LEO VAN IERSEL TU DELFT

Size: px
Start display at page:

Download "LEO VAN IERSEL TU DELFT"

Transcription

1 LEO VAN IERSEL TU DELFT

2 UT LEO VAN IERSEL TU DELFT

3 UT LEO VAN IERSEL TU DELFT TU/

4 CWI UT LEO VAN IERSEL TU DELFT TU/

5 CWI UT TUD LEO VAN IERSEL TU DELFT TU/

6 Tnzni & Kny yr LEO VAN IERSEL TU DELFT Nw Zln.5 yrs

7 Dfinition Lt X finit st. A (root) phylognti tr on X is root tr with no ingr- outgr- vrtis whos lvs r ijtivly lll y th lmnts of X. 82 My 76 My 68 My 35 My Kiwi (Nw Zln) Cssowry (Nw Guin + Austrli) Lo vn Irsl (TUD) Emu (Austrli) Ostrih Mo (Afri) (Nw Zln) Introuing nw ollgus 3TU.AMI 8 mr 205 /

8 Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr /

9 Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr /

10 W.F. Doolittl t l. (2000) Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr /

11 Dfinition Lt X finit st. A (root) phylognti ntwork on X is root irt yli grph with no ingr- outgr- vrtis whos lvs r ijtivly lll y th lmnts of X. Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr /

12 Th first phylognti ntwork (Buffon, 755) Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr /

13 Mrussn t l., Anint hyriiztions mong th nstrl gnoms of r wht. Sin (204) Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr /

14 Origin of tropil pthogn C. gttii tr to th Amzon Hgn t l., Anint isprsl of th humn fungl pthogn Cryptoous gttii from th Amzon rinforst. PLoS ONE (203). Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr /

15 PART : NETWORKS FROM TREES Spis Spis Spis Spis Spis ACCCTAG--TC-ATC---AGC-GAC-C ATACTAGTTTT-ATC-AAAGC-GAC-C ATATTAG-TC-GATCTACAGCTGAC-C ACCCTAGTTTCGGATCCAAGC-GAC-C ACC--TG-TCC-ATCTATG-CTGACTC TA-GTATCCCTC---TCTATATAT TA-GTAC---TCGGATCT--ATAT TAGGTACCCCTCGGATCCATAT-T TA-GTATCCCTC---TCTATATCT TA-GTATCCCTCAGA-CTATAT-A Gn trs Spis ntwork Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr /

16 PART 2: NETWORKS FROM SUBNETS Spis Spis Spis Spis Spis ACCCTAG--TC--ATC---AGC-GAC-CTA-GTACCCTC---TCTATATAT ATACTAGTTTT--ATC-AAAGC-GAC-CTA-GTA---TCGGATCT--ATAT ATATTAG--TC-GATCTACAGC-GAC-CTAGGTACCCTCGGATCCATAT-T ACCCTAGTTTCGGATCCCAAGC-GAC-CTA-GTACCCTC---TCTATATCT ACC--TG--TCC-ATCT--AGC-GAC-CTA-GTACCCTCAGA-CTATAT-A Trints Spis ntwork Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr /

17 PART 3: NETWORKS FROM SEQUENCES Spis Spis Spis Spis Spis ACCCTAG--TC--ATC---AGC-GAC-CTA-GTACCCTC---TCTATATAT ATACTAGTTTT--ATC-AAAGC-GAC-CTA-GTA---TCGGATCT--ATAT ATATTAG--TC-GATCTACAGC-GAC-CTAGGTACCCTCGGATCCATAT-T ACCCTAGTTTCGGATCCCAAGC-GAC-CTA-GTACCCTC---TCTATATCT ACC--TG--TCC-ATCT--AGC-GAC-CTA-GTACCCTCAGA-CTATAT-A Spis ntwork Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr 205 /

18 PART : NETWORKS FROM TREES

19 Tr-s Ntwork Ronstrution

20 Tr-s Ntwork Ronstrution

21 Tr-s Ntwork Ronstrution

22 Tr-s Ntwork Ronstrution

23 Tr-s Ntwork Ronstrution

24 Tr-s Ntwork Ronstrution

25 Noninry Trs Dfinition. A phylognti tr T is isply y phylognti ntwork N if T n otin from sugrph of N y ontrting gs.

26 Noninry Trs Dfinition. A phylognti tr T is isply y phylognti ntwork N if T n otin from sugrph of N y ontrting gs.

27 Noninry Trs Dfinition. A phylognti tr T is isply y phylognti ntwork N if T n otin from sugrph of N y ontrting gs.

28 Noninry Trs Dfinition. A phylognti tr T is isply y phylognti ntwork N if T n otin from sugrph of N y ontrting gs.

29 Tr-s Ntwork Ronstrution Hyriiztion numr: #gs to ut to otin tr

30 Rsults Prolm: HYBRIDIZATION NUMBER Givn: Colltion of phylognti trs T, h on th sm n lvs, k N Qustion: Dos thr xist phylognti ntwork tht isplys h tr in T n hs hyriiztion numr t most k? Two inry trs: Dirt rltionship to mximum yli grmnt forst (MAAF) O((28k)k + n3 )-tim lgorithm (Borwih & Smpl 2007) O(3.8k n)- tim lgorithm (Whin, Biko & Zh, 203) Sm pproximility s irt fk vrtx st (Klk, vi, Lki, Linz, Sornv, Stougi, 202) Any numr of noninry trs: (vi, Klk & Sornv, 204) Krnl with 4k(5k) t lvs, with t th numr of trs Krnl with 20k2 ( + ) lvs, with + th mximum outgr n f (k) t-tim oun-srh lgorithm, with f stronomil Thr inry trs: k poly(n) tim lgorithm (vi, Lki, Klk, Whin & Zh, 204) ( = )

31 Rsults Prolm: HYBRIDIZATION NUMBER Givn: Colltion of phylognti trs T, h on th sm n lvs, k N Qustion: Dos thr xist phylognti ntwork tht isplys h tr in T n hs hyriiztion numr t most k? Two inry trs: Dirt rltionship to mximum yli grmnt forst (MAAF) O((28k)k + n3 )-tim lgorithm (Borwih & Smpl 2007) O(3.8k n)- tim lgorithm (Whin, Biko & Zh, 203) Sm pproximility s irt fk vrtx st (Klk, vi, Lki, Linz, Sornv, Stougi, 202) Any numr of noninry trs: (vi, Klk & Sornv, 204) Krnl with 4k(5k) t lvs, with t th numr of trs Krnl with 20k2 ( + ) lvs, with + th mximum outgr n f (k) t-tim oun-srh lgorithm, with f stronomil Thr inry trs: k poly(n) tim lgorithm (vi, Lki, Klk, Whin & Zh, 204) ( = )

32 Agrmnt Forsts An grmnt forst of two inry trs is forst tht n otin from ithr tr y lting gs n unlll vrtis n supprssing ingr- outgr- vrtis T T2

33 Agrmnt Forsts An grmnt forst of two inry trs is forst tht n otin from ithr tr y lting gs n unlll vrtis n supprssing ingr- outgr- vrtis T T2 Inhritn Grph An grmnt forst is yli if its inhritn grph is yli An yli grmnt forst with minimum numr of omponnts is ll Mximum Ayli Agrmnt Forst (MAAF)

34 Agrmnt Forsts An grmnt forst of two inry trs is forst tht n otin from ithr tr y lting gs n unlll vrtis n supprssing ingr- outgr- vrtis T T2 Inhritn Grph An grmnt forst is yli if its inhritn grph is yli An yli grmnt forst with minimum numr of omponnts is ll Mximum Ayli Agrmnt Forst (MAAF) For two inry trs: HYBRIDIZATION NUMBER = MAAF - (Borwih & Smpl 2007)

35 Agrmnt Forsts vs Hyriiztion Ntworks T T2 Inhritn Grph

36 Agrmnt Forsts vs Hyriiztion Ntworks T T2 Inhritn Grph

37 Agrmnt Forsts vs Hyriiztion Ntworks T T2 Inhritn Grph

38 Agrmnt Forsts vs Hyriiztion Ntworks T T2 Inhritn Grph

39 Agrmnt Forsts vs Hyriiztion Ntworks T T2 Dltion AAF

40 Hyriiztion Numr on thr trs in k poly(n) tim

41 Hyriiztion Numr on thr trs in k poly(n) tim Dltion AAF Thr trs: HYBRIDIZATION NUMBER MAAF -

42 Hyriiztion Numr on thr trs in k poly(n) tim Dltion AAF Thr trs: HYBRIDIZATION NUMBER MAAF -

43 Invisil Componnts n th Extn AAF v v, v2 v4 v2 v3 v3 v4

44 Four Trs My Not Hv n Optiml Cnonil Ntwork

45 Rution Ruls i j hi gh fg k lm no j m h no k l g f f j i klm no

46 Rution Ruls i j hi gh fg k lm no j m h no k l g f i klm no f j m no k l Common pnnt sutr

47 Rution Ruls i j hi x g h x j h fg g f i f j Ru sutr to singl lf x

48 Rution Ruls i j x hi x g h j h fg g f f j g f Common hin i x

49 Rution Ruls i j hi x x j h h i j Ru hin to rtin lngth x

50 Rsults Prolm: HYBRIDIZATION NUMBER Givn: Colltion of phylognti trs T, h on th sm n lvs, k N Qustion: Dos thr xist phylognti ntwork tht isplys h tr in T n hs hyriiztion numr t most k? Two inry trs: Dirt rltionship to mximum yli grmnt forst (MAAF) O((28k)k + n3 )-tim lgorithm (Borwih & Smpl 2007) O(3.8k n)- tim lgorithm (Whin, Biko & Zh, 203) Sm pproximility s irt fk vrtx st (Klk, vi, Lki, Linz, Sornv, Stougi, 202) Any numr of noninry trs: (vi, Klk & Sornv, 204) Krnl with 4k(5k) t lvs, with t th numr of trs Krnl with 20k2 ( + ) lvs, with + th mximum outgr n f (k) t-tim oun-srh lgorithm, with f stronomil Thr inry trs: k poly(n) tim lgorithm (vi, Lki, Klk, Whin & Zh, 204) ( = )

51 PART 2: NETWORKS FROM SUBNETWORKS

52 Enoing Trs Trs r no y thir triplts.

53 Enoing Trs Trs r no y thir triplts. Trs r no y thir lustrs. {} {} {} {} {, } {, } {,,, } {,,,, }

54 Enoing Trs Trs r no y thir triplts. Trs r no y thir lustrs. Trs r no y thir istns

55 Enoing Trs Trs r no y thir triplts. Trs r no y thir lustrs. Trs r no y thir istns. Cn w no ntworks?

56 Enoing Ntworks Trs r no y thir triplts. Ntworks r not no y thir triplts.

57 Trints n Sunts Trs r no y thir triplts. Ar ntworks no y thir trints?? N T (N )

58 Trints n Sunts Th sunt N X is otin from N y. lting ll vrtis tht r not on ny pth from th root to lf in X ; 2. lting ll vrtis tht r on ll pths from th root to lf in X ; 3. supprssing ingr- outgr- vrtis n prlll rs.? N T (N )

59 Trints n Sunts Th sunt N X is otin from N y. lting ll vrtis tht r not on ny pth from th root to lf in X ; 2. lting ll vrtis tht r on ll pths from th root to lf in X ; 3. supprssing ingr- outgr- vrtis n prlll rs.? N T (N )

60 Trints n Sunts Th sunt N X is otin from N y. lting ll vrtis tht r not on ny pth from th root to lf in X ; 2. lting ll vrtis tht r on ll pths from th root to lf in X ; 3. supprssing ingr- outgr- vrtis n prlll rs.? N T (N )

61 Trints n Sunts A trint is sunt with 3 lvs. A int is sunt with 2 lvs.? N T (N )

62 Trints n Sunts Dfinition. lvl-k: h ionnt omponnt hs hyriiztion numr k; tr-hil: h non-lf vrtx hs hil with ingr-.? N T (N )

63 Trints n Sunts Dfinition. lvl-k: h ionnt omponnt hs hyriiztion numr k; tr-hil: h non-lf vrtx hs hil with ingr-. Thorm. (Hur, vi & Moulton) Binry lvl-, lvl-2 n tr-hil ntworks r ll no y thir trints.? N T (N )

64 Trints n Sunts Dfinition. lvl-k: h ionnt omponnt hs hyriiztion numr k; tr-hil: h non-lf vrtx hs hil with ingr-. Thorm. (Hur, vi & Moulton) Binry lvl-, lvl-2 n tr-hil ntworks r ll no y thir trints. & Wu, 205) Thorm. (Hur, vi, Moulton y thir sunts. Gnrl (inry) ntworks r not no? N T (N )

65 Ronstruting trs from triplts Trs r no y thir triplts

66 Ronstruting trs from triplts Trs r no y thir triplts n givn ny st of triplts, w n onstrut tr isplying thm, if on xists, in polynomil tim. (Aho, Sgiv, Szymnski, Ullmn, 98)

67 Ronstruting ntworks from trints Lvl- ntworks r no y thir trints n givn omplt st of trints, w n onstrut lvl- ntwork isplying thm, if on xists, in polynomil tim. (Hur & Moulton, 203)

68 Ronstruting ntworks from trints Lvl- ntworks r no y thir trints n givn omplt st of trints, w n onstrut lvl- ntwork isplying thm, if on xists, in polynomil tim. (Hur & Moulton, 203) for n ritrry st of trints, this is NP-hr ut solvl in O(3n poly(n)) tim (Hur, vi, Moulton, Sornv & Wu 204)

69 Ronstruting ntworks from trints Lvl- ntworks r no y thir trints n givn omplt st of trints, w n onstrut lvl- ntwork isplying thm, if on xists, in polynomil tim. (Hur & Moulton, 203) for n ritrry st of trints, this is NP-hr ut solvl in O(3n poly(n)) tim for n ritrry st of ints, this is polynomil-tim solvl (Hur, vi, Moulton, Sornv & Wu 204)

70 Ronstruting ntworks from trints Lvl- ntworks r no y thir trints n givn omplt st of trints, w n onstrut lvl- ntwork isplying thm, if on xists, in polynomil tim. (Hur & Moulton, 203) for n ritrry st of trints, this is NP-hr ut solvl in O(3n poly(n)) tim for n ritrry st of ints, this is polynomil-tim solvl n lso for sunts in whih ll yls hv siz 3. (Hur, vi, Moulton, Sornv & Wu 204)

71 Suprntwork Mthos g f f g N f g f g f g N N isplys T N isplys N T

72 PART 3: NETWORKS FROM SEQUENCES

73 Mximum Prsimony for trs Smll prsimony prolm: givn tr n squn for h lf, ssign squns to th intrnl vrtis in orr to minimiz th totl numr of hngs. ACCTG ATCTG ATCTC GTAAA TTACT Exmpl input Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr 205 / 2

74 Mximum Prsimony for trs Smll prsimony prolm: givn tr n squn for h lf, ssign squns to th intrnl vrtis in orr to minimiz th totl numr of hngs. TTCTA ATCTA TTAAA ATCTG ACCTG ATCTG ATCTC GTAAA TTACT Exmpl llling of intrnl vrtis Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

75 Mximum Prsimony for trs Smll prsimony prolm: givn tr n squn for h lf, ssign squns to th intrnl vrtis in orr to minimiz th totl numr of hngs. TTCTA ATCTA TTAAA ATCTG ACCTG ATCTG ATCTC GTAAA TTACT Exmpl of on hng Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

76 Mximum Prsimony for trs Smll prsimony prolm: givn tr n squn for h lf, ssign squns to th intrnl vrtis in orr to minimiz th totl numr of hngs. TTCTA 2 ATCTA ATCTG TTAAA ACCTG ATCTG ATCTC 2 GTAAA TTACT Th prsimony sor is 9. Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

77 Mximum Prsimony for trs Smll prsimony prolm: givn tr n squn for h lf, ssign squns to th intrior vrtis in orr to minimiz th totl numr of hngs. Polynomil-tim solvl: Consir h hrtr (position in th squns) sprtly. Us ynmi progrmming (Fith, 97). Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

78 Smll Prsimony Prolm on Ntworks Givn ntwork n stt for h lf. Hrwir Prsimony Sor: th minimum numr of stt-hngs ovr ll possil ssignmnts of stts to intrnl vrtis. Softwir Prsimony Sor: th minimum prsimony sor of tr isply y th ntwork. Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

79 Exmpl: Input 2 Lo vn Irsl (TUD) 2 2 Introuing nw ollgus 3TU.AMI 3 8 mr / 2

80 Possil signmnt of stts to intrnl vrtis Lo vn Irsl (TUD) 2 2 Introuing nw ollgus 3TU.AMI 3 8 mr / 2

81 Hrwir Prsimony Sor = Lo vn Irsl (TUD) 2 2 Introuing nw ollgus 3TU.AMI 3 8 mr / 2

82 On of th two trs isply y th ntwork 2 Lo vn Irsl (TUD) 2 2 Introuing nw ollgus 3TU.AMI 3 8 mr / 2

83 Th prsimony sor of this tr is Lo vn Irsl (TUD) 2 2 Introuing nw ollgus 3TU.AMI 3 8 mr 205 / 2

84 Th prsimony sor of th othr tr is Th softwir prsimony sor of th ntwork is min{3, 4} = 3 Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

85 Hrwir n Softwir sors n ritrrily fr prt Lo vn Irsl (TUD) 0 Introuing nw ollgus 3TU.AMI 8 mr / 2

86 Hrwir n Softwir sors n ritrrily fr prt Softwir Prsimony Sor = 2 Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

87 Hrwir n Softwir sors n ritrrily fr prt Softwir Prsimony Sor = 2 Hrwir Prsimony Sor = Hyriiztion Numr + Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

88 Th hrwir prsimony sor quls th siz of minimum multitrminl ut in th grph otin y mrging ll lvs with th sm stt into singl vrtx, n ltting th mrg vrtis th trminls Lo vn Irsl (TUD) 0 Introuing nw ollgus 3TU.AMI 8 mr / 2

89 Th hrwir prsimony sor quls th siz of minimum multitrminl ut in th grph otin y mrging ll lvs with th sm stt into singl vrtx, n ltting th mrg vrtis th trminls. 0 Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

90 Th hrwir prsimony sor quls th siz of minimum multitrminl ut in th grph otin y mrging ll lvs with th sm stt into singl vrtx, n ltting th mrg vrtis th trminls. 0 Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

91 Th hrwir prsimony sor n omput in polynomil tim whn thr r two stts, Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

92 Th hrwir prsimony sor n omput in polynomil tim whn thr r two stts, n pproximt wll whn thr r mor thn two stts. Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

93 Th hrwir prsimony sor n omput in polynomil tim whn thr r two stts, n pproximt wll whn thr r mor thn two stts. Thorm (Fishr, vi, Klk & Sornv, 205) For vry onstnt ǫ > 0 thr is no polynomil-tim pproximtion lgorithm tht pproximts th softwir prsimony sor to ftor n ǫ for ntwork n inry hrtr, unlss P = NP. Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

94 Th hrwir prsimony sor n omput in polynomil tim whn thr r two stts, n pproximt wll whn thr r mor thn two stts. Thorm (Fishr, vi, Klk & Sornv, 205) For vry onstnt ǫ > 0 thr is no polynomil-tim pproximtion lgorithm tht pproximts th softwir prsimony sor to ftor n ǫ for ntwork n inry hrtr, unlss P = NP. Lukily, th softwir prsimony sor n omput ffiintly whn th hyriiztion numr (or lvl ) of th ntwork is smll. Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

95 Min opn qustions (from ll prts) Is thr is n FPT lgorithm for Hyriiztion Numr on multipl noninry trs n th hyriiztion numr s only prmtr. Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

96 Min opn qustions (from ll prts) Is thr is n FPT lgorithm for Hyriiztion Numr on multipl noninry trs n th hyriiztion numr s only prmtr. Whih lsss of ntworks r no y trints? Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

97 Min opn qustions (from ll prts) Is thr is n FPT lgorithm for Hyriiztion Numr on multipl noninry trs n th hyriiztion numr s only prmtr. Whih lsss of ntworks r no y trints? How n w srh for ntwork with optiml softwir prsimony sor, ovr ll ntworks with hyriiztion numr t most k? Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

98 Thnks Mrik Fishr (Grifswl) Kthrin Hur (Norwih) Stvn Klk (Mstriht) Nl Lki (Mstriht) Simon Linz (Christhurh) Vinnt Moulton (Norwih) Clin Sornv (Montpllir) Ln Stougi (Amstrm) Toyng Wu (Norwih) Lo vn Irsl (TUD) Introuing nw ollgus 3TU.AMI 8 mr / 2

Quartets and unrooted level-k networks

Quartets and unrooted level-k networks Phylogntis Workshop, Is Nwton Institut or Mthmtil Sins Cmrig 21/06/2011 Qurtts n unroot lvl-k ntworks Philipp Gmtt Outlin Astrt n xpliit phylognti ntworks Lvl-k ntworks Unroot lvl-1 ntworks n irulr split

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Reconstructing Phylogenetic Networks

Reconstructing Phylogenetic Networks Reconstructing Phylogenetic Networks Mareike Fischer, Leo van Iersel, Steven Kelk, Nela Lekić, Simone Linz, Celine Scornavacca, Leen Stougie Centrum Wiskunde & Informatica (CWI) Amsterdam MCW Prague, 3

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method:

GREEDY TECHNIQUE. Greedy method vs. Dynamic programming method: Dinition: GREEDY TECHNIQUE Gry thniqu is gnrl lgorithm sign strtgy, uilt on ollowing lmnts: onigurtions: irnt hois, vlus to in ojtiv untion: som onigurtions to ithr mximiz or minimiz Th mtho: Applil to

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

CSI35 Chapter 11 Review

CSI35 Chapter 11 Review 1. Which of th grphs r trs? c f c g f c x y f z p q r 1 1. Which of th grphs r trs? c f c g f c x y f z p q r . Answr th qustions out th following tr 1) Which vrtx is th root of c th tr? ) wht is th hight

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

THE evolutionary history of a set of species is usually

THE evolutionary history of a set of species is usually COMPUTATION OF HYBRIDIZATION NETWORKS FOR REALISTIC PHYLOGENETIC TREES 1 Autumn Algorithm Computtion of Hyriiztion Ntworks for Rlisti Phylognti Trs Dnil H. Huson n Simon Linz Astrt A minimum hyriiztion

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

On Contract-and-Refine Transformations Between Phylogenetic Trees

On Contract-and-Refine Transformations Between Phylogenetic Trees On Contrt-n-Rfin Trnsformtions Btwn Phylognti Trs Gnshkumr Gnpthy Vijy Rmhnrn Tny Wrnow Astrt Th infrn of volutionry trs using pprohs whih ttmpt to solv th mximum prsimony (MP) n mximum liklihoo (ML) optimiztion

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Lecture 7 Phylogenetic Analysis

Lecture 7 Phylogenetic Analysis Ltur 7 Phylognti Anlysis Aitionl Rfrn Molulr Evolution: A Phylognti Approh Rori D. M. Pg n Ewr C. Holms 1 Uss of Phylognti Anlysis Evolutionry trs Multipl squn lignmnt Evolutionry Prolms i) Th fossil ror

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

Scientific Programming. Graphs

Scientific Programming. Graphs Sintifi Progrmming Grphs Alrto Montrsor Univrsità i Trnto 08//07 This work is lins unr Crtiv Commons Attriution-ShrAlik 4.0 Intrntionl Lins. Tl of ontnts Introution Exmpls Dfinitions Spifition Rprsnttions

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Compression. Compression. Compression. This part of the course... Ifi, UiO Norsk Regnesentral Vårsemester 2005 Wolfgang Leister

Compression. Compression. Compression. This part of the course... Ifi, UiO Norsk Regnesentral Vårsemester 2005 Wolfgang Leister Kurs INF5080 Ifi, UiO Norsk Rgnsntrl Vårsmstr 2005 Wolfgng Listr This prt of th ours...... is hl t Ifi, UiO... (Wolfgng Listr) n t ontins mtril from Univrsity Collg Krlsruh (Ptr Ol, Clmns Knorzr) Informtion

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information