Can transitive orientation make sandwich problems easier?

Size: px
Start display at page:

Download "Can transitive orientation make sandwich problems easier?"

Transcription

1 Disrt Mthmtis 07 (007) Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C, Frn Dprtmnt of Mthmtis, Univrsity of Mnito, Winnipg, Mnito, Cn RT N Lortoir l Informtiqu u Prllélism, Éol Norml Supériur Lyon, 46 Allé Itli, 6964 Lyon C 07, Frn Riv 8 Sptmr 00; riv in rvis form 4 Novmr 004; pt Dmr 005 Avill onlin Dmr 006 Astrt A grph G s = (V, E s ) is snwih for pir of grphs G t = (V, E t ) n G = (V, E) if E t E s E. A snwih prolm sks for th istn of snwih grph hving n pt proprty. In sminl ppr, Golumi t l. [Grph snwih prolms, J. Algorithms 9 (995) ] prsnt mny rsults on su-fmilis of prft grphs. W r spilly intrst in omprility (rsp., o-omprility) grphs us ths grphs (rsp., thir omplmnts) mit on or mor trnsitiv orinttions (h orinttion is prtilly orr st or post). Thus, fiing th orinttions of th gs of G t n G rstrits th numr of possil snwihs. W stuy whthr ing n orinttion n rs th omplity of th prolm. Two iffrnt typs of prolms shoul onsir pning on th trnsitivity of th orinttion: th post snwih prolms n th irt snwih prolms. Th orinttions to oth grphs G n G s r trnsitiv in th first typ of prolm ut ritrry for th son typ. 006 Pulish y Elsvir B.V. Kywors: Grph snwih; Comprility grphs; Prtilly orr st. Introution A grph G t = (V, E t ) is spnning su-grph of G = (V, E) if E t E. A grph G s = (V, E s ) is snwih grph for th pir (G t,g)if E t E s E. Golumi t l. [8] introu th following ision prolm: Prolm. GRAPH SANDWICH PROBLEM FOR PROPERTY Π. Instn: Two grphs G t = (V, E t ) n G = (V, E) suh tht E t E. Qustion: Dos thr ist snwih grph G s = (V, E s ) for th pir (G t,g)stisfying proprty Π? In thir ppr, Golumi t l. prsnt s n mpl, th irt Eulrin snwih prolm whr th input grphs r igrphs. Sin igrph is Eulrin iff th in-gr n th out-gr of ny vrt r qul, it is possil to sign polynomil tim lgorithm to i th istn of n Eulrin snwih igrph. Unfortuntly, mny snwih prolms n prov to NP-omplt. Grph snwih prolms n thought of s th gnrliztion Corrsponing uthor. E-mil rss: pul@lirmm.fr (C. Pul). Authors support in prt y th Europn Rsrh Trining Ntwork COMBSTRU (Comintoril Strutur of Intrtl Prolms) X/$ - s front mttr 006 Pulish y Elsvir B.V. oi:0.06/j.is

2 M. Hi t l. / Disrt Mthmtis 07 (007) G t G s G D t D Fig.. For th unirt instn (G t,g)thr ists snwih with n Eulrin yl whil for th irt instn (D t,d)mits no snwih with n Eulrin iruit. of vrious wll-stui grph-thorti prolms. For instn, th s E t =E orrspons to th rognition prolm whil th s E = V is th fill-in prolm. In prti, snwih prolms ris in ivrs rs suh s iology [9,7], ommunition [] n lgr [6]. Rsults onrning grph proprtis n lso foun in [8,,7,4,]. A omplmntry proprty Π n fin s follows: for ny grph G, G stisfis Π iff th omplmnt grph G stisfis Π. Th following ws prov in [8]: Proposition. (Golumi t l. [8]). Thr ists snwih grph G s stisfying proprty Π for th instn (G t,g) iff thr ists snwih grph H s stisfying proprty Π for th instn (G, G t ). It follows tht th Π snwih prolm is polynomilly quivlnt to th Π snwih prolm. Bing omprility grph is omplmntry proprty. In [8], mny rsults onrn su-fmilis of omprility or o-omprility grphs. Thy r of spil intrst sin omprility grph mits on or mor trnsitiv orinttions (h orinttion fins prtilly orr st or post). Lt us fin irt proprty Π s proprty suh tht if igrph G stisfis Π, thn th non-orint grph G stisfis Π. For mpl, th irt Eulrin proprty fits this finition. Similrly, ing post for igrph orrspons, in th non-orint vrsion, to ing omprility grph. Proposition.. Lt D t n D ritrry orinttions of th grphs G t n G. If thr ists snwih igrph D s stisfying th irt proprty Π for th instn (D t,d), thn thr ists snwih grph G s stisfying proprty Π for th instn (G t,g). Sin fiing th orinttion of th gs of G t n G rstrits th numr of possil snwihs, it is possil tht whil snwih grph ists in th non-irt instn, no snwih igrph ists in th irt instn. Fig. shows suh n mpl. A proprty Π is strongr thn proprty Π iff ny grph (or post) tht stisfis Π lso stisfis Π. Clrly irt proprty Π is wkr proprty thn Π. Sin, s osrv in [8], thr is no simpl rltionship twn th omplitis of th Π n Π snwih prolms, nithr is thr twn th omplitis of th Π n Π snwih prolms priori. A proprty Π fin on posts is omprility invrint iff whn post P stisfis Π thn ny trnsitiv orinttion of th omprility grph G of P lso stisfis Π. For mpl, ing post of imnsion k is omprility invrint [0]. Comprility invrints r irt proprtis. Evn if w rstrit to omprility invrints, th phnomnon pit in Fig. n still our. To hk Π, w only hv to tst on trnsitiv orinttion of th omprility grph. Howvr, thr is still no simpl omplity rltion (i.., with rspt to th Krp rution, K ). Thr my no trnsitiv orinttion of givn non-orint snwih with th pt proprty (s Fig. ). Thrfor, on must hk ll possil non-orint snwihs, n thr n n ponntil numr of ths.

3 0 M. Hi t l. / Disrt Mthmtis 07 (007) G t G s G P t??? P Fig.. In th ov figur, th pt proprty for th snwih is to hv th gr squn (,,,,, ). Noti tht th gr squn is omprility invrint. Only on solution is possil in th non-orint instn whil thr is no post snwih with tht gr squn. Polynomil NP-Complt Cogrph grph SP Intrvl grph SP Hlf liqu grph SP Prmuttion grph SP Sris prlll irt SP Intrvl irt SP Trnsitiv su hin irt SP imnsionl irt SP Sris prlll post SP Intrvl post SP Trnsitiv su hin post SP imnsionl post SP Fig.. A mp of th rsults. In th ppr, w will fous on vn strongr proprty thn omprility invrint, sin for thos proprtis, if thr ists non-orint snwih stisfying Π, thn thr ists irt snwih stisfying Π. W wonr whthr for suh proprtis ing orinttions to th gs of G t n G hlps to solv th orrsponing snwih igrph prolm. For mpl, th omprility grph snwih prolm hs n prov to NP-omplt [8]. But tsting th istn of trnsitiv snwih igrph D s for pir of igrphs (D t,d)n omplt in polynomil tim. Th lgorithm just hs to tst whthr th trnsitiv losur of D t is inlu in D whih is polynomil prolm. W will fous on proprtis rlt to omprility grphs or o-omprility grphs (whih r quivlnt y Proposition.) tht n nturlly trnslt in trms of post. Two slightly iffrnt prolms r istinguish y th trnsitivity of th input igrphs. Prolm. DIRECTED SANDWICH PROBLEM FOR POSET PROPERTY Π. Instn: Two igrphs D t n D suh tht D t D. Qustion: Dos thr ist snwih igrph D s for th pir (D t,d)stisfying Π? Prolm. POSET SANDWICH PROBLEM FOR POSET PROPERTY Π. Instn: Two posts P t = (V, E t ) n P = (V, E) suh tht E t E. Qustion: Dos thr ist snwih post P s = (V, E s ) for th pir (P t,p)stisfying Π? In th irt snwih prolm, igrphs D t n D of th snwih instn hv n ritrry orinttion. If th rquir proprty Π ls with posts, w n ssum tht D t is trnsitivly orint s its trnsitiv losur is ontin in ny trnsitivly orint snwih grph. Thrfor, th instn will writtn (P t,d). Sin th post snwih prolm is su-prolm of th irt snwih prolm, it follows tht: Post snwih prolm for Π K Dirt snwih prolm for Π. () This inqulity is hlpful in omplity proofs: to show tht irt snwih prolm is NP-omplt, w only n to show th NP-ompltnss of th post snwih prolm, n onvrsly if th prolm is polynomil (Fig. ).

4 M. Hi t l. / Disrt Mthmtis 07 (007) In this ppr, w stuy post proprtis inspir y th originl rsults of [8]. W r intrst in fining snwihs tht r sris prlll posts, intrvl posts or two-imnsionl posts. Ths fmilis orrspon to o-grphs, intrvl grphs n prmuttion grphs, rsptivly (ll of whih r o-omprility grphs). Morovr, ths thr proprtis r omprility invrints. W prov th following rsults: th sris prlll post snwih prolm is polynomil lik th o-grph snwih prolm; th intrvl post snwih prolm is polynomil whil th intrvl grph snwih prolm in NP-omplt; th two-imnsionl irt snwih prolm is NP-omplt lik th prmuttion grph snwih prolm. W lso introu nw prolm, nmly th trnsitiv su-hin prolm tht sks for th istn in igrph of trnsitiv su-hin of lngth t lst V /. Ruing -SAT to this prolm, w prov its NP-ompltnss. It follows tht th ssoit irt snwih prolm is NP-omplt, whil th post snwih prolm rmins polynomil. Noti tht in trms of non-orint grphs, th trnsitiv su-hin prolm orrspons to th hlfliqu prolm (os thr ist liqu ontining t lst on hlf of th vrtis?). Clrly, th hlf-liqu snwih prolm is NP-omplt. Thrfor, w show tht ny possil onfigurtion with rspt to () ists. Nottion: Lt S P th st of sours of post P, N P () th nighorhoo of vrt in P, P A th post inu y P on vrt st A. Th nottion Su P (), noting th st of out-vrtis (sussors) of in P, is tn to sts: Su P (A) = A SuP ().. Sris prlll posts In rtin shuling prolms, tsks r sujt to prtil orr. Although shuling prolms for n ritrry prtil orr r NP-omplt, thy hv ffiint lgorithms if th prtil orr is sris prlll [4]; ths lgorithms us ivi-n-onqur pproh with th rursiv strutur of ths posts. Thr is linr-tim lgorithm to rogniz sris prlll post u to Vls t l. [9]. A sris prlll post is otin from th singl-vrt post y th pplition of two omposition ruls. Th prlll omposition of posts P n P is th post P + P = (V V,< + ) suh tht u< + v if n only if u, v V n u< v or u, v V n u< v. Th sris omposition of posts P n P is th post P P = (V V,< ) suh tht u< v if n only if u, v V n u< v or u, v V n u< v or u V n v V. Thrfor, sris prlll posts r orgniz in tr strutur (Fig. 4)... Sris prlll post snwih prolm Th fmily of omprility grphs of th sris prlll posts is tly th fmily of o-grphs [8], for whih th snwih prolm hs n prov to polynomil [8]. Th o-grph snwih lgorithm n moifi so tht it pplis to th sris prlll post snwih prolm. By ing n rgumnt out trnsitivity to its proof, w n prov tht th post snwih prolm is lso polynomil lik th o-grph snwih prolm is. Prolm 4. SERIES PARALLEL POSET SANDWICH PROBLEM. Instn: Two posts P t = (V, E t ) n P = (V, E) suh tht E t E. Qustion: Dos thr ist sris prlll snwih post P s for th pir (P t,p)? P S P S f f Fig. 4. A sris prlll post n its nonil omposition tr.

5 04 M. Hi t l. / Disrt Mthmtis 07 (007) Lt us rifly sri th prinipl of this lgorithm. Proofs of Lmms. n. r omitt sin thy n sily u from [8]. Lt us not y P th inomprility grph of th post P. Lmm.. If oth P t n P r onnt, thn thr is no sris prlll snwih post for th instn (P t,p). Lmm.. Lt {C,...,C k } th onnt omponnts of P t. If Ps,...,Pk s r, rsptivly, sris prlll snwih posts for th instns (P t C,P C )... (P t Ck,P Ck ), thn th prlll omposition of Ps,...,Pk s is sris prlll snwih post for (P t,p). Lmm.. Lt {C,...,C k } th onnt omponnts of P. If Ps,...,Pk s r, rsptivly, sris prlll snwih posts for th instns (P t C,P C )... (P t Ck,P Ck ), thn th sris omposition of Ps,...,Pk s is sris prlll snwih post for (P t,p). A similr lmm n foun in [8] for th non-orint s of o-grphs. Th only iffrn is tht w hv to onfirm tht trnsitivity n nsur twn th onnt omponnts {C,...,C k }. Proof. Lt,, thr vrtis of iffrnt onnt omponnts C, C, C of P. By finition of th onnt omponnt, th thr possil rs twn ths thr vrtis long to E. Sin y ssumption P is post, ths thr gs r trnsitivly orint. Lt us now prov tht th rs twn two onnt omponnts C,C r orint in th sm irtion. Lt N + () n N (), rsptivly, th out-nighorhoo n in-nighorhoo of in C. Sin P is trnsitiv ll possil rs ist from N + () towrs N (), whih ontrits th ft tht C is onnt in P. Now it is strightforwr to s th lgorithm. If oth P t n P r onnt, thn thr is no sris prlll snwih post. Othrwis if P t is not onnt, rurs on th instns inu y its onnt omponnts C,...,C k ; if P is not onnt, rurs on th instns inu y th onnt omponnts C,...,C k of P. This lgorithm is tly th polynomil tim lgorithm givn in [8]. Thorm.. Th sris prlll post snwih prolm is polynomil... Sris prlll irt snwih prolm Howvr, th ov mtho os not provi n lgorithm for th irt snwih prolm. For this mor gnrl prolm, w provi polynomil-tim lgorithm s on n limintion orring prinipl. Prolm 5. SERIES PARALLEL DIRECTED SANDWICH PROBLEM. Instn: A post P t = (V, E t ) n igrph D = (V, E) suh tht E t E. Qustion: Dos thr ist sris prlll snwih post P s for th pir (P t,d)? Lt us first introu usful proposition. A proprty π is n hritry proprty iff for ny inu su-grph (or inu su-post), th su-grph stisfis th proprty π. Bing tr or sris prlll post is n hritry proprty. Proposition.. Lt π n hritry proprty. If thr ists π-snwih G s for th instn (G t,g)on vrt st V, thn for ny sust V V, th inu su-snwih G s V is π-snwih for th inu instn (G t V,G V ). Proof. First of ll, G s V is snwih for (G t V,G V ). Sin π is hritry G s V lso vrifis proprty π. Lmm.4. If thr is sris prlll snwih post P s for th instn (P t,d)whr P t is onnt, thn thr ists non-mpty st of vrtis A V suh tht A, V\A Su D () n Su P t (V \A) A =.

6 M. Hi t l. / Disrt Mthmtis 07 (007) Fig. 5. A polynomil tim lgorithm for th sris prlll irt snwih prolm. Proof. Suppos thr ists P s, sris prlll snwih post for th instn (P t,d). Osrv tht suh st A must ontin th sour S Ps of P s. Sin P t is onnt, P s is lso onnt. Thus, it is th rsult of sris omposition n its o-omprility grph G s is not onnt. Noti tht S Ps is ontin in onnt omponnt of G s (sin S Ps is n ntihin of P s ). Lt A tht omponnt. A is in sris omposition with V \A. Sin A ontins th sours of P s, th rs twn A n V \A r orint towrs V \A. It follows tht V \A Su D (), A. Morovr, sin P s is post, thr is no r from V \A towrs A. Th inlusion E t E s implis tht Su P t (V \A) A =. Lmm.5. Lt {C,...,C k } th st of onnt omponnts of P t. Th following sttmnts r quivlnt: () Thr is sris prlll snwih post for th instn (P t,d). () For ny i, i k, thr ist: non-mpty st A i suh tht A i, C i \A i Su D C i () n Su P t (C i \A i ) A i = ; sris prlll snwih post PA s i for th instn (P t Ai,D Ai ); sris prlll snwih post PC s i \A i for th instn (P t Ci \A i,d Ci \A i ). Proof. Suppos P s is sris prlll snwih post for th instn (P t,d). By Lmm.4, whnvr i k, thr ists n non-mpty st A i. By finition, A i n ompos in sris with C i \A i in oth D Ci n P s Ci. Sin ing sris prlll post is n hritry proprty, ny inu sust of P s is lso sris prlll post. If follows tht P s Ci \A i n P s Ai r sris prlll snwihs for th instns (P t Ci \A i,d Ci \A i ) n (P t Ai,D Ai ), rsptivly. Assum th onvrs. Sin for ny i, i k, C i \A i Su D C i () n Su P t (C i \A i ) A i =, PC s i \A i n PA s i n ompos in sris to form sris prlll post PC s i for th instn (P t Ci,D Ci ). It follows tht sris prlll snwih post for th whol instn (P t,d)is otin y th prlll omposition of th PC s i s. Assuming tht w r l to omput st A s sri in Lmm.4, w r now l to sign lgorithm s on Lmm.5 for solving th sris prlll irt snwih prolm. Whn solving th prolm rursivly in Fig. 5, Proposition. gurnts tht w n fin st A V suh tht A, V\A Su D () n Su P t (V \A) A =. () To sri how to omput suh st, w shll us thr simpl fts. Ft.6. Lt n y istint vrtis. If A n y/ Su D (), thn y A.

7 06 M. Hi t l. / Disrt Mthmtis 07 (007) Proof. This irtly follows from th finition of A. Ft.7. Lt n y istint vrtis. If A n Su P t (y), thn y A. Proof. If A n y/ A, thn oth rs y n y woul long to E s : y us Su P t (y) n y us A is ompos in sris with V \A in P s. This is ontrition, sin no pir of symmtri rs n long to post. Ft.8. A S Pt =. Proof. If A S Pt =, thn A, / S Pt n thr ists y V \A suh tht y P t (s thr r no yl in P t ), this ontrits th finition of A. Assum for som sour S Pt, th following lgorithm rturns strit sust A of V. IfA os not rspt (), thn ithr thr ists y V \A suh tht y/ Su D () n it ontrits Ft.6, or thr ists y V \A suh tht for n A, Su P t (y) n it ontrits Ft.7. Thn w just hv to tst Fts.6 n.7 to prov tht A stisfis (). It n thrfor us t lin 4 of th lgorithm pit in Fig. 5 to rurs. SP-R( S Pt,V,P t,d): outputs sust A of vrtis. A ={}. Whil thr ists y/ A n z A suh tht ithr yz E t or zy / E A y to A. Rturn A Thorm.. Th sris prlll irt snwih prolm is polynomil. Proof. Th vliity of th lgoritm sri in Fig. 5 follows from Lmms.4,.5, Proposition. n Fts.6.8. Th numr of rursiv lls in 5 is t most n = V. A rut for nlysis shows tht tsting th istn of st A stisfying () rquirs O(n ) pr sour of P t. It follows tht tsting th istn of sris prlll snwih is polynomil.. Intrvl posts A post P is n intrvl post iff rl intrvl I v =[ v, v ] n ssign to h lmnt v in P, suh tht v w if n only if v w. Prolm 6. INTERVAL DIRECTED SANDWICH PROBLEM. Instn: A post P t = (V, E t ) n igrph D = (V, E) suh tht E t E. Qustion: Dos thr ist n intrvl snwih post P s for th pir (P t,d)? W prov th intrvl irt snwih prolm is polynomil, in ontrst to th unirt s: th intrvl grph snwih prolm is NP-omplt [8]. This omplity gp is proly u to th ft tht n intrvl grph is o-omprility grph tht n hv mny trnsitiv orinttions. Thus, fiing n ritrry trnsitiv orinttion of th intrvl grph rstilly simplifis th prolm. Th sm phnomnon ours for th rognition prolm: lthough oth intrvl grph n intrvl post rognition prolms hv linr tim omplity, th intrvl grph rognition is muh hrr [,,]. Th intrvl post rognition lgorithm [5] is s on th following hrtriztion y Fishurn [5]. Thorm. (Fishurn [5]). A post P is n intrvl post if n only if th st of sussors {Su P (v) ={u V,v u}} v V is linrly orr y inlusion. From th ov hrtriztion, w n u tht non-onnt intrvl post ontins t most on onnt omponnt of mor thn on vrt. In othr wors, non-onnt intrvl post onsists in onnt intrvl post plus som isolt vrtis. This yils to nothr wll-known hrtriztion of intrvl posts in trm of forin su-post: post is n intrvl post iff it os not ontin + s inu post (s Fig. 6).

8 M. Hi t l. / Disrt Mthmtis 07 (007) Fig. 6. Th + post. E t E\E t Fig. 7. In this instn A ={}. To simplify th rwing, w omit th trnsitiv rs of E t. Howvr, E is not nssrily trnsitiv. Lmm. is quit similr to Lmm.4, pt tht smllr prt of th vrtis is this tim sussor of th st A. This rsult is th sis of our lgorithm n n sn s gnrliztion of th rognition lgorithm of [5]. Lmm.. If thr is n intrvl snwih post P s for th instn (P t,d), thn thr ists st A S Pt suh tht V \S Pt Su D (), A. Proof. Lt P s n intrvl snwih post for th instn (P t,d). From Thorm. P s hs its sts of sussors linrly orr y inlusion. Thrfor, thr ists st A of P s sours suh tht vry non-sour vrt of P s is sussor of ny vrt A: Su P s () = V \S Ps. Sin ny sour of P s is sour of P t, A S Pt. An sin A, Su P s () Su D (), it follows tht V \S Pt Su D (), A. Lt us fin th following st of vrtis: A ={ V Su D () V \S Pt }. An mpl of st A in irt snwih instn is givn in Fig. 7. Lmm.. Th following sttmnts r quivlnt: () Thr is n intrvl snwih post for th instn (P t,d). () Thr ists non-mpty st A n n intrvl snwih post for th instn (P t,d) V \A. Proof. First ssum P s is n intrvl snwih post for th instn (P t,d). From Lmm., A is not mpty. Sin ing n intrvl post is n hritry proprty, th post P s V \A is n intrvl post. Morovr, ny r of P t V \A is n r of P s V \A. It follows tht P s V \A is n intrvl snwih post for (P t,d) V \A. Convrsly, ssum P s is n intrvl snwih post for th instn (P t,d) V \A n A =. By Thorm., th vrtis of V \A r linrly orr y inlusion of sussors. Among th st SP s of sours of P s, w n istinguish SP s \S Pt n SP s S Pt. Noti tht ny r y, with A n y \S Pt longs to E (rmrk tht (V \A)\S Pt =V \S Pt sin A S Pt ). Thrfor, ing thos rs to E s fins snwih P s = (V, E s ). Sin for ny A, whv Su P s () = V \S Pt, for ny y V \A, w hv Su P s (y) Su P s (). Sin th st of sussors in P s is linrly orr y inlusion, P s is n intrvl orr. Corollry.. If thr ists n intrvl post snwih for th instn (P t,d), thn thr ists on, sy P s, suh tht S Ps = S Pt. Proof. Th proof follows from th onstrution sri in th proof of Lmm.. Noti tht whn onstruting P s from P s, w nvr rs towrs sours of P t. Applying this rgumnt rursivly omplts th proof.

9 08 M. Hi t l. / Disrt Mthmtis 07 (007) Fig. 8. A polynomil tim lgorithm for th intrvl irt snwih prolm. Thorm.. Th intrvl irt snwih prolm is polynomil. Proof. Th orrtnss of th lgorithm pit in Fig. 8 is impli y Lmms. n.. Tsting for th istn of th st A n lrly on in O(n ) whr n = V. Sin thr r t most n rursiv lls, th whol omplity is polynomil. Corollry.4. Th intrvl post snwih prolm is polynomil. 4. Th trnsitiv su-hin prolm In irt grph D = (V, E), trnsitiv su-hin is hin [v,...,v k ] suh tht ny rs v i,v j (with i<j k) longs to E. This stion introus th trnsitiv su-hin prolm tht sks for th istn of trnsitiv su-hin ontining t lst hlf of th vrtis. Using rution from -SAT inspir from [6], w first prov tht this prolm is NP-omplt. Thn w show tht th orrsponing post snwih prolm is polynomil whil th irt snwih prolm is NP-omplt. Prolm 7. TRANSITIVE SUB-CHAIN PROBLEM. Instn: A igrph D = (V, E). Qustion: Dos D ontins trnsitiv su-hin of lngth t lst V /? Thorm 4.. Th trnsitiv su-hin prolm is NP-omplt. Proof. W ru -SAT to th trnsitiv su-hin prolm. Lt I n instn of k luss i = (i i i ) ( i k). W trnsform I into igrph D = (V, E) with V ={ 0 } i k { i,i, i, i }. Th thr litrls of lus i r inpnnt. For ny i k n ny j, j i i is n r of E. Morovr for i<j k n h, h, i hh j longs to E iff i h = h j. Finlly for ny v = 0, w th rs 0 v. Fig. 9 givs n mpl. Clrly D is polynomil tim onstrutil. W now prov tht -SAT instn I is stisfil iff th ssoit igrph ontins trnsitiv hin of lngth qul to V /. Assum th instn I is stisfil. Thn t lst on litrl, not y l i, pr lus hs n stisfi n for ny i = j, l i = l j. Thn thr ists hin in D from 0 to k through th l i s suh tht th sugrph inu y th vrtis of th hin is trnsitiv. Suh hin ontins k + vrtis; thrfor, its lngth is k, whih is qul to V / sin V =4k +. Convrsly, if trnsitiv hin of lngth V / ists in D, thn it hs to ontin ny i (0 i k) plus on litrl l i pr lus. Th trnsitivity nsurs tht for no i = j,whvl i = l j. It thrfor fins n ssignmnt tht stisfis th instn.

10 M. Hi t l. / Disrt Mthmtis 07 (007) missing trnsitiv rs 0 Fig. 9. Th igrph ssoit to th -SAT instn ( ) ( ) ( ) whr =, = n =. Th trnsitiv rs r omitt n ott rs o not long to th igrphs. 4.. Trnsitiv su-hin post snwih prolm In post ny hin is trnsitiv. Th hight h(p ) of post P is th lngth of th longst hin of P. It turns out th trnsitiv su-hin prolm for post is polynomilly quivlnt to th omputtion of th hight, whih is polynomil (it n on using DFS). Prolm 8. TRANSITIVE SUB-CHAIN POSET SANDWICH PROBLEM. Instn: A post P t = (V, E t ) n post P = (V, E) suh tht E t E. Qustion: Dos thr ist post P s = (V, E s ) suh tht E t E s E n h(p s ) V /? It is wll known tht th hight of post is monoton inrsing funtion of th st of gs. Th following lmm stts tht proprty. Lmm 4.. Lt Q = (V, E) n Q = (V, E ) two posts suh tht E E. Thn h(q) h(q ). Thorm 4.. Th trnsitiv su-hin post snwih prolm is polynomil. Proof. Lmm 4. shows tht omputing h(p ) suffis to tst th istn of snwih post P s suh tht h(p s ) V /. 4.. Trnsitiv su-hin irt snwih prolm Prolm 9. TRANSITIVE SUB-CHAIN DIRECTED SANDWICH PROBLEM. Instn: A post P t = (V, E t ) n igrph D = (V, E) suh tht E t E. Qustion: Dos thr ist post P s = (V, E s ) suh tht E t E s E n hight(p s ) n/? As for th trnsitiv su-hin prolm, -SAT rus to th ov prolm. Stting P t = (V, ) n D s fin in Thorm 4. is nough to prov its NP-ompltnss. Thorm 4.. Th trnsitiv su-hin irt snwih prolm is NP-omplt. 5. Two-imnsionl posts Lt L n P, rsptivly, totl orr n post on th sm vrt st. If < P y implis < L y, thn L is linr tnsion of P. Th imnsion of post P is th minimum numr k of linr tnsions suh tht < P y if n only if < Li y for ny i, i k. Th omprility grphs of two-imnsionl posts r th prmuttion grphs.

11 040 M. Hi t l. / Disrt Mthmtis 07 (007) i = δ( ) i i = δ( i ) i i i Fig. 0. Th ggt ssoit to tripl T i = ( i, i, i ). W not i = δ( i ) n i = δ( i ). Th prmuttion grph snwih prolm is known to NP-omplt [8]. Unlik th intrvl s whr th irt prolm is polynomil whil th non-orint prolm is NP-omplt, this stion shows tht for two-imnsionl posts, th post snwih prolm is lso NP-omplt. In this s, fiing th orinttion of th gs os not hlp. Prolm 0. TWO-DIMENSIONAL POSET SANDWICH PROBLEM. Instn: P t = (V, E t ) n P = (V, E) two posts on th sm groun vrt st suh tht E t E. Qustion: Dos thr ist snwih post P s = (V, E s ) of imnsion? Thorm 5.. Th two-imnsionl post snwih prolm is NP-omplt. Proof. W ru to th sm BETWEENNESS prolm tht ws us in [8] for prmuttion snwih grphs. Sin w r ling with posts, w n som itionl rgumnts. Prolm. BETWEENNESS PROBLEM. Instn: A groun st S n st T ={T,...,T k } of tripls of S. Qustion: Dos thr ist linr orring λ suh tht for ny tripl T i = ( i, i, i ), ithr i < λ i < λ i or i < λ i < λ i? Lt T ={T,...,T k } st of tripls on groun st S n instn of BETWEENNESS. W ssoit 5-vrt ggt to ny tripl T i = ( i, i, i ) (s Fig. 0): { i, i, i,i, i } whr i = δ(i ) n i = δ(i ). To ny instn of BETWEENNESS w ssoit pir of posts P t = (V, E t ) n P = (V, E) with E t E, s on th ggt of Fig. 0 s follows: V = S X whr X ={i i k} { i i k}, E t = {i i,i i,i i,i i} n E = X S\{uv v = δ(u)}. i k Clrly, P t n P r polynomil tim onstrutil. First, suppos thr is two-imnsionl snwih post P s for (P t,p). W writ u<v if uv is n r of P s, n u v if u n v r inomprl. Lt L s = (L,L ) rlizr of P s. Thn P s is su-orr of th plnr ltti L = L L sin prout-imnsion n intrstion-imnsion r qul. W n fin n orring λ on L y u< λ v if n only if L (u)>l (v) n L (u)<l (v). Sin S is n ntihin in P s, th rstrition of λ to S is linr orring (s ny two lmnts i, j of S stisfy y finition ithr L (j)>l (i) n L (j)<l (i),orl (i)>l (j) n L (i)<l (j)). Lt us onsir tripl T i =( i, i, i ). Without loss of gnrlity, w n ssum tht i < λ i. Sin i < i n i i, thn i < λ i. In if w suppos tht i λ i, this mns tht i n i r omprl in L L, whih is ontrition. An if w suppos i > λ i, thn y trnsitivity of λ w hv i < λ i, n sin i< λ i, y trnsitivity i < λ i, whih is lso ontrition. Sin i < i n i i, it follows tht i < λ i. Similrly, onsiring i w n prov tht i < λ i. Thrfor, i is twn i n i in λ. Thus, solution to th two-imnsionl post snwih prolm (P t,p)implis solution to th BETWEENNESS prolm on S with tripls T.

12 M. Hi t l. / Disrt Mthmtis 07 (007) s s k s n i i Fig.. Compltion of P t into two-imnsionl snwih post: i X k implis tht ny r s j with j k longs to E s ; i X k implis tht ny r s j with k j longs to E s. Th rs rwn in ol long to E t. For th onvrs, lt λ linr orring on S tht solvs th BETWEENNESS prolm for th tripls T. By rvrsing som of th tripls, w n ssum tht i < λ i < λ i for vry i. W shll fin two-imnsionl post P s tht is snwih for th pir (P t,p). Lt S ={s k k n}, whr s k < λ s l if n only if k<l. For m n, lt Xm ={ i i = s m } n fin Xm similrly. Th post P s hs th gs s k, whr ithr Xm with m k, or X m with m k (Fig. ). Consir th following two listings of V. L : X,X,...,X n,s,x,s,x,s,...,s n,xn,s n,s n, L : Xn,...,X,X,s n,xn,s n,...,s 4,X,s,X,s,s. Not tht th listing us for h st X j m in L is rvrs in L. If L n L r onsir to linr orrs, thn thir intrstion is P s, proving tht P s is two-imnsionl. Rfrns [] K.S. Booth, G.S. Lukr, Tsting for th onsutiv ons proprtis, intrvl grphs n grph plnrity using PQ-tr lgorithm, J. Comput. Systms Si. (976) [] M. Crioli, H. Evrtt, C.H.M. Figuiro, S. Klin, Th homognous st snwih prolm, Inform. Pross. Ltt. 67 () (998) 5. [] D.G. Cornil, S. Olriu, L. Stwrt, Th ultimt intrvl grph rognition lgorithm? in: Proings of th Ninth Annul ACM-SIAM Symposium on Disrt Algorithms (SODA), 998, pp [4] C.M.H. Figuiro, S. Klin, K. Vusković, Th grph snwih prolm for -join omposition is NP-omplt, Disrt Appl. Mth. (00) 7 8. [5] P.C. Fishurn, Intrnsitiv iniffrn in prfrn thory: survy, Opr. Rs. 8 (970) [6] H.N. Gow, S.N. Mhshwri, L.J. Ostrwil, On two prolms in th gnrtion of progrm tst pths, IEEE Trns. Softwr Eng. () (976) 7. [7] M.C. Golumi, H. Kpln, R. Shmir, On th omplity of DNA physil mpping, Av. in Appl. Mth. 5 (994) 5 6. [8] M.C. Golumi, H. Kpln, R. Shmir, Grph snwih prolms, J. Algorithms 9 (995) [9] M.C. Golumi, R. Shmir, Complity n lgorithms for rsoning out tim: grph-thorti pproh, J. ACM 40 (99) 08. [0] M. Hi, Comprility invrints, Ann. Disrt Mth. (984) [] M. Hi, E. Lhr, C. Pul, A not on fining ll homognous st snwihs, Inform. Pross. Ltt. 87 (00) [] M. Hi, R. MConnll, C. Pul, L. Vinnot, L-BFS n prtition rfinmnt, with pplitions to trnsitiv orinttion, intrvl grph rognition n onsutiv ons tsting, Thort. Comput. Si. 4 (000) [] P.B. Hnrson, Y. Zlstin, A grph-thorti hrtriztion of th pv hunk lss of synhronizing primitivs, SIAM J. Comput. 6 (977) [4] E.L. Lwlr, Squning jos to minimiz totl wight ompltion tim sujt to prn onstrints, Ann. Disrt Mth. (978) [5] C.H. Ppimitriou, M. Ynnkkis, Shuling intrvl-orr tsks, SIAM J. Comput. 8 (979) [6] J.D. Ros, A grph-thorti stuy of th numril solution of sprs positiv finit systms of linr qutions, in: R.C. R (E.), Grph Thory n Computing, Ami Prss, NY, 97, pp [7] S.-M. Tng, F.-L. Yh, Y.-L. Wng, An ffiint lgorithm for solving th homognous st snwih prolm, Inform. Pross. Ltt. 77 (00) 7. [8] J. Vls, Prsing flowhrts n sris prlll grphs, Thnil Rport STAN-CS-78-68, Computr sin Dprtmnt, Stnfor Univrsity, Stnfor, CA, 978. [9] J. Vls, R.E. Trjn, E.L. Lwlr, Th rognition of sris prlll igrphs, SIAM J. Comput. () (98) 98.

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Witness-Bar Visibility Graphs

Witness-Bar Visibility Graphs Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Witnss-Br Visiility Grphs Crmn Cortés Frrn Hurto Alrto Márquz Jsús Vlnzul Astrt Br visiility grphs wr introu in th svntis s mol for som VLSI lyout prolms.

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Quartets and unrooted level-k networks

Quartets and unrooted level-k networks Phylogntis Workshop, Is Nwton Institut or Mthmtil Sins Cmrig 21/06/2011 Qurtts n unroot lvl-k ntworks Philipp Gmtt Outlin Astrt n xpliit phylognti ntworks Lvl-k ntworks Unroot lvl-1 ntworks n irulr split

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Treemaps for Directed Acyclic Graphs

Treemaps for Directed Acyclic Graphs Trmps or Dirt Ayli Grphs Vssilis Tsirs, Soi Trintilou, n Ionnis G. Tollis Institut o Computr Sin, Fountion or Rsrh n Thnology-Hlls, Vssilik Vouton, P.O. Box 1385, Hrklion, GR-71110 Gr {tsirs,strint,tollis}@is.orth.gr

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA Astrt. Givn st of flxil rnh juntion DNA moluls with stiky-ns (uiling loks), ll hr tils, w onsir

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Uniform 2D-Monotone Minimum Spanning Graphs

Uniform 2D-Monotone Minimum Spanning Graphs CCCG 2018, Winnipg, Cn, August 8 10, 2018 Uniorm 2D-Monoton Minimum Spnning Grphs Konstntinos Mstks Astrt A gomtri grph G is xy monoton i h pir o vrtis o G is onnt y xy monoton pth. W stuy th prolm o prouing

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information