modeled using finite utomton A finite utomton is often illustrted s stte digrm d d d. d q

### Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

### Theory of Computation Regular Languages

Theory of Computtion Regulr Lnguges Bow-Yw Wng Acdemi Sinic Spring 2012 Bow-Yw Wng (Acdemi Sinic) Regulr Lnguges Spring 2012 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of

### Worked out examples Finite Automata

Worked out exmples Finite Automt Exmple Design Finite Stte Automton which reds inry string nd ccepts only those tht end with. Since we re in the topic of Non Deterministic Finite Automt (NFA), we will

### Minimal DFA. minimal DFA for L starting from any other

Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

### Basic Polyhedral theory

Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

### CHAPTER 1 Regular Languages. Contents

Finite Automt (FA or DFA) CHAPTE 1 egulr Lnguges Contents definitions, exmples, designing, regulr opertions Non-deterministic Finite Automt (NFA) definitions, euivlence of NFAs nd DFAs, closure under regulr

### Lecture 6 Regular Grammars

Lecture 6 Regulr Grmmrs COT 4420 Theory of Computtion Section 3.3 Grmmr A grmmr G is defined s qudruple G = (V, T, S, P) V is finite set of vribles T is finite set of terminl symbols S V is specil vrible

### Section: Other Models of Turing Machines. Definition: Two automata are equivalent if they accept the same language.

Section: Other Models of Turing Mchines Definition: Two utomt re equivlent if they ccept the sme lnguge. Turing Mchines with Sty Option Modify δ, Theorem Clss of stndrd TM s is equivlent to clss of TM

### Harvard University Computer Science 121 Midterm October 23, 2012

Hrvrd University Computer Science 121 Midterm Octoer 23, 2012 This is closed-ook exmintion. You my use ny result from lecture, Sipser, prolem sets, or section, s long s you quote it clerly. The lphet is

### Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-*

Regulr Expressions (RE) Regulr Expressions (RE) Empty set F A RE denotes the empty set Opertion Nottion Lnguge UNIX Empty string A RE denotes the set {} Alterntion R +r L(r ) L(r ) r r Symol Alterntion

### Most Complex Regular Ideal Languages

Discrt Mthmtics nd Thorticl Computr Scinc DMTCS vol. 18:3, 2016, #15 Most Complx Rgulr Idl Lngugs Jnusz Brzozowski 1 Sylvi Dvis 2 Bo Yng Victor Liu 1 rxiv:1511.00157v3 [cs.fl] 13 Oct 2016 1 Dvid R. Chriton

### Non-deterministic Finite Automata

Non-deterministic Finite Automt From Regulr Expressions to NFA- Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd J. Rot Institute for Computing nd Informtion

### Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1

Chpter 1, Prt 1 Regulr Lnguges CSC527, Chpter 1, Prt 1 c 2012 Mitsunori Ogihr 1 Finite Automt A finite utomton is system for processing ny finite sequence of symols, where the symols re chosen from finite

### NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

CMPU 240 Lnguge Theory nd Computtion Spring 2019 NFAs nd Regulr Expressions Lst clss: Introduced nondeterministic finite utomt with -trnsitions Tody: Prove n NFA- is no more powerful thn n NFA Introduce

### CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS415 Compilers Lexicl Anlysis nd These slides re sed on slides copyrighted y Keith Cooper, Ken Kennedy & Lind Torczon t Rice University First Progrmming Project Instruction Scheduling Project hs een posted

### Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Non-Deterministic Finite Automt Fll 2018 Costs Busch - RPI 1 Nondeterministic Finite Automton (NFA) Alphbet ={} q q2 1 q 0 q 3 Fll 2018 Costs Busch - RPI 2 Nondeterministic Finite Automton (NFA) Alphbet

### Convert the NFA into DFA

Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

Finite Automt Let's strt with n exmple: Here you see leled circles tht re sttes, nd leled rrows tht re trnsitions. One of the sttes is mrked "strt". One of the sttes hs doule circle; this is terminl stte

### a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

CS4 45- Determinisitic Finite Automt -: Genertors vs. Checkers Regulr expressions re one wy to specify forml lnguge String Genertor Genertes strings in the lnguge Deterministic Finite Automt (DFA) re nother

### Chapter 2 Finite Automata

Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

### Finite Automata-cont d

Automt Theory nd Forml Lnguges Professor Leslie Lnder Lecture # 6 Finite Automt-cont d The Pumping Lemm WEB SITE: http://ingwe.inghmton.edu/ ~lnder/cs573.html Septemer 18, 2000 Exmple 1 Consider L = {ww

### cycle that does not cross any edges (including its own), then it has at least

W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

### More on automata. Michael George. March 24 April 7, 2014

More on utomt Michel George Mrch 24 April 7, 2014 1 Automt constructions Now tht we hve forml model of mchine, it is useful to mke some generl constructions. 1.1 DFA Union / Product construction Suppose

### CHAPTER 1 Regular Languages. Contents. definitions, examples, designing, regular operations. Non-deterministic Finite Automata (NFA)

Finite Automt (FA or DFA) CHAPTER Regulr Lnguges Contents definitions, exmples, designing, regulr opertions Non-deterministic Finite Automt (NFA) definitions, equivlence of NFAs DFAs, closure under regulr

### Deterministic Finite Automata

Finite Automt Deterministic Finite Automt H. Geuvers nd J. Rot Institute for Computing nd Informtion Sciences Version: fll 2016 J. Rot Version: fll 2016 Tlen en Automten 1 / 21 Outline Finite Automt Finite

### State Minimization for DFAs

Stte Minimiztion for DFAs Red K & S 2.7 Do Homework 10. Consider: Stte Minimiztion 4 5 Is this miniml mchine? Step (1): Get rid of unrechle sttes. Stte Minimiztion 6, Stte is unrechle. Step (2): Get rid

### Multi-Section Coupled Line Couplers

/0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

### Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

Speech Recognition Lecture 2: Finite Automt nd Finite-Stte Trnsducers Eugene Weinstein Google, NYU Cournt Institute eugenew@cs.nyu.edu Slide Credit: Mehryr Mohri Preliminries Finite lphet, empty string.

### Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

### Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

Finite Automt Informtics 2A: Lecture 3 Mry Cryn School of Informtics University of Edinburgh mcryn@inf.ed.c.uk 21 September 2018 1 / 30 Lnguges nd Automt Wht is lnguge? Finite utomt: recp Some forml definitions

### Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 22 September 2017 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

### CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

CS103B ndout 18 Winter 2007 Ferury 28, 2007 Finite Automt Initil text y Mggie Johnson. Introduction Severl childrens gmes fit the following description: Pieces re set up on plying ord; dice re thrown or

### Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

### Walk Like a Mathematician Learning Task:

Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

### b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

### CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

CSCI 340: Computtionl Models Kleene s Theorem Chpter 7 Deprtment of Computer Science Unifiction In 1954, Kleene presented (nd proved) theorem which (in our version) sttes tht if lnguge cn e defined y ny

### CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

### , each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

### CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

### Nondeterminism and Nodeterministic Automata

Nondeterminism nd Nodeterministic Automt 61 Nondeterminism nd Nondeterministic Automt The computtionl mchine models tht we lerned in the clss re deterministic in the sense tht the next move is uniquely

### Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

### Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

### Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

### Section 3: Antiderivatives of Formulas

Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

### Week 3: Connected Subgraphs

Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

### 1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech

### Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Victor Admchik Dnny Sletor Gret Theoreticl Ides In Computer Science CS 5-25 Spring 2 Lecture 2 Mr 3, 2 Crnegie Mellon University Deterministic Finite Automt Finite Automt A mchine so simple tht you cn

### 0.1. Exercise 1: the distances between four points in a graph

Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

### CS 314 Principles of Programming Languages

C 314 Principles of Progrmming Lnguges Lecture 6: LL(1) Prsing Zheng (Eddy) Zhng Rutgers University Ferury 5, 2018 Clss Informtion Homework 2 due tomorrow. Homework 3 will e posted erly next week. 2 Top

### Regular expressions, Finite Automata, transition graphs are all the same!!

CSI 3104 /Winter 2011: Introduction to Forml Lnguges Chpter 7: Kleene s Theorem Chpter 7: Kleene s Theorem Regulr expressions, Finite Automt, trnsition grphs re ll the sme!! Dr. Neji Zgui CSI3104-W11 1

### Enforcement of Opacity Security Properties Using Insertion Functions

Enforcmnt of Opcity Scurity Proprtis Using Insrtion Functions Yi-Chin Wu nd Stéphn Lfortun EECS Dprtmnt, Univrsity of Michign CDC 12 Dc. 13 th, 2012 Motivtion Scurity nd privcy concrns in onlin srvics

### 11.1 Finite Automata. CS125 Lecture 11 Fall Motivation: TMs without a tape: maybe we can at least fully understand such a simple model?

CS125 Lecture 11 Fll 2016 11.1 Finite Automt Motivtion: TMs without tpe: mybe we cn t lest fully understnd such simple model? Algorithms (e.g. string mtching) Computing with very limited memory Forml verifiction

### NON-DETERMINISTIC FSA

Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

### Finite-State Automata: Recap

Finite-Stte Automt: Recp Deepk D Souz Deprtment of Computer Science nd Automtion Indin Institute of Science, Bnglore. 09 August 2016 Outline 1 Introduction 2 Forml Definitions nd Nottion 3 Closure under

### CSI35 Chapter 11 Review

1. Which of th grphs r trs? c f c g f c x y f z p q r 1 1. Which of th grphs r trs? c f c g f c x y f z p q r . Answr th qustions out th following tr 1) Which vrtx is th root of c th tr? ) wht is th hight

### 12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

### Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

Deprtment of Computer Science, Austrlin Ntionl University COMP2600 Forml Methods for Softwre Engineering Semester 2, 206 Assignment Automt, Lnguges, nd Computility Smple Solutions Finite Stte Automt nd

### 5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

### CISC 4090 Theory of Computation

9/6/28 Stereotypicl computer CISC 49 Theory of Computtion Finite stte mchines & Regulr lnguges Professor Dniel Leeds dleeds@fordhm.edu JMH 332 Centrl processing unit (CPU) performs ll the instructions

### Closure Properties of Regular Languages

Closure Properties of Regulr Lnguges Regulr lnguges re closed under mny set opertions. Let L 1 nd L 2 e regulr lnguges. (1) L 1 L 2 (the union) is regulr. (2) L 1 L 2 (the conctention) is regulr. (3) L

### S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

### CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

### Formal languages, automata, and theory of computation

Mälrdlen University TEN1 DVA337 2015 School of Innovtion, Design nd Engineering Forml lnguges, utomt, nd theory of computtion Thursdy, Novemer 5, 14:10-18:30 Techer: Dniel Hedin, phone 021-107052 The exm

### Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem 2/16/15

Models of Comput:on Lecture #8 Chpter 7 con:nued Any lnguge tht e defined y regulr expression, finite utomton, or trnsi:on grph cn e defined y ll three methods We prove this y showing tht ny lnguge defined

### 5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata

CSC4510 AUTOMATA 5.1 Definitions nd Exmples 5.2 Deterministic Pushdown Automt Definitions nd Exmples A lnguge cn be generted by CFG if nd only if it cn be ccepted by pushdown utomton. A pushdown utomton

### Fundamentals of Computer Science

Fundmentls of Computer Science Chpter 3: NFA nd DFA equivlence Regulr expressions Henrik Björklund Umeå University Jnury 23, 2014 NFA nd DFA equivlence As we shll see, it turns out tht NFA nd DFA re equivlent,

### Regular languages refresher

Regulr lnguges refresher 1 Regulr lnguges refresher Forml lnguges Alphet = finite set of letters Word = sequene of letter Lnguge = set of words Regulr lnguges defined equivlently y Regulr expressions Finite-stte