overconstrained well constrained underconstrained a b c d e f g h i j k

Size: px
Start display at page:

Download "overconstrained well constrained underconstrained a b c d e f g h i j k"

Transcription

1 Using Grph Domposition or Solving Continuous CSPs Christin Blik 1, Brtrn Nvu 2, n Gills Tromttoni 1 1 Artiil Intllign Lortory, EPFL CH-1015 Lusnn, Switzrln {lik,trom}@li.i.pl.h 2 CERMICS, quip Contrints 2004 rout s luiols, Sophi-Antipolis Cx, B.P. 93, Frn Brtrn.Nvu@sophi.inri.r Astrt. In prti, onstrint stistion prolms r otn strutur. By xploiting this strutur, solving lgorithms n mk importnt gins in prormn. In this ppr, w ous on strutur ontinuous CSPs n y systms o qutions. W us grph omposition thniqus to ompos th onstrint grph into irt yli grph o smll loks. W prsnt nw lgorithms to solv ompos prolms whih solv th loks in prtil orr n prorm intllignt ktrking whn lok hs no solution. For unr-onstrin prolms, th solution sp n xplor y hoosing som vrils s input prmtrs. Howvr, in this s, th omposition is no longr uniqu n som hois l to ompositions with smllr loks thn othrs. W prsnt n lgorithm or slting th input prmtrs tht l to goo ompositions. First xprimntl rsults init tht, vn on smll prolms, signiint spups n otin using ths lgorithms. 1 Introution In th r o ontinuous CSPs, rsrh hs tritionlly ous on thniqus to nor som orm o lol onsistny. Ths thniqus r us in omintion with ihotomi srh to n solutions. W us Numri, stt o th rt systm or solving th spi typ o CSPs onsir in this ppr [Hntnryk t l., 1997]. In prti, onstrint stistion prolms r otn strutur. Howvr, littl hs n on to xploit th strutur o ontinuous CSPs to mk gins in prormn. In this ppr, w ous on int solution strtgis or solving strutur CSPs. W will rstrit our ttntion to CSPs whih r n y nonlinr qutions n stuy th gnrl s in whih th systm is not nssrily squr. This ppr rings togthr thniqus to ompos onstrint grphs with ktrking lgorithms to solv th ompos systms. Although our pproh is gnrl, w hv hosn to prsnt 2D mhnil ongurtion xmpls. By oing so, w o not wnt to onvy tht our pproh pplis only to this typ o prolms. W minly us ths xmpls or itil rsons; thy r sy to unrstn n to illustrt.

2 2 Th Dulmg n Mnlsohn Domposition In this ppr, onstrint grph G is iprtit grph (V; C; E) whr V r th vrils, C r th onstrints n thr is n r twn onstrint in C n h o its vrils in V. A mximum mthing o iprtit onstrint grph inlus mximum numr o rs whih shr no vrtx. A mthing impliitly givs irtion to th orrsponing onstrint grph; pir (v; ) orrspons to irt r rom to v n irt rs rom v to othr mth onstrints onnt to v. Th D&M omposition is s on th ollowing thorm. Thorm 1 (Dulmg n Mnlsohn, 1958) Any mximum-mthing o onstrint grph G givs nonil prtition o th vrtis in G into thr isjoint susts: th unr-onstrin prt, th ovr-onstrin prt n th wll-onstrin prt. Osrv tht on or two o th thr prts my mpty in th gnrl s. Strting rom ny mximum mthing o th grph, th ovr-onstrin prt is orm with ll nos rhl rom ny non mth onstrint in C y rvrs pth. Th unr-onstrin prt is orm with ll nos rhl rom ny non mth vril in V y irt pth. Th wll-onstrin prt is orm with th othr nos n yils prt mthing o th orrsponing sugrph. Figur 1 shows n xmpl. Vrils r rprsnt y irls, onstrints y rtngls; pir in th mthing is pit y n llips. Th wll-onstrin prt n urthr ompos. Th prt mthing o ovronstrin wll onstrin unronstrin g h i j k g h i j k Fig. 1. Th D&M omposition o onstrint grph (lt) n th quivlnt mtrix rprsnttion (right). this prt impliitly ns irt grph. W thn omput its strongly onnt omponnts, ll loks, to otin irt yli grph (DAG) o loks. It turns out tht this omposition, ll th n omposition, is inpnnt o th mthing prorm. Thorm 2 (K nig, 1916) Evry prt mthing o (squr) iprtit grph ls to uniqu omposition into strongly onnt omponnts. Not tht K nig's thorm os not pply in s o non prt mthing.

3 3 Ovrviw In this prt, w giv gnrl ovrviw o th lgorithms sri in this ppr n o how thy work togthr. As input, w hv st o numri qutions whih my non-squr. W mk th gnrl ssumption tht squr n n systms giv isrt st o solutions. This is in t si ssumption o Numri [Hntnryk t l., 1997], th tool w us to solv systms o qutions. In numr o pthologil ss, this ssumption is not vri, thn w n or xmpl us proilisti mthos to ignos th prolm (s Stion 7). W rst prorm D&M omposition [Pothn n Chin-Fn, 1990] n hnl th thr prts, i prsnt, in th orr ovr-onstrin, wll-onstrin n nlly unr-onstrin prt. Ovr-onstrin Prt In this prt, th numr o qutions m is grtr thn th numr n o vrils. I th orrsponing qutions r inpnnt, th systm hs no solution. W n l with this sitution in numr o wys. First, through ktrk-r sltion pross, w oul lt th usr rmov m n qutions to mk th prt wll-onstrin 1. Altrntivly, th m n xtr onstrints might kpt s sot onstrints. Thy r simply vri tr th solution pross. I th m n qutions r runnt, w gt solutions, othrwis thr is no solution. Wll-onstrin Prt As xplin in Stion 2, or this prt, w n prorm n omposition. Th rsult is DAG o loks. Eh lok is solv y Numri n, in th susqunt loks, th impli vrils r rpl y th vlus oun. To nsur ompltnss, ktrking is prorm s soon s lok hs no solution. Stion 5 sris svrl intllignt ktrking lgorithms tht tk vntg o th prtil orr o th DAG to voi uslss work. Osrv tht this pross looks lik th rsolution o nit CSP: th loks r th vrils n th solutions to lok orm th omin o th vril. Unr-onstrin Prt On w hv solv th wll-onstrin prt n rpl th vrils y th vlus oun, w r lt with th unr-onstrin prt. This prt ontins n vrils n m qutions with n > m. At this point r = n m riving input vrils (ivs) must givn vlu to otin m m prolm. Thr r numr o issus rlt to th sltion o th r ivs in th unr-onstrin prt. First, som sts o r input vrils my l to ly-onstrin systms, tht is, systms or whih thr xists no prt mthing. This mns tht w nnot ritrrily hoos r o th n vrils s ivs. Stion 6.1 prsnts nw lgorithm whih llows th sltion o th r ivs on y on n oris rtin utur hois tr h sltion. This pproh might us or xmpl in physil simultion [Srrno, 1987], whr th usr xpliitly hngs irnt prmtrs in orr to unrstn th hvior o systm. 1 This pross is th ul o th on or rmoving vrils in th unr-onstrin prt s sri in Stion 6.1.

4 Son, K nig's thorm os not hol or th unr-onstrin prt. Tht is, th DAG o loks otin is not uniqu n pns on th mthing. In prtiulr, rtin hois o ivs l to ompositions with smllr loks thn othrs n r usully sir to solv. Stion 6 prsnts nw lgorithms to n ompositions with smll loks. Intrtiv skthing pplitions (s [Blik t l., 1998]) shoul vor this typ o ompositions. 4 Exmpls In this stion, w prsnt 2 xmpls tht will us throughout this ppr. Diti Exmpl (Figur 2) Vrious points (whit irls) r onnt with x,y x,y x,y 1 x,y 2 x j,y j x,y 3 g h i y 4 x g,y g x h,y h x i,y i j 5 Fig. 2. Diti prolm n orrsponing DAG o loks. rigi ros (lins). Ros only impos istn onstrint twn two points. Point h (lk irl) irs rom th othrs in tht it is tth to th ro hg; ii. Finlly, point is onstrin to sli on th spi lin. Th prolm is to n sil ongurtion o th points so tht ll onstrints r stis. Mini-root (Figur 3) Th tringl rprsnts th s n is x. Sin th root is symmtril, lt us sri th lt hl. Point is th lt shoulr. Th ro h; i hs vril lngth r s, n is us to rott th ro h; i. On this ro w hv n rm mhnism whos lngth is vril n pns on th prmtr r. Th gry point is onstrin to sli on th ro h; i. Th lk point is tth to oth th ro h; gi n h; hi, n hry ors ths ros to t lik sissor. Th position o th n point i o th rm n now position y ontrolling r n r s. Th omposition shown in th right si o Figur 3 orrspons to th ov sription o th root. Tht is, r, r, 0 r s n rs 0 r th riving inputs tht ontrol th npoints. Suppos howvr tht w wnt th root to pik up n ojt. In this s th n points i n i 0 shoul go to spi lotion. Th qustion now is: wht vlus shoul r ; r 0 ; r s; rs 0 tk to gt th two npoints t th sir spot? Th omposition o this invrs prolm is shown in th mil o Figur 3.

5 Bs x,y y x,y y x x r s r s r r h h g g LtArm RightArm i i r s,r x -h, y -h x,y x i,y i x i,y i r s,r x -h, y -h x,y r s r s x,y x,y r r x,y x,y x -h, y -h x i,y i x -h, y -h x i,y i Fig. 3. Miniroot (lt), DAG o invrs prolm (mil) n riving prolm (right). Finlly, onsir th sitution in whih signr is skthing th points n ros or this root using omputr, n wnts to vlit his rwing. In this s, th input vrils my hosn so tht th vlition prolm is s simpl s possil. In Stion 6, w prsnt n lgorithm tht is sign to o xtly tht. In this xmpl, th st solution is to tk y, y, x i, x 0 i, y, 0 x 0, y 0 s input prmtrs, whih ls to omposition with on lok o siz 5 n othr loks o siz 1, 2 or 3. 5 Solving Wll-Constrin Systms 5.1 Introution In s th D&M omposition onsists only o wll onstrin prt, w n prorm n omposition. By oing so w voi to sn th systm s whol to th solvr. In, w will only n to solv smllr systms whih orrspon to th loks in th DAG. To s this, onsir th omposition shown in Figur 2 on th right. Rspting th orr o th DAG, w rst otin solution or lok 1. W n now sustitut th vlus or th orrsponing vrils ppring in th qutions o lok 2 n otin solution rom th solvr. Thn w pross lok 3 in similr shion, ollow y lok 4 n 5. Whn lok hs no solution, on hs to ktrk. A hronologil ktrkr gos k to th prvious lok. It tris irnt solution or tht lok n rstrts to solv th susqunt loks. Howvr, this pproh is inint. In, in th xmpl ov, suppos lok 5 h no solution. Chronologil ktrking woul go k to lok 4, n irnt solution or it, n solv lok 5 gin. Clrly, th sm ilur will nountr gin in lok 5. A ttr strtgy is to ronsir only thos loks whih might hv us th prolm. W oul ollow th pproh us y Conit Bs Bkjumping (CBJ) [Prossr, 1993]. Whn no solution is oun or lok 5, on woul go k irtly to lok 3. Howvr, whn jumping k, CBJ rss ll intrmit srh inormtion. Hr, th solution o lok 4 woul rs whn jumping

6 k to lok 3. This is unortunt; th solution o lok 4 is still vli n th solvr my hv spnt onsirl mount o tim ning it. This prolm n voi y holing on to th intrmit srh inormtion. This pproh is tkn in ynmi ktrking (DB) [Ginsrg, 1993]. As CBJ, DB jumps k to th us o th prolm. Howvr, whn oing so, it os not rs intrmit nogoos. Inst, it movs th prolm vril to th st o uninstntit vrils n rmovs only nogoos s on its ssignmnt. By oing so, DB tivly rorrs vrils. Unortuntly, this rorring is inomptil with th prtil orr impos y th DAG. W thror n to rsort to lgorithms tht kp intrmit srh inormtion ut r lso xil nough to rspt th prtil orr impos y th omposition. Gnrl Prtil Orr Bktrking (GPB) [Blik, 1998] stiss ths rquirmnts. Blow w prsnt spi instn o GPB tht n us to solv ompos prolms. 5.2 Solving Prtilly Orr Prolms with GPB W rst riy sri th GPB lgorithm or solving isrt CSPs. At ll tims GPB mintins omplt st o ssignmnts X whih r inrmntlly moi until ll onstrints r stis. Th srh pross is rivn y th ition o nw nogoos. A nogoo is sust o ssignmnts o vlus to vrils whih r inomptil. X is moi inrmntlly so s to rmin omptil with th urrnt st o nogoos. Whn nw nogoo is, th vlu o on o its vrils, sy y, will hng. By hoosing y, oms n orr nogoo, not y ~. W ll y th onlusion vril, not y (~), n th rmining vrils ntnt vrils (~). An orr nogoo ~ ns n orring rltion x < (~) or h ntnt x 2 (~). Nogoos r gnrt whn th urrnt ssignmnts violt onstrint. In this s th nogoo is th onstrint violtion. Nogoos r lso gnrt whn or omin o givn vril y, ll vlus r rul out y nogoos. In this s nw nogoo (y) is inrr tht ontins th ssignmnts o ll th ntnt vrils (~ i ) ppring in vry nogoo ~ i with y = (~ i ). In ition to th onlusion vrils o nogoo, on my lso moiy th ssignmnt o othr vrils in X, s long s th nw vlus r ptl. A vlu v is ptl or th vril x i x = v is omptil with th ntnts o ny o th urrnt nogoos n i v is in th liv omin o x. Th liv omin o vril is th st o vlus o its omin tht is not rul out y onlusion o nogoo. Whn nw nogoo with onlusion y is, ll nogoos ~ i or whih y 2 (~ i ) r isr. By oing so, n ssignmnt is rul out y t most on nogoo. Th sp omplxity o GPB is thror polynomil. Th prolm hs no solution whn th mpty nogoo is inrr. W now prsnt n instn o GPB, ll GPB I. W will s tht this lgorithm n sily pt to solv ompos ontinuous CSPs. Inst o moiying omplt st o ssignmnts, GPB I inrmntlly xtns onsistnt prtil st o ssignmnts. W thror hv st o instntit vrils I n st o uninstntit vrils U. To nsur trmintion, it is rquir

7 tht th sltion o th onlusion o nogoo rspts prtil orr. In GPB I w us n orring shm < I n s ollows. Th vrils in I rspt th totl orr n y th instntition squn n ny vril in I prs ny vril in U. Ausing nottion, w n th ntnts o vril y s (y) = x j x < yg. Th snnts o y r n y D(y) = x j y < t xg, whr < t is th trnsitiv losur o <. With ths nitions, w moiy GPB to otin GPB I. lgorithm GPB I Until U is mpty or th mpty nogoo is inrr o Slt vril x 2 U or whih (x) I n ssign n ptl vlu v to x. i x = v violts som onstrint with vrils in I thn Gnrt nogoo orrsponing to th onstrint violtion n Bktrk(), ls mov x rom U to I. n n n. prour Bktrk () Slt y s onlusion o so tht y ollows (~) in th orring shm n stor ~. Disr ll nogoos ~ i or whih y 2 ( ~ i) n mov y n th vrils D(y) in I to U. i th liv omin o y is mpty thn Bktrk((y)). n n. Algorithm 1: GPB I GPB I is n instn o GPB n thror trmints. It is lso systmti sin it stiss n itionl rstrition on th ssignmnts tht my hng. W rr th rr to [Blik t l., 1998] or til isussion. As sri ov, GPB I hlts s soon s it ns solution. To n ll solutions to givn CSP, th lgorithm n moi s ollows. Whn solution is oun, it is rport n nw nogoo is gnrt tht ruls out xtly this st o ssignmnts. W thn ktrk rom this nogoo n rstrt th srh loop to n th nxt solution. GPB I solvs isrt CSPs. W now pt it to solv ontinuous prolms tht r ompos into DAG o loks. Hr th loks tk ovr th rol o th vrils. Th isrt omin 2 o possil vlus or lok x is th st 2 As stt rlir, w ssum tht w hv isrt st o solutions or h lok.

8 o solutions, not y (x), o th orrsponing suprolm. Rll tht, or givn lok x, th solutions o th prnt loks, not y p(x), r rst sustitut into th qutions o lok x. Th rsulting systm is thn solv ovr th ontinuous omins o th vrils o th lok. By solving th systm, ll vlus in th ontinuous omins r limint, xpt or (x). On n viw this s th ition o nogoo, not y P (x), tht hs th givn lok x s onlusion n p(x) s ntnt vrils. W n now moiy GPB I to solv ompos prolms. Th min irn is tht th omin (x) o lok x is not known priori n hs to omput s on th vlus o p(x). W thror hv to mk sur tht (x) is romput vry tim ny o th vlus o p(x) hngs. Th rsulting lgorithm is ll GPB. Th ktrk prour rmins th sm. Howvr, lgorithm GPB Until U is mpty or th mpty nogoo is inrr o slt lok x 2 U or whih (x) [ p(x) I i (x) is outt with rspt to p(x) thn romput (x) using th nw vlus or p(x) n ktrk(p(x)), ls ssign n ptl vlu v to x n mov x rom U to I. n n n. Algorithm 2: GPB in prtil implmnttion, r hs to tkn to rprsnt n hnl th nogoos o th typ P (x). In Figur 4, w illustrt GPB on th xmpl o Figur 2. Suppos w solv lok 1 n slt rst th solution whr is ov n. Thn w pro to solv lok 2 n slt th solution whr is ov n. W mk similr hoi or whos solutions r omput in lok 3. Now, in lok 4, w slt on o th two possil lotions or. Finlly, w rh lok 5 to n out tht thr is no solution (sh). This sitution is shown on th lt in Figur 4. At this point, w nogoo P (5) whih is s on th solutions o loks 2 n 3 n ruls out ll possil vlus or lok 5. W n tht th omin o 5 is mpty n inr nogoo (5) whih stts tht th solutions o lok 2 n 3 r inomptil. Sin lok 3 ws instntit tr lok 2 w slt lok 3 s onlusion o this nogoo. W now slt th othr solution or this lok whr point is low n. On gin w n tht lok 5 hs no solution (son pitur in Figur 4) n ktrk to lok 3. Howvr, this tim, oth possil solutions o lok 3 r rul out y nogoos, so w ontinu ktrking. Sin th two nogoos hv lok 2 s ntnt n P (3) hs lok 1 s ntnt, w gnrt nw nogoo stting tht th solutions o

9 g h i g h i g h i g h i j j Fig. 4. Exmpl prolm. j j lok 1 n 2 r inomptil. As shown in th thir pitur in Figur 4, w now us th othr solution or lok 2. This srh pross ontinus until w rh th ongurtion, pit on th right in Figur 4, tht stiss ll onstrints. Osrv tht GPB, i not rs th solutions o lok 4 whn it ktrk to lok 3. Howvr, thy woul hv n rs y CBJ, whih woul ltr n to romput thm. 5.3 Exmpls W oun tht, s ompr to solving th systm s whol, th us o GPB on ompos systms is vry tiv. Lt us illustrt this point with som xmpls. As it is usully on whn solving CSPs n y systms o qutions, w rport th running tims to n ll solutions. All th tsts wr prorm on Sun SprSttion 5 with Ilog Numri 1.0. On th smll iti xmpl o Figur 2, GPB ns only 2.9 sons, whil without omposition Numri ns 4.8 sons. Th spups r mor importnt whn th xmpls r somwht mor omplit. Consir th mini-root positioning prolm shown in Figur 3. Without omposing th prolm, it tks Numri 2153 sons to solv th prolm. Using th omposition shown in th mil in Figur 3, with GPB this running tim is ru to 33.3 sons. In som ss vry smll loks n oun. In this s, th ktrk srh ovr th isrt sts o solutions is ominnt. Figur 5 shows n xmpl o suh sitution. As or, rs rprsnt istn onstrints n w hv x th two oorints, x n y, o point s wll s on oorint, x, o point. In ition to wht is shown in th gur, thr r two vrils tht msur th hight o h o th lgs n s r = (y i + y h )=2 n r 0 = (y i 0 + y h 0)=2. W limit th possil rng on ths two vrils to sty within th intrvl shown in Figur 5. By oing so, thr is only on solution whih is th on shown in th gur. Without omposition, it tks Numri 2091 sons to solv this prolm. With th omposition shown on th right in Figur 5, GPB solvs th prolm in 29 sons. 6 Hnling Struturlly Unr-onstrin Prolms As isuss in Stion 3, in this s, w n to n r ivs suh tht th rmining onstrint grph hs prt mthing. Two irnt pprohs or

10 x,y x x y x,y y x,y g g x,y x,y x g,y g x,y x,y x g,y g i h h i ρ x h,y h x i,y i x h,y h x i,y i r r Fig. 5. A ongurtion o tringls orrsponing to pyrmi towr. oing so r prsnt low. On th ivs r slt, th prolm oms wll-onstrin n n solv y GPB. 6.1 Bktrk-Fr Driving Inputs' Sltion Th lgorithm shown low is s on th D&M proprtis. It llows to hoos th ivs on y on in ktrk-r mnnr. Th tim omplxity o th lgolgorithm Fr-ivs-sltion ( onstrint grph; its D&M omposition) whil r ivs hv not n hosn o hoos s iv ny vril v in th unr-onstrin prt i v is mth in th urrnt mthing thn invrt in th urrnt mthing n ltrnting pth rom v to n unmth vril pply D&M omposition on th nw mthing (whih trnsrs som nos rom th unr-onstrin to th wll-onstrin prt) n n n. Algorithm 3: Th ktrk-r iv sltion rithm is O(r(n+m)) or onstrint grph with n vrils n m onstrints. In, on pth invrsion n on D&M prt rtrivl is nssry or h o th r iv sltions. Figur 6 illustrts this lgorithm. Th orrtnss o th ktrk-r iv sltion ollows irtly rom th D&M proprtis. Th proo n oun in th xtn vrsion o this ppr [Blik t l., 1998]. 6.2 Fining Smll Bloks: OpnPln s W prsnt low n lgorithm ll OpnPln s3 whih ns ompositions with wll-onstrin squr loks whos lrgst lok is o minimum siz. 3 s stns or smll loks.

11 (1) (2) (3) (4) Fig. 6. Bktrk-r iv sltion. (1) Initil mximum mthing. 3 ivs r to slt. (2) Sltion o vril s iv: vril is orin or urthr sltion. (3) Th sltion o oris. (4) Th sltion o mks th prolm wll-onstrin. lgorithm OpnPln s (G: onstrint grph): DAG o loks lt D n mpty DAG o loks whil onstrints rmin in th onstrint grph o slt-r-lok s : slt r squr lok o smllst siz or whih thr xists prt mthing in D (long with th orrsponing irt rs) rmov rom G n rturn D n. Algorithm 4: OpnPln s OpnPln s is spiliz vrsion o n lgorithm ll OpnPln: th prour slt-r-lok o OpnPln n slt ny r lok whrs slt-rlok s imposs rstritions. OpnPln is s on th PDOF lgorithm us or mintining onstrints in intrtiv pplitions [Vnr Znn, 1996]. It uils DAG o loks in rvrs orr rom th lvs to th roots. A r lok hs vrils whih r link only to onstrints within th lok. Itrtivly slting n rmoving loks whih r r nsurs tht DAG o loks is uilt, tht is, tht no irt yl n ppr twn loks [Tromttoni, 1997]. W now til how OpnPln s ns th st omposition o th onstrint grph o th iti prolm. Th pross is illustrt on th right si o Figur 7. First, th lok [ 7,y ], 1 1 r lok, is slt n rmov: x oms iv. Now thr is no mor 1 1 r lok vill so tht 2 2 r lok, or xmpl [ 1, 3,x,y ], is slt n rmov. Thn, th r lok [ 4, 5,x,y ] is slt n rmov. This rs th lok [ 6, 9,x,y ] whih is slt n rmov. Th lok [ 2,x ] is now r; y oms iv. In th

12 Y C1 X C4 X Y C1 X C4 X X C3 C2 Y C6 C5 Y X C3 C2 Y C6 C5 Y X Y X Y X Y X Y X C7 C8 C12 C9 X C7 C8 C12 C9 Y Xg Yg C11 Xi Yi Xh Yh C10 Xj Yj Y Xg Yg C11 Xi Yi Xh Yh C10 Xj Yj C13 C13 Fig. 7. A omposition o th iti prolm with on lok (lt) n omposition with our 2 2 loks (,,, (x g, x i)) n svrl 1 1 loks (right). sm wy, OpnPln s nlly slts th loks [ 8,y ], [ 11, 12,x g,x i ], [ 13,y i ] n [ 10,x h ]. Proposition 1 OpnPln s ns omposition whos lrgst lok hs minimum siz. Th proo n oun in th xtn ppr [Blik t l., 1998]. Not tht, s oppos to OpnPln s, th mximum-mthing lgorithm ns ompositions with loks o ritrry siz: oth ompositions o Figur 7 oul inirntly otin y mximum-mthing whrs OpnPln s ns th on in th right. Slting 1 1 r lok is th only oprtion involv in th lssil PDOF. This mounts to srhing vrils link to only on onstrint. Howvr, i thr is no 1 1 r lok, ning wll-onstrin r lok o minimum siz is suspt to NP-hr, so tht OpnPln s is xponntil. In, niv lgorithm whih srhs or k k vli lok is O(n k ), whr n is th numr o vrils. Nvrthlss, this lgorithm n somtims us or prolms whih my numrilly hr to solv. In this s, th ovrh or otining th st omposition n nglt ovr th gin in solving smll loks. Our rst xprimntl rsults prsnt in Stion 6.4 sm to onrm this. 6.3 Fining Smll Bloks: OpnPln hm Whn th onstrint grphs r lrg, w hv to rsort to huristi mthos to n goo ompositions. To o so, nothr instn o OpnPln, ll OpnPln hm, is propos or whih th prour slt-r-lok hm is hillliming huristi. I no 1 1 lok hs n oun, mximum mthing o th onstrint grph is prorm. W onsir rst th smllst l st o this mthing to slt y slt-r-lok hm. Howvr, st is not th smllst possil r lok, sin othr mthings oul yil smllr lvs. Thror, slt-r-lok hm hngs th mthing so tht smllr l oul ppr. Inst o prorming ull srh ovr ll mthings, hill-liming huristi

13 is us. On tris to rk st y invrting pth in th urrnt mthing rom iv to vril in st. I suh pth is oun whih yils smllr l, th pross is ritr until rhing x point. Not tht th DAG o loks my signintly hng tr pth invrsion so tht ompltly nw loks my ppr. untion slt-r-lok hm (G: onstrint grph): r lok i thr xists 1 1 r lok thn rturn prorm mximum mthing o G tht yils DAG o loks D st lt st th smllst l lok o D st whil D st is hnging o lt ivs th st o ivs in D st suh tht n ltrnting pth xists rom iv in ivs to vril in st D D st ; st or vry iv in ivs n vry vril v in st o invrt n ltrnting pth rom to v tht yils DAG o loks D 0 i D 0 hs smllr l lok 0 thn thn D D 0 ; 0 n D st D; st n rturn st n. Algorithm 5: Huristi mtho to slt smll wll-onstrin r lok In Figur 7, w show how OpnPln hm otins th st omposition (right) strting rom th mthing orrsponing to th worst on (lt). slt-rlok hm rst invrts th pth rom y to x, whih yils th rst r (1 1) lok [ 7,y ]. Thn it slts th lok [ 1, 3,x,y ] y invrting th pth rom y to x. Now it n pro until th st omposition is otin. 6.4 First Exprimntl Rsults On th iti prolm, th ivs on th lt in Figur 7 l to on uniqu lok solv y Numri in 10 s. With th ivs in Figur 7 (right), th prolm is solv y GPB in 3.3 s. W lso prorm tsts on smll istn prolm in 3 D m o two ttrhr n som itionl ros shown in Figur 8. Th worst omposition o this prolm hs two loks o siz 7. Th st omposition, otin y oth OpnPln s n OpnPln hm, inlus loks o siz 2 or 3 only. Whn th riving inputs orrspon to th omposition, Numri tks s to solv th whol systm. Solving th sm prolm with GPB tks s. Now whn th riving inputs orrspon to th goo omposition, Numri on th whol systm tks 200 s whrs only 22.7 s r nssry to solv th sm prolm using GPB.

14 7 3 2 h g 12 8 i Rlt Work Fig. 8. A 3 D linkg with two ttrhr. To our knowlg, no xisting systm whih prorms grph omposition omins omplt numril solvrs with ktrking. Th systm prsnt in [Srrno, 1987] uss mximum-mthing lgorithm to ompos gnrl sign prolms. Howvr, ompltnss is not hiv; loks r solv using tritionl Nwton-Rphson mtho n no ktrking is prorm. Furthrmor, this work is not s on th D&M omposition. In prtiulr, th riving inputs nnot slt in ktrk-r shion. In [Ait-Aoui t l., 1993], th D&M thniqu is us to stuy gomtri onstrints. Howvr, no ttntion is pi to th solution spts. Th D&M omposition os not tk into ount th vlus o th oints o th qutions. Howvr, som prolms, whos D&M omposition is struturlly wll onstrin, r in t m o pnnt qutions. On wy to tt runny in nonlinr systms o qutions is to lult th Join t vrious rnomly slt points [Lmur n Mihlui, 1997]. This inormtion oul thn us to proprly ompos this typ o systms. In th s o mhnil ongurtion, thr xist numr o thniqus to isovr susystms tht r rigi [Fuos n Homnn, 1997]. By rpling ths rigi susystms y smllr ons, gins in prormn n m. This thniqu is omplmntry to ours n oul us to urthr improv th prormn o our lgorithms on mhnil ongurtion prolms. 8 Conlusion In this ppr, w hv prsnt thniqus to solv strutur ontinuous CSPs. Our pproh is s on omposition thniqus y Dulmg & Mnlsohn n K nig, tht ompos strutur prolms into irt yli grph o loks. Th ontriution o this ppr is twool. First, w propos nw lgorithms or solving struturlly wll-onstrin prolms. Thy omin th us o xisting solvrs, or solving th loks, with intllignt ktrking thniqus tht us th prtil orr o th DAG to voi uslss work. Son, w prsnt nw lgorithms to hnl unr-onstrin prolms. Ths lgorithms llow th sltion o riving input vrils, whos vlus r ssum to st xtrnlly. Input vrils n ithr slt through n intrtiv ktrk-r sltion or n slt utomtilly using nw lgorithm to otin -

15 ompositions with smll loks. W hv prsnt numr o xmpls to illustrt tht signint spups n otin using ths lgorithms. Rrns [Ait-Aoui t l., 1993] Smy Ait-Aoui, Roln Jgou, n Dominiqu Mihlui. Rution o onstrint systms. In Compugrphi, [Blik t l., 1998] Christin Blik, Brtrn Nvu, n Gills Tromttoni. Using grph omposition or solving ontinuous sps. Thnil Rport , E.P.F.L., Lusnn, Switzrln, [Blik, 1998] Christin Blik. Gnrlizing ynmi n prtil orr ktrking. In AAAI 98: Fitnth Ntionl Conrn on Artiil Intllign, pgs , Mison, Wisonsin, July [Fuos n Homnn, 1997] Ionnis Fuos n Christoph Homnn. A grphonstrutiv pproh to solving systms o gomtri onstrints. ACM Trnstions on Grphis, 16(2):179216, [Ginsrg, 1993] M.L. Ginsrg. Dynmi ktrking. Journl o Artiil Intllign Rsrh, 1:2546, August [Hntnryk t l., 1997] Psl Vn Hntnryk, Lurnt Mihl, n Yvs Dvill. Numri : A Moling Lngug or Glol Optimiztion. MIT Prss, [Lmur n Mihlui, 1997] Hrv Lmur n Dominiqu Mihlui. Qulittiv stuy o gomtri onstrints. In Bt Br rlin n Ditr Rollr, itors, Workshop on Gomtri Constrint Solving n Applitions, pgs , Thnil Univrsity o Ilmnu, Grmny, [Pothn n Chin-Fn, 1990] Alx Pothn n Jun Chin-Fn. Computing th lok tringulr orm o sprs mtrix. ACM Trnstions on Mthmtil Sotwr, 16(4):303324, [Prossr, 1993] P. Prossr. Hyri lgorithms or th onstrint stistion prolm. Computtionl Intllign, 9(3):268299, August [Srrno, 1987] D. Srrno. Constrint Mngmnt in Conptul Dsign. PhD thsis, Msshustts Institut o Thnology, Cmrig, Msshustts, Otor [Tromttoni, 1997] Gills Tromttoni. Solution Mintnn o Constrint Systms Bs on Lol Propgtion. PhD thsis, Univrsity o Ni-Sophi Antipolis, In rnh. [Vnr Znn, 1996] Brly Vnr Znn. An inrmntl lgorithm or stisying hirrhis o multi-wy, tow onstrints. ACM Trnstions on Progrmming Lngugs n Systms, 18(1):3072, Jnury 1996.

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

CS553 Lecture Register Allocation 1

CS553 Lecture Register Allocation 1 Low-Lvl Issus Lst ltur Livnss nlysis Rgistr llotion Toy Mor rgistr llotion Wnsy Common suxprssion limintion or PA2 Logistis PA1 is u PA2 hs n post Mony th 15 th, no lss u to LCPC in Orgon CS553 Ltur Rgistr

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13 4//3 RAM Mol 5-853: Algorithms in th Rl Worl Lolity I: Ch-wr lgorithms Introution Sorting List rnking B-trs Bur trs Stnr thortil mol or nlyzing lgorithms: Ininit mmory siz Uniorm ss ost Evlut n lgorithm

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

arxiv: v1 [cs.ar] 11 Feb 2014

arxiv: v1 [cs.ar] 11 Feb 2014 Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Layout Decomposition for Triple Patterning Lithography

Layout Decomposition for Triple Patterning Lithography Lyout Domposition or Tripl Pttrning Lithogrphy Bi Yu, Kun Yun, Boyng Zhng, Duo Ding, Dvi Z. Pn ECE Dpt. Univrsity o Txs t Austin, Austin, TX USA 7871 Cn Dsign Systms, In., Sn Jos, CA USA 9514 Emil: {i,

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Partitioning Algorithms. UCLA Department of Computer Science, Los Angeles, CA y Cadence Design Systems, Inc., San Jose, CA 95134

Partitioning Algorithms. UCLA Department of Computer Science, Los Angeles, CA y Cadence Design Systems, Inc., San Jose, CA 95134 On Implmnttion Chois for Itrtiv Improvmnt Prtitioning Algorithms Lrs W. Hgn y, Dnnis J.-H. Hung n Anrw B. Khng UCLA Dprtmnt of Computr Sin, Los Angls, CA 90024-1596 y Cn Dsign Systms, In., Sn Jos, CA 95134

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE

A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A PROPOSAL OF FE MODELING OF UNIDIRECTIONAL COMPOSITE CONSIDERING UNCERTAIN MICRO STRUCTURE Y.Fujit 1*, T. Kurshii 1, H.Ymtsu 1, M. Zo 2 1 Dpt. o Mngmnt

More information

Decimals DECIMALS.

Decimals DECIMALS. Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

Discovering Frequent Graph Patterns Using Disjoint Paths

Discovering Frequent Graph Patterns Using Disjoint Paths Disovring Frqunt Grph Pttrns Using Disjoint Pths E. Gus, S. E. Shimony, N. Vntik {hu,shimony,orlovn}@s.gu..il Dpt. of Computr Sin, Bn-Gurion Univrsity of th Ngv, Br-Shv, Isrl Astrt Whrs t-mining in strutur

More information