Solutions to Homework 5

Size: px
Start display at page:

Download "Solutions to Homework 5"

Transcription

1 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. () With x hois or an x or 2 an 3 w hav P (G, x) =x (x ) 2. () Thr ar x hois or, x hois or 2, x 2 or 3, an x or ah o th othr thr vrtis. Thus P (G, x) =x (x ) 4 (x 2). () Thr ar x hois or, x hois or 2, x 2 or 3, x 3 hois or 4, an x 2 or 5 an 6. Thus P (G, x) =x (x ) (x 2) 3 (x 3) (a) () () 5 () 2. [3.4 #2] (a) P (G, 3) = 3 (3 ) 3 =24. () P (G, 3) = 3 (3 ) 2 =2. () P (G, 3) = 3 (3 ) 4 (3 2) = 48. () P (G, 3) = 3 (3 ) (3 2) 3 (3 3) = 0 3. [3.4 #3] Th map M low an rprsnt y th graph G on its right a a Looking at ithr M or G thr ar x olor hois or an x or any o th othr 4 rgions/vrtis. Thn P (M,x) =P (G, x) =x (x ) [3.4 #4] Thr ar x hois or vrtx an x or all othrs atr. Thn P (L n,x)= x (x ) n n-3 n-2 n- n [3.4 #5] W us P (,x)=p (K 3,x)=x (x ) (x 2) an P (,x)=p (I,x)=x. Part (a)isusinallothrparts. (a) P (,x) = P (,x) P (,x)=p (,x) P (,x) P (,x) = P (,x)p (,x) 2P (,x) = P (,x)(p (,x) 2) = x (x ) (x 2) 2.

2 () P (,x) = P (,x) P (,x)=p (,x) P (,x) P (,x) = P (,x)p (,x) P (,x) P (,x) = P ( µ,x)(x ) P (,x) = P (,x) P (,x) (x ) P (,x) µ = P (,x)p(,x) P (,x) (x ) P (,x) = P (,x)(x ) 2 P (,x) = x (x ) 3 (x 2) x (x ) (x 2) 2 = x (x 2) (x ) x 2 3x +3 () P (,x) = P (,x) P (,x) = P (,x)p(,x) P (,x) µ = P (,x)(x ) = P (,x)p(,x) P (,x) (x ) = P (,x)(x ) 2 = x (x ) 3 (x 2) 2. () Th graph in part () is quivalnt to x (x ) (x 2) 2. in part (a). Thn its hromati polynomial is 6. [3.4 #6] From th prvious xris w hav P (,x)=p(k 3,x)(P (I,x) 2). Using rution thorms w hav P (K 3,x)=P (L 3,x) P (K 2,x)=P (K 2,x) P (I,x) P (K 2,x) P (K 2,x) = P (K 2,x)(P (I,x) 2) = (P (I 2,x) P (I,x)) (P (I,x) 2). Thn P (,x)=(p (I 2,x) P (I,x)) (P (I,x) 2) 2 (not that sin P (I n,x)=x n thn this agrs with th answr in 3.4 #5 (a)). 7. [3.4 #7] Using th rution thorm or Z n w hav P (Z n,x)=p (L n,x) P (Z n,x). Thn P (L n,x)=p (Z n,x)+p (Z n,x). 8. [3.4 #8] Th graph G assoiat to th map is a Thn P (M,x) =P (G, x) =P (L 4,x) P (I,x) P (L 4,x)=P (L 4,x)(x ) = x (x ) 4 using Exris 3.4 #4. 2

3 9. [3.4 #3] (a) an () ail Thorm 3.3 (not onsutiv powrs), () ails Thorm 3.2., () an (g) ail Thorm 3.3 (thy o not altrnat signs), () an () ail Thorm So non o ths polynomials oul a hromati polynomial. 0. [3.4 #2] Not. Hr W n nots th whl on n +vrtis. (W prviously us W n to not th whl on n vrtis.) Solution. Lt F n th graph on n + vrtis otain y joining on vrtx to all vrtis o L n. n+... n-3 n n-2 n- Thn, using th Funamntal Rution Thorm, P (W n,x)=p (F n,x) P (W n,x). W irst gt th hromati polynomial o F n. I x olors ar availal thn thr ar x olor hois or vrtx n +, x or vrtx, anx 2 or vrtis 2, 4,...,n. Thn P (F n,x)=x(x ) (x 2) n. Thus w an writ or all k 4 an P (W k,x)=x (x ) (x 2) k P (W k,x) P (W 3,x) = x (x ) (x 2) 2 P (K 3,x) = x (x ) (x 2) 2 x (x ) (x 2). Now onsir th ollowing sum ( ) k P (W k,x) = = = k=3 ( ) k x (x ) (x 2) k ( ) k P (W k,x) k=4 ³ k=4 +( ) 3 x (x ) (x 2) 2 x (x ) (x 2) ( ) k x (x ) (x 2) k + ( ) k P (W k,x) k=4 k=4 +( ) 3 x (x ) (x 2) 2 +( ) 2 x (x ) (x 2) n X ( ) k x (x ) (x 2) k + ( ) j P (W j,x) k=2 Not that th two sums o hromati polynomials anl, xpt or th trm ( ) n P (W n,x) on th lt. Hn ( ) n P (W n,x) = ( ) k x (x ) (x 2) k = x (x ) (x 2) (( ) (x 2)) k 2 k=2 j=3 n 2 X = x (x ) (x 2) (( ) (x 2)) j j=0 3 k=2

4 P n 2 j=0 (( ) (x 2))j is a gomtri sum. It is known that i a 6= thn a m + a m a 2 + a += am+.usinga =( ) (x 2) w hav a n 2 X (( ) (x 2)) j = ( )n (x 2) n ( ) (x 2) j=0 Thror = ( )n (x 2) n ( ) (x ) = ( )n (x 2) n +. x P (W n,x) = ( ) n x (x ) (x 2) ( )n (x 2) n + ³ x = ( ) n x (x 2) ( ) n (x 2) n + = x (x 2) n +( ) n x (x 2). Solution n+ n n- W hav x ways to olor vrtx n +an, sin this vrtx is ajant to all othr vrtis, w hav x olors lt to olor vrtis, 2,..., n. Sin th graph inu y vrtis, 2,...,n is a Z n, w hav P (Z n,x ) ways to olor thm. 4 n-2 So P (W n,x)=xp (Z n,x ). 6 5 Not. Comining th two prvious solutions w gt th hromati polynomial o Z n,namly P (Z n,x ) = (x 2) n +( ) n (x 2), or quivalntly, P (Z n,x)=(x ) n +( ) n (x ).. [3.5 #7] (a) Thr is no spanning tr aus th graph is isonnt. (-h) Answrs may vary. () or () () () () (g) (h) 4

5 2. [3.5 #9] Lt F is a orst on n vrtis an with k omponnts. W prov that F has n k vrtis. By inition, th k omponnts T,T 2,...T k ar trs. Th numr o gs i o ah tr T i is on lss than th orrsponing numr o vrtis n i,thatis, i = n i. Also n + n n k = V (F ) = n. Thn E (F ) = k = n +n n k = n k. 3. [3.5 #] Any tr with 5 gs maximizs th numr o vrtis. Thn th maximum numr o vrtis is 5 + = 6. (Any onnt graph on mor than 6 vrtis ontains a spanning tr with mor than 5 gs. So th graph itsl annot hav only 5 gs.) 4. [3.5 #2] Th minimum numr o gs is ahiv y a tr. (Not that lting an g o a iruit in a onnt graph rus th numr o gs an kps th graph onnt.) Th th numr o gs is 25 = [3.5 #3] As in 3.5 #, ah onnt omponnt ontains a spanning tr. Th union o ths spanning trs is a orst an thus th graph ontains at last th numr o gs in this orst. So, y prolm 3.5 #9, a graph on n vrtis an with 3 onnt omponnts has at last n 3 gs. That is, n 3 5. Son is at most 8. Aorstwith3omponnts an 5 gs has xatly 8 vrtis, maximizing th numr o vrtis. Thn th maximum numr o vrtis is [3.5 #8] Lt T a tr on n vrtis. W prov P (T,x)=x (x ) n () y inution on n. I n =thn T = I an so P (T,x) =P (I,x)=x = x (x ) vriying (). Suppos Thorm 3.7 guarants that T has a vrtx v o gr. Lt α thginintinv. NotthatT 00 α is a tr on n vrtis an T 0 α is orm y T 00 α an an isolat vrtx. Thn P (T,x) = P Tα,x 0 P Tα,x 00 = P Tα,x 00 P (I,x) P Tα,x 00 = P Tα,x 00 (x ) By th inution hypothsis P (Tα,x)=x 00 (x ) (n ) = x (x ) n 2 an thus P (T,x)= x (x ) n. 7. [3.5 #9] Lt T any tr. Using P (T,x) =x (x ) n w hav P (T,) = 0 an P (T,2) = 2. Thn th hromati numr o T is 2 (th smallst positiv intgr valu o x or whih P (T,x) 6= 0). 8. [3.5 #20] Rall that a graph is ipartit i its st o vrtis an partition into two isjoint sts V an V 2 suh that all gs o th graph join on vrtx in V to on in V 2. Lt T a tr an u any o its vrtis. To show that /T is ipartit w partition th vrtis o T in two lasss V o an V vn as ollows. Thorm 3.8 guarants that or any othr vrtx v o T thr is a uniqu simpl hain rom u to v. Thnv V o i th lngth o this hain is o an v V vn ithlngthisvn(thnu V vn ). W laim that all gs o T must join vrtis in irnt lasss... Not that i w olor th vrtis o V o lu an th vrtis in V vn r, thn thr ar no monohromati gs an thus i T has at last two vrtis thn χ (T )=2. 5

6 9. [3.7 #a] In ah as th rows an olumns rprsnt th vrtis o th orrsponing igraph in alphatial orr rom top to ottom an lt to right. A (D )=A(D 2 )= A (D 3)= A (D 7 )= A (D 4 )= A (D 5 )= A (D 6 )= A (D 8 )= [3.7 #2] (a) {a, } {, } {, } {, a} {, } {,h} {h, g} {g,} a g h () {a, } {, } {, } {, } {,g} {g, h} {a, } {, } {, g} {, h} a g h

7 () {a, } {, } {, } {,} {g, h} {a, } {, } {, g} {, h} a g h () {a, } {, } {, } {, } {,g} {g, h} {a, } {, } {, g} {, h} {, } {, g} a g h () {a, } {, } {, } {, } {,g} {g,h} {a, } {, g} {, h} {, } a g h () {a, } {a, } {a, } {, } {, } {, } {, } {, } {, g} {,g} a g

8 (g) a g h i j k l {a, } {, } {, } {, } {g, h} {i, j} {j, k} {k, l} {a, g} {, h} {, i} {, j} {, k} {,l} (h) {a, } {, } {a, } {, } {, } a [3.7 #3] x u v w y v y w 22. [3.7 #7] A (G )= A (G 3 )= u A (G 2 )= A (G 4 )= z x 8

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

10. EXTENDING TRACTABILITY

10. EXTENDING TRACTABILITY Coping with NP-compltnss 0. EXTENDING TRACTABILITY ining small vrtx covrs solving NP-har problms on trs circular arc covrings vrtx covr in bipartit graphs Q. Suppos I n to solv an NP-complt problm. What

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

N1.1 Homework Answers

N1.1 Homework Answers Camrig Essntials Mathmatis Cor 8 N. Homwork Answrs N. Homwork Answrs a i 6 ii i 0 ii 3 2 Any pairs of numrs whih satisfy th alulation. For xampl a 4 = 3 3 6 3 = 3 4 6 2 2 8 2 3 3 2 8 5 5 20 30 4 a 5 a

More information

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work? E-Trir D Flip-Flop Funamntal-Mo Squntial Ciruits PR A How o lip-lops work? How to analys aviour o lip-lops? R How to sin unamntal-mo iruits? Funamntal mo rstrition - only on input an an at a tim; iruit

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

L I R M M O N T P E L L I E R

L I R M M O N T P E L L I E R L I R M M O N T P E L L I E R Laoratoir 'Informatiqu, Rootiqu t Miroltroniqu Montpllir Unit Mixt CNRS - Univrsit Montpllir II C 0998 ' Rapport Rhrh $ Maximal Inlusion Sarh: A nw algorithm for horal graphs

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District Logarithms Sondary Mathmatis Pag 6 Jordan Shool Distrit Unit Clustr 6 (F.LE. and F.BF.): Logarithms Clustr 6: Logarithms.6 For ponntial modls, prss as a arithm th solution to a and d ar numrs and th as

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Evans, Lipson, Wallace, Greenwood

Evans, Lipson, Wallace, Greenwood Camrig Snior Mathmatial Mthos AC/VCE Units 1& Chaptr Quaratis: Skillsht C 1 Solv ah o th ollowing or x: a (x )(x + 1) = 0 x(5x 1) = 0 x(1 x) = 0 x = 9x Solv ah o th ollowing or x: a x + x 10 = 0 x 8x +

More information

CS553 Lecture Register Allocation I 3

CS553 Lecture Register Allocation I 3 Low-Lvl Issus Last ltur Intrproural analysis Toay Start low-lvl issus Rgistr alloation Latr Mor rgistr alloation Instrution shuling CS553 Ltur Rgistr Alloation I 2 Rgistr Alloation Prolm Assign an unoun

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Graphs and Graph Searches

Graphs and Graph Searches Graphs an Graph Sarhs CS 320, Fall 2017 Dr. Gri Gorg, Instrutor gorg@olostat.u 320 Graphs&GraphSarhs 1 Stuy Ais Gnral graph nots: Col s Basi Graph Nots.pf (Progrss pag) Dpth first gui: Dpth First Sarh

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

1 Random graphs with specified degrees

1 Random graphs with specified degrees 1 Ranom graphs with spii grs Rall that a vrtx s gr unr th ranom graph mol G(n, p) ollows a Poisson istribution in th spars rgim, whil most ral-worl graphs xhibit havy-tail gr istributions. This irn is

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

LR(0) Analysis. LR(0) Analysis

LR(0) Analysis. LR(0) Analysis LR() Analysis LR() Conlicts: Introuction Whn constructing th LR() analysis tal scri in th prvious stps, it has not n possil to gt a trministic analysr, caus thr ar svral possil actions in th sam cll. I

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list. 3 3 4 8 6 3 3 4 8 6 3 3 4 8 6 () (d) 3 Sarching Linkd Lists Sarching Linkd Lists Sarching Linkd Lists ssum th list is sortd, but is stord in a linkd list. an w us binary sarch? omparisons? Work? What if

More information

MSLC Math 151 WI09 Exam 2 Review Solutions

MSLC Math 151 WI09 Exam 2 Review Solutions Eam Rviw Solutions. Comput th following rivativs using th iffrntiation ruls: a.) cot cot cot csc cot cos 5 cos 5 cos 5 cos 5 sin 5 5 b.) c.) sin( ) sin( ) y sin( ) ln( y) ln( ) ln( y) sin( ) ln( ) y y

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Examples and applications on SSSP and MST

Examples and applications on SSSP and MST Exampls an applications on SSSP an MST Dan (Doris) H & Junhao Gan ITEE Univrsity of Qunslan COMP3506/7505, Uni of Qunslan Exampls an applications on SSSP an MST Dijkstra s Algorithm Th algorithm solvs

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Assignment 4 Biophys 4322/5322

Assignment 4 Biophys 4322/5322 Assignmnt 4 Biophys 4322/5322 Tylr Shndruk Fbruary 28, 202 Problm Phillips 7.3. Part a R-onsidr dimoglobin utilizing th anonial nsmbl maning rdriv Eq. 3 from Phillips Chaptr 7. For a anonial nsmbl p E

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Topic review Topic 9: Undirected graphs and networks

Topic review Topic 9: Undirected graphs and networks Topi rviw Topi 9: Undirtd graphs and ntworks Multipl hoi Qustions 1 and 2 rfr to th ntwork shown. 1. Th sum of th dgrs of all th vrtis in th ntwork is: A 5 B 10 C 12 D 13 E 14 2. Th list of dgs an writtn

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Linked-List Implementation. Linked-lists for two sets. Multiple Operations. UNION Implementation. An Application of Disjoint-Set 1/9/2014

Linked-List Implementation. Linked-lists for two sets. Multiple Operations. UNION Implementation. An Application of Disjoint-Set 1/9/2014 Disjoint Sts Data Strutur (Chap. 21) A disjoint-st is a olltion ={S 1, S 2,, S k } o distint dynami sts. Eah st is idntiid by a mmbr o th st, alld rprsntativ. Disjoint st oprations: MAKE-SET(x): rat a

More information

MS2005/MS6005 Exercise Sheet

MS2005/MS6005 Exercise Sheet 10/9/15 MS2005/MS6005 Exris Sht 1. In ah as omput th numbr of intgrs that ar multipls of 11 in th givn st: A = {10,11,12,...,54}, B = {11,12,13,...,55}, C = { 127, 126,...,39} 2. How many intgrs in th

More information

Figure 1: Closed surface, surface with boundary, or not a surface?

Figure 1: Closed surface, surface with boundary, or not a surface? QUESTION 1 (10 marks) Two o th topological spacs shown in Figur 1 ar closd suracs, two ar suracs with boundary, and two ar not suracs. Dtrmin which is which. You ar not rquird to justiy your answr, but,

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

Chapter Finding Small Vertex Covers. Extending the Limits of Tractability. Coping With NP-Completeness. Vertex Cover

Chapter Finding Small Vertex Covers. Extending the Limits of Tractability. Coping With NP-Completeness. Vertex Cover Coping With NP-Compltnss Chaptr 0 Extning th Limits o Tractability Q. Suppos I n to solv an NP-complt problm. What shoul I o? A. Thory says you'r unlikly to in poly-tim algorithm. Must sacriic on o thr

More information

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E

More information

Math 120 Answers for Homework 14

Math 120 Answers for Homework 14 Math 0 Answrs for Homwork. Substitutions u = du = d d = du a d = du = du = u du = u + C = u = arctany du = +y dy dy = + y du b arctany arctany dy = + y du = + y + y arctany du = u du = u + C = arctan y

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

THE CORRELATION DECAY (CD) TREE AND STRONG SPATIAL MIXING IN MULTI-SPIN SYSTEMS

THE CORRELATION DECAY (CD) TREE AND STRONG SPATIAL MIXING IN MULTI-SPIN SYSTEMS THE CORRELATION DECAY (CD) TREE AND STRONG SPATIAL MIXING IN MULTI-SPIN SYSTEMS CHANDRA NAIR AND PRASAD TETALI Astrat. This papr als with th onstrution o a orrlation ay tr (hyprtr) or intrating systms

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

G. Gambosi (*), J. Ne~etgil (**), M. Talamo (*)

G. Gambosi (*), J. Ne~etgil (**), M. Talamo (*) EFFICIENT REPRESENTATION OF TAXONOMIES G. Gamosi (*), J. N~tgil (**), M. Talamo (*) (*) Istituto i Analisi i Sistmi Inormatica l C.N.R.~ Vial Manzoni 30, 00185, Roma,Italy (**) Charls Univrsity Malostransk~

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

3 a b c km m m 8 a 3.4 m b 2.4 m

3 a b c km m m 8 a 3.4 m b 2.4 m Chaptr Exris A a 9. m. m. m 9. km. mm. m Purpl lag hapr y 8p 8m. km. m Th triangl on th right 8. m 9 a. m. m. m Exris B a m. m mm. km. mm m a. 9 8...8 m. m 8. 9 m Ativity p. 9 Pupil s own answrs Ara =

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

3 2x. 3x 2. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

3 2x. 3x 2.   Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Math B Intgration Rviw (Solutions) Do ths intgrals. Solutions ar postd at th wbsit blow. If you hav troubl with thm, sk hlp immdiatly! () 8 d () 5 d () d () sin d (5) d (6) cos d (7) d www.clas.ucsb.du/staff/vinc

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

CS 491 G Combinatorial Optimization

CS 491 G Combinatorial Optimization CS 49 G Cobinatorial Optiization Lctur Nots Junhui Jia. Maiu Flow Probls Now lt us iscuss or tails on aiu low probls. Thor. A asibl low is aiu i an only i thr is no -augnting path. Proo: Lt P = A asibl

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information