1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

Size: px
Start display at page:

Download "1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers."

Transcription

1 Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A = {0,,,,} First noti tht this rltion is rlxiv, sin (0, 0),(, ),(, ),(, ),(, ) R. Nxt, on n lso s tht this rltion is symmtri, sin th rvrs o vry non-rlxiv lmnt is prsnt. Finlly, on n vriy tht this rltion is lso trnsitiv y hking ll ovrlpping pirs. Thus this rltion is n quivln rltion. () {(,),(,),(,),(,),(,),(,),(,),(,)} A = {,,,} First noti tht this rltion is rlxiv, sin (, ),(, ),(, ),(, ) R. Nxt, on n lso s tht this rltion is symmtri, sin th rvrs o vry non-rlxiv lmnt is prsnt. Howvr, this rltion is not trnsitiv, sin (,) n (,) r in R ut (,) / R. Thus this rltion is not n quivln rltion. () {(x,y) y is iologil prnt o x} on th st o ll popl. This rltion is not rlxiv, sin prson is not prnt o thmslvs. It is lso not symmtri, sin i is prnt o, thn is not prnt o Finlly, trnsitivity lso ils, sin grnprnts r not prnts. Thus this rltion is not n quivln rltion. () {(x,y) N N lm(x,y) = 0} Noti tht this rltion is givn y {(,0),(,5),(,0),(5,),(5,0),(0,),(0,),(0,5),(0,0)} This rltion is symmtri, ut it is not rlxiv sin (,) / R, n it is not trnsitiv sin (5,0),(0,) R ut (5,) / R Thus this rltion is not n quivln rltion. () {(x,y) R R y = x + } This rltion is not rlxiv sin (, ) / R. This rltion is lso not symmtri sin (,5) R, ut (5,) / R. This rltion is not trnsitiv sin (,),(,5) R, ut (,5) / R Thus this rltion is not n quivln rltion. () or h o ()-() tht r quivln rltions, list th quivln lsss or th rltion. Noti tht () is th only quivln rltion. It quivln lsss r [0] R = {0,,} n [] R = {,}.. Din rltion R on R y {((x,y ),(x,y )) (x + y ) = (x + y )} () Show tht R is n quivln rltion. First noti tht this rltion is rlxiv, sin or vry orr pir (x,y ), (x + y ) = (x + y ). Nxt, on n lso s tht this rltion is symmtri, sin i (x + y ) = (x + y ) thn (x + y ) = (x + y ) Finlly, on n vriy tht this rltion is lso trnsitiv y osrving tht i (x +y ) = (x +y ) n (x +y ) = (x + y ), thn (x + y ) = (x + y ). Thus this rltion is n quivln rltion. () Dsri th quivln lsss o R. Suppos (x + y ) = r or som r R. thn [(x,y )] R = {(x i,y i ) (x i + y i ) = r }. Tht is, quivln lsss r sts o points tht li on th sm irl ntr out th origin.

2 . Givn tht A = {0,,,,} () Fin th smllst quivln rltion on A ontining th orr pirs {(,),(,),(,),(,0)} Th smllst quivln rltion ontining th givn points is: {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(,)} () Drw th grph o th quivln rltion or oun in prt (). R 0 () List th quivln lsss o th rltion or oun in (). Th quivlnv lsss r: [0] R = {0,,} n [] R = {,}.. For h o th ollowing olltions o susts o A = {,,,,5}, trmin whthr o not th olltion is prtition. I it is, list th orr pirs in th quivln rltion trmin y th prtition. () {{,}, {,}, {5}} This olltion o susts is prtition. Noti tht th sts r isjoint n tht thir union is ll o A. Th orr pirs in th quivln rltion gnrt y this prtition r: {(,),(,),(,),(,),(,),(,),(,),(,5),(5,5)} () {{,,}, {}, {5}} This olltion o susts is prtition. Noti tht th sts r isjoint n tht thir union is ll o A. Th orr pirs in th quivln rltion gnrt y this prtition r: {(,),(,),(,),(,),(,),(,),(,),(,),(,)(,),(5,5)} () {{,,,}, {5}} This olltion o susts is prtition. Noti tht th sts r isjoint n tht thir union is ll o A. Th orr pirs in th quivln rltion gnrt y this prtition r: {(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(5,5)} () {{,}, {}, {5}} This olltion o susts is not prtition. Th sts r isjoint ut thir union is missing. () {{,}, {,,}, {5}} This olltion o susts is not prtition. Noti tht th sts r not isjoint sin two o th sts ontin. 5. Dtrmin whthr or not th ollowing inry rltions r prtil orrs. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(0,),(0,),(,),(,),(,),(,),(,),(,),(,),(,),(,)} on th st A = {0,,,,} Noti tht this rltion is rlxiv, sin it ontins ll rlxiv pirs. This rltion is lso ntisymmtri, sin thr r no rvrss o non-rlxiv lmnts prsnt in th rltion. Finlly, this rltion is trnsitiv [hk ll ovrlpping pirs]. Thus this is prtil orr.

3 () {(,),(,),(,),(,),(,),(,),(,)} on th st A = {,,,} Noti tht this rltion is rlxiv, sin it ontins ll rlxiv pirs. This rltion is lso ntisymmtri, sin thr r no rvrss o non-rlxiv lmnts prsnt in th rltion. Finlly, this rltion is trnsitiv [in t, th only ovrlpping pirs h involv rlxiv pir]. Thus this is prtil orr. () {(x,y) y is iologil prnt o x} This rltion is not rlxiv sin prson is not thir own prnt, so it is not prtil orr. () {(x,y) R R y = x + } This rltion is not rlxiv sin (, ) / R, so it is not prtil orr. () or h o ()-() tht r posts, rw th Hss igrm or th post (or thos tht r in on ininit sts, only rw init suprt o th igrm). 0 () () 6. Init whih lmnt is grtr or h givn pir using th stnr lxiogrphi orring. () (, 7) n (, ) (,7) (,) sin <. () (,7,,9) n (,,7,9) (,,7,9) (,7,,9) sin = n < 7. () (,,,) n (i,,,) (,,,) (i,,,) sin < i. () (,,n,,,n,) n (,,n,,n,,s) (,,n,,n,,s) (,,n,,,n,) sin =, =, n = n, n <. 7. Drw th Hss Digrm or th post (P({,,}), ) Ο {} {} {} {,} {,} {,} {,,}

4 8. Drw th Hss Digrm or th post (P({0,,,}), ) {0,,,} {0,,} {0,,} {0,,} {,,} {0,} {0,} {0,} {,} {,} {,} {0} {} {} {} Ο 9. Givn th post ({,,,5,6,7,0,0,0,60,70}, ) () Drw th Hss Digrm or this post () Fin th lst lmnt or xplin why thr is no lst lmnt. is th lst lmnt () Fin ll uppr ouns o {,5} 0, 0, 0, 60, () Fin th mximl lmnts. 60, 70 () Fin th miniml lmnts. () Fin th grtst lmnt or xplin why thr is no grtst lmnt. Thr is no grtst lmnt, sin thr r two mximl lmnts. (g) Fin th lst uppr oun o {,5} (i it xists). 0 is th lst uppr ouun. (h) Fin ll lowr ouns o {6,0}, (i) Fin th grtst lowr oun o {6,0} (i it xists). is th grtst lowr oun. (j) is this post ltti? Justiy your nswr. No. Sin th pir {60,70} hs no uppr oun, this post nnot ltti. 0. Suppos th ollowing grph rprsnts th rsult o roun roin vollyll tournmnt. Giv th won lost ror or h tm who prtiipt. Who won th tournmnt? A D C B Rll tht th in-gr o vrtx in irt grph rprsnting roun roin tournmnt givs th numr o losss or tht tm. Similrly, th out-gr o vrtx in irt grph rprsnting roun roin tournmnt givs th numr o wins or tht tm. Using this, Tm A hs ror o ( ), Tm B hs ror o (0 ), Tm C hs ror o ( 0), n Tm D hs ror o ( ).

5 Thror, Tm C won th tournmnt.. Stt wht typ o grph mol you woul us or h o th ollowing. Mk it lr wht th vrtis in your mol rprsnt, wht th gs rprsnt, whthr th gs r irt or unirt, n whthr not not loops n multigs r llow. () A grph mol or th strts in Moorh, Minnsot. W will tk vrtis to intrstions n gs to ros (or lns o ros) twn intrstions. Sin Moorh hs som on-wy strts, w n irt grph. Loops o not mk sns in this ontxt. W oul hoos to us multigs o w wish to ount or th strts tht hv mor thn on ln hing in prtiulr irtion. () A grph tht mols th molulr strutur o rtin protin molul. W will tk vrtis to toms n gs to hmil ons twn toms. Chmil ons r gnrlly thought o s ing twn pir o toms rthr thn rom on tom to nothr, so on woul normlly us n unirt grph. W gnrlly o not think o ons rom n tom to itsl, so thr woul no loops. Sin thr multipl ons in som moluls, w woul mk us o multi-gs. () A grph moling ll th phon lls m on rtin rrir uring th lst hour. I w tk our vrtis to phon numrs, n gs to lls originting rom on numr n onnting with nothr numr, thn w lrly n irt gs. W oul l with onrn lls y rwing n g rom th prson originting th onrn ll to h o th othr iniviul lins involv in th ll. Loops o not mk sns in this ontxt, sin prson nnot ll himsl (t lst not t th sm numr). W woul llow multi-gs, sin pron oul ll th sm prson mor thn on uring singl hour. () A grph moling omputr ntwork. Hr, loops o not mk sns. Whthr on uss multigs n/or multi-gs pns on how prisly you think out how onntions r m twn omputrs (srvr/slv rltionships n/or multipl ports oul tkn into ount).. Givn th ollowing unirt grph: g i h j () Fin E E = () Fin V V = 0 () Fin g(), g(), n g(g) g() = 5, g() =, n g(g) = () List ll isolt vrtis o j is n isolt vrtx. () List ll pnnt vrtis o is pnnt vrtx.

6 () Is onnt? Justiy your nswr. How mny onnt omponnts os hv? is not onnxt, sin it hs n isolt vrtx. hs two onnt omponnts sin vry pir o vrtis not involving j is onnt. (g) List ll rig gs in. hs two rig gs: {,} n {,g} (h) List ll ut vrtis in.,, n g r ut vrtis. (i) Fin th st o vrtis jnt to vrtx. {,,,,}. (j) Fin th gr squn or. 5,,,,,,,,,0 (k) Vriy tht th Hnshking Thorm hols or. Aoring to th Hnshking Thorm, v V g(v) = E. Hr, g(v) = = = () = E. Thror, th Hnshking Thorm is vrii or this v V grph. (l) Form th jny mtrix or with th vrtis orr lphtilly (m) Form n inin mtrix or with th vrtis orr lphtilly n th gs n orr o your hoosing Givn th ollowing irt grph: g i h () Fin E E = () Fin V V = 9

7 () Fin g (), g (), g + (), n g + (). g () =, g () =, g + () =, n g + () =. () Is strongly onnt? Justiy your nswr. How mny strongly onnt omponnts os hv? is not strongly onnt us thr r no pths into vrtx. hs two strongly onnt omponnts: {} n {,,,,, g, h, i} () wkly onnt? Justiy your nswr. Ys. Th unrlying grph is onnt, so is wkly onnt. () Fin th st o vrtis jnt to vrtx. Th vrtis {,,} r jnt to vrtx. (g) Fin th st o vrtis jnt rom vrtx. Th vrtis {,} r jnt rom vrtx. (h) Form th jny mtrix or with th vrtis orr lphtilly Us th Hnshking Thorm to prov tht n unirt grph hs n vn numr o vrtis o o gr. Proo: Aoring to th Hnshk Thorm, or ny unirt grph, v V o th gr squn o grph is vn. g(v) = E. Tht is, th sum o th lmnts Lt V th st o vrtis o with vn gr, n lt V th st o vrtis o o gr. Lt k = v V g(v). Sin th sum two vn numrs is vn, k is vn. Lt m = v V g(v) Thn, E k = m is lso vn, sin th irn o two vn numrs is vn. I w suppos tht V is o, thn m = v V g(v) is o, sin th sum o n o numr o o intgrs is o. This is ontrition, sin m hs lry n shown to vn. Hn V must vn. Tht is, must hv n vn numr o vrtis with o gr. 5. () Drw h o th ollowing grphs:

8 i. K ii. C 8 iii. W 5 K C 8 W 5 iv. K 6 v. Q vi. C 7 K 6 Q C 7 vii. K, viii. K, ix. K, K, K, K, () Whih o th grphs ov r iprtit? Justiy your nswr. ii, v, vii, viii, n ix r iprtit. A -oloring hs n inlu in th grphs shown ov. All th othrs ontin t lst on o yl, so tht nnot iprtit. 6. Drw ll sugrphs o th ollowing grph. [***** I ll ths ltr *****] 7. From th list o sugrphs you oun ov, rw on rprsnttiv o h isomorphism lss. [***** I ll ths ltr *****] 8. Fin th union o th ollowing grphs:

9 U 9. 5 oys (A, Bn, Chuk, Donl, Elmr) n 6 girls (Frnin, Grthn, Hthr, Irn, Jnnir, n Kti) r trying to in ts to th junior prom. Frnin is willing to go with Bn, Chuk, Donl, or Elmr. Grthn is willing to go with A or Donl. Hthr is willing to go with Bn or Chuk. Irn is willing to go with Chuk or Donl. Jnnir is willing to go with Bn, Chuk, or Donl. Kti is willing to go with Donl or Bn. () Drw grph moling this sitution. F G H I J K A B C D E () Fin mthing or whih vry oy hs t to th prom. F G H I J K A B C D E This mthing orrspons to A going with Grthn, Bn going with Hthr, Chuk going with Jnnir, Donl going with Kti, n Elmr going with Frnin. 0. Drw simpl grph with h o th ollowing gr squns or stt why on is not possil. (),,, (),,, Not possil. Sin thr r only vrtis totl in this vrtx squn, thr r only thr othr gs tht ny vrtx n jnt to, sin w r insisting on simpl grph. Thror, w nnot hv vrtx with gr. In t, ny vrtx in simpl grph with n vrtis hs gr t most n. (),,,,

10 () 6,,,,,, () 6,,,, Not possil. As ov, sin thr r only 5 vrtis in this gr squn, thr nnot hv vrtx with gr 6. In t, ny vrtx in simpl grph with n vrtis hs gr t most n.. For h pir o grphs, prov tht th grphs r isomorphi, or prov tht thy nnot isomorphi. 5 () Ths grphs r isomorphi. To s this, onsir th ollowing ijtion twn th vrtx sts: Vrtx in Vrtx in 5 It is sy to vriy tht this ijtion prsrvs jny, sin it prsrvs 5-yl prsnt in oth grphs. () Ths grphs r isomorphi. To s this, onsir th ollowing ijtion twn th vrtx sts: Vrtx in Vrtx in In t, sin vry pir o istint vrtis r jnt in ths grphs, ny ijtion twn th vrtis is n isomorphism [so thr r n! =! = irnt ijtions twn ths grphs]. 6 () 5 Ths grphs r not isomorphi. To s this, noti tht hs gr, whil no vrtx in hs gr.

11 g i () Ths grphs r isomorphi. To s this, onsir th ollowing ijtion twn th vrtx sts: Vrtx in Vrtx in i g h It is sy to vriy tht this ijtion prsrvs jny, i you n visuliz th trnormtion y imgining strightning out th right ngl in orm y n thn rotting th grph 80 ir.. For h o th ollowing grphs trmin: (i) Whthr or not th grph hs n Eulr Ciruit. (ii) Whthr or not th grph hs n Eulr Pth. (iii) Whthr or not th grph hs Hmilton Ciruit. (iv) Whthr or not th grph hs Hmilton Pth. B sur to justiy your nswrs. h () () Grph () hs vrtis o o gr, so it os not hv n Eulr Ciruit, ut it os hv n Eulr Pth. Grph () os not hv Hmilton Ciruit. To s this, noti tht oth gr vrtis r ut vrtis, ut on ths gs r rmov, th only othr g onnt to th ntr vrtx is rig g, so on nnot orm Hmilton iruit. Grph () os hv Hmilton Pth (strt in th lowr lt ornr vrtx, trvl lokwis though th othr 6 vrtis on th primtr o th grph, n thn go up to th lst vrtx). Grph () hs vrtis with vn grs, so it os hv n Eulr Ciruit. Grph () os not hv Hmilton Ciruit. To s this is it sutl, ut visiting ll o th vrtis in on o th min igonl isonnts th grph so tht iruit nnot omplt. Grph () os hv Hmilton Pth, s xhiit y th ollowing:

12 () () Grph () hs vrtis o o gr, so it os not hv n Eulr Ciruit, ut it os hv n Eulr Pth. Grph () os not hv Hmilton Ciruit. To s this, noti th rig g in th grph. Grph () os hv Hmilton Pth (ltrnt trvling lt n thn right through h lvl o th grph). Grph () hs vrtis o o gr, so it os not hv n Eulr Ciruit, ut it os hv n Eulr Pth. Grph () os not hv Hmilton Ciruit. To s this, noti th rig g in th grph. Grph () os not hv Hmilton Pth. To s this, noti tht th vrtx o gr 5 is ut vrtx whos rmovl sprts th grph in to omponnts, only two o whih n visit y n pth tht os not rpt this vrtx.. Drw grph tht stisis th hypothss o Dir s Thorm. Explin how you know tht h hypothsis is stisi. Noti tht this grph hs 6 vrtis (so mor thn ). To stisy Dir s Thorm, h vrtx ns to hv gr t lst 6 =, n w n s tht h vrtx hs gr. [Not: I w think o ginning with just ths six vrtis n ing gs, you shoul l to irst onvin yoursl tht you nnot mk ll vrtis hv gr without th grph ing onnt. Nxt, onvin yoursl tht thr must Hmilton Ciruit.]. Drw grph tht stisis th hypothss o Or s Thorm. Explin how you know tht h hypothsis is stisi. (your xmpl my not omplt grph.) Noti tht th sm grph lso stiis Or s Thorm. Th grph hs 6 vrtis (so mor thn ). To stisy Dir s Thorm, h nonjnt pir o vrtis ns to hv grs tht up to t lst n = 6, n w n s tht sin h vrtx hs gr, th sum o th grs o ny pir o nonjnt vrtis is 6.

13 5. For h o th ollowing wight grphs, us Dijkstr s Algorithm to in shortst pth rom to z. () 8 5 z (,,,,) () (,,,) z 8 5 9(,) 0(,,) (,,,) 7(,) () Th igur ov shows th rsult o rrying out Dijkstr s Algorithm on th givn wight grph. From this, w s tht th shortst pth hs wight: n ollows th vrtx squn,,,,,z. () g 6 h z () (,,,) 5 5 g 5 (,) 7(,,) 6 h 5() (,,,) (,) 5(,,,,,g) 6(,,,,) z (,,,) Th igur ov shows th rsult o rrying out Dijkstr s Algorithm on th givn wight grph. From this, w s tht th shortst pth hs wight: 5 n ollows th vrtx squn,,,,,g,z. Noti tht,,,,h,z is lso shortst pth, ut it is not th pth oun y th lgorithm. 6. Us rut or lgorithm to in n optiml solution or th trvling slsmn prolm or th givn grph strting t hom vrtx : () [***** I ll ths ltr *****]

14 () 5 [***** I ll ths ltr *****]

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Quartets and unrooted level-k networks

Quartets and unrooted level-k networks Phylogntis Workshop, Is Nwton Institut or Mthmtil Sins Cmrig 21/06/2011 Qurtts n unroot lvl-k ntworks Philipp Gmtt Outlin Astrt n xpliit phylognti ntworks Lvl-k ntworks Unroot lvl-1 ntworks n irulr split

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

CSI35 Chapter 11 Review

CSI35 Chapter 11 Review 1. Which of th grphs r trs? c f c g f c x y f z p q r 1 1. Which of th grphs r trs? c f c g f c x y f z p q r . Answr th qustions out th following tr 1) Which vrtx is th root of c th tr? ) wht is th hight

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

Graph Theory Homework Summer 2018

Graph Theory Homework Summer 2018 Grph Thor Homwork Smmr 20 Bs on Gross n Ylln 2th Eition Jl 2, 20 Contnts Homwork 0 2 2 Homwork 02 Homwork 0 Homwork 0 Homwork 0 Homwork 0 Homwork 0 Homwork 0 9 Homwork 09 0 Homwork 0 9 Homwork 0 2 Homwork

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

MCS100. One can begin to reason only when a clear picture has been formed in the imagination.

MCS100. One can begin to reason only when a clear picture has been formed in the imagination. 642 ptr 10 Grps n Trs 46. Imin tt t irmsown low is mp wit ountris ll. Is it possil to olor t mp wit only tr olors so tt no two jnt ountris v t sm olor? To nswr tis qustion, rw n nlyz rp in wi ountry is

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information