arxiv: v1 [cs.ds] 20 Feb 2008

Size: px
Start display at page:

Download "arxiv: v1 [cs.ds] 20 Feb 2008"

Transcription

1 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp rxiv: v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES VIET TUNG HOANG 1,2 AND WING-KIN SUNG 1,2 1 Dprtmnt of Computr Sin, Ntionl Univrsity of Singpor E-mil rss: {hongvi2,ksung}@omp.nus.u.sg 2 Gnom Institut of Singpor Astrt. Consir st of lls L n st of trs T = {T (1),T (2),...,T (k) } whr h tr T (i) is istintly lf-ll y som sust of L. On funmntl prolm is to fin th iggst tr (not s suprtr) to rprsnt T whih minimizs th isgrmnts with th trs in T unr rtin ritri. This prolm fins pplitions in phylogntis, ts, n t mining. In this ppr, w fous on two prtiulr suprtr prolms, nmly, th mximum grmnt suprtr prolm (MASP) n th mximum omptil suprtr prolm (MCSP). Ths two prolms r known to NP-hr for k 3. This ppr givs th first polynomil tim lgorithms for oth MASP n MCSP whn oth k n th mximum gr D of th trs r onstnt. 1. Introution Givn st of lls L n st of unorr trs T = {T (1),...,T (k) } whr h tr T (i) is istintly lf-ll y som sust of L. Th suprtr mtho tris to fin tr to rprsnt ll trs in T whih minimizs th possil onflits in th input trs. Th suprtr mtho fins pplitions in phylogntis, ts, n t mining. For instn, in th Tr of Lif projt [10], th suprtr mtho is th si tool to infr th phylognti tr of ll spis. Mny suprtr mthos hv n propos in th litrtur [2, 5, 6, 8]. This ppr fouss on two prtiulr suprtr mthos, nmly th Mximum Agrmnt Suprtr (MASP) [8] n th Mximum Comptil Suprtr (MCSP) [2]. Both mthos try to fin onsnsus tr with th lrgst numr of lvs whih n rprsnt ll th trs in T unr rtin ritri. (Pls r Stion 2 for th forml finition.) MASP n MCSP r known to NP-hr s thy r th gnrliztion of th Mximum Agrmnt Sutr prolm (MAST) [1, 3, 9] n th Mximum Comptil Sutr prolm (MCT) [7, 4] rsptivly. Jnsson t l. [8] prov tht MASP rmins NP-hr vn if vry tr is root triplt, i.., inry tr of 3 lvs. For k = 2, Jnsson t l. [8] n Brry n Niols [2] propos linr tim lgorithm to trnsform MASP n MCSP for 2 input trs to MAST n MCT rsptivly. For k 3, positiv 1998 ACM Sujt Clssifition: Algorithms, Biologil omputing. Ky wors n phrss: mximum grmnt suprtr, mximum omptil suprtr. Hong n Sung CC Crtiv Commons Attriution-NoDrivs Lins

2 362 HOANG AND SUNG Root Unroot MASP for k trs of mx gr D O((kD) kd+3 (2n) k ) O((kD) kd+3 (4n) k ) MCSP for k trs of mx gr D O(2 2kD n k ) O(2 2kD n k ) O ( k(2n 2 ) ) 3k2 [8] MASP/MCSP for k inry trs O(8 k n k ) [6] O(6 k n k ) Tl 1: Summry of prvious n nw rsults ( stns for nw rsult). rsults for omputing MASP/MCSP r rport only for root inry trs. Jnsson t l. [8] gv n O ( k(2n) 3k2 ) tim solution to this prolm. Rntly, Guillmot n Brry [6] furthr improv th running tim to O(8 k n k ). In gnrl, th trs in T my not inry nor root. Hn, Jnsson t l. [8] post n opn prolm n sk if MASP n solv in polynomil tim whn k n th mximum gr of th trs in T r onstnt. This ppr givs n ffirmtiv nswr to this qustion. W show tht oth MASP n MCSP n solv in polynomil tim whn T ontins onstnt numr of oun gr trs. For th spil s whr th trs in T r root inry trs, w show tht oth MASP n MCSP n solv in O(6 k n k ) tim, whih improvs th prvious st rsult. Tl 1 summrizs th prvious n nw rsults. Th rst of th ppr is orgniz s follows. Stion 2 givs th forml finition of th prolms. Thn, Stions 3 n 4 sri th lgorithms for solving MCSP for oth root n unroot ss. Finlly, Stions 5 n 6 til th lgorithms for solving MASP for oth root n unroot ss. Proofs omitt u to sp limittion will ppr in th full vrsion of this ppr. 2. Prliminry A phylognti tr is fin s n unorr n istintly lf-ll tr. Givn phylognti tr T, th nottion L(T) nots th lf st of T, n th siz of T rfrs to L(T). For ny ll st S, th rstrition of T to S, not T S, is phylognti tr otin from T y rmoving ll lvs in L(T) S n thn supprssing ll intrnl nos of gr two. (S Figur 1 for n xmpl of rstrition.) For two phylognti trs T n T, w sy tht T rfins T, not T T, if T n otin y ontrting som gs of T. (S Figur 1 for n xmpl of rfinmnt.) Mximum Comptil Suprtr Prolm: Consir st of k phylognti trs T = {T (1),...,T (k) }. A omptil suprtr of T is tr Y suh tht Y L(T (i) ) T (i) L(Y) for ll i k. Th Mximum Comptil Suprtr Prolm (MCSP) is to fin omptil suprtr with s mny lvs s possil. Figur 2 shows n xmpl of omptilsuprtry oftworootphylogntitrst (1) nt (2). Ifllinputtrshv th sm lf sts, MCSP is rfrr s Mximum Comptil Sutr Prolm (MCT). Mximum Agrmnt Suprtr Prolm: Consir st of k phylognti trs T = {T (1),...,T (k) }. An grmnt suprtr of T is tr X suh tht X L(T (i) ) = T (i) L(X) for ll i k. Th Mximum Agrmnt Suprtr Prolm (MASP) is to fin n grmnt suprtr with s mny lvs s possil. Figur 2 shows n xmpl of n

3 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MASP AND MCSP 363 T T T Figur 1: Thr root trs. A tr T, tr T suh tht T = T {,,}, n tr T suh tht T T. grmnt suprtrx of two rootphylognti trs T (1) nt (2). Ifll inputtrs hv th sm lf sts, MASP is rfrr s Mximum Agrmnt Sutr Prolm (MAST). T (1) T (2) X Y Figur 2: An grmnt suprtr X n omptil suprtr Y of 2 root phylognti trs T (1) n T (2). In th following isussion, for th st of phylognti trs T = {T (1),...,T (k) }, w not n = i=1..k L(T (i) ), n D stns for th mximum gr of th trs in T. W ssum tht non of th trs in T hs n intrnl no of gr two, so tht h tr ontins t most n 1 intrnl nos. (If tr T (i) hs som intrnl nos of gr two, w n rpl it y T (i) L(T (i) ) in linr tim.) 3. Algorithm for MCSP of root trs Lt T st of k root phylognti trs. This stion prsnts ynmi progrmming lgorithm to omput th siz of mximum omptil suprtr of T in O ( 2 2kD n k) tim. Th mximum omptil suprtr n otin in th sm symptoti tim oun y ktrking.

4 364 HOANG AND SUNG For vry omptil suprtr Y of T, thr xists inry tr tht rfins Y. This inry tr is lso omptil suprtr of T, n is of th sm siz s Y. Hn in this stion, vry omptil suprtr is impliitly ssum to inry. Dfinition 3.1 (Cut-sutr). A ut-sutr of tr T is ithr n mpty tr or tr otin y first slting som sutrs tth to th sm intrnl no in T n thn onnting thos sutrs y ommon root. Dfinition 3.2 (Cut-suforst). Givn st of k root (or unroot) trs T, utsuforst of T is st A = {A (1),...,A (k) }, whr A (i) is ut-sutr of T (i) n t lst on lmnt of A is not n mpty tr. T (1) T (2) A (1) A (2) f f Figur 3: A ut-suforst A of T. For xmpl, in Figur 3, {A (1),A (2) } is ut-suforst of {T (1),T (2) }. Lt O not th st of ll possil ut-suforsts of T. Lmm 3.3. Thr r O ( 2 kd n k) iffrnt ut-suforsts of T. Proof. W lim tht h tr T (i) ontriuts 2 D n or fwr ut-sutrs; thrfor thr r O ( 2 kd n k) ut-suforsts of T. At h intrnl no v of T (i), sin th gr of v os not x D, w hv t most 2 D wys of slting th sutrs tth to v to form ut-sutr. Inluing th mpty tr, th numr of ut-sutrs in T (i) nnot go yon (n 1)2 D +1 < 2 D n. Figur 4 monstrts tht omptil suprtr of som ut-suforst A of T my not omptil suprtr of T. To irumvnt this irrgulrity, w fin m suprtr s follows. Dfinition 3.4 (Em suprtr). For ny ut-suforst A of T, tr Y is ll n m suprtr of A if Y is omptil suprtr of A, n L(Y) L(T (i) ) L(A (i) ) for ll i k. Not tht omptil suprtr of T is lso n m suprtr of T. For h ut-suforst A of T, lt msp(a) not th mximum siz of m suprtrs of A. Our im is to omput msp(t ). Blow, w first fin th rursiv qution for omputing msp(a) for ll ut-suforsts A O. Thn, w sri our ynmi progrmming lgorithm. W prtition th ut-suforsts in O into two lsss. A ut-suforst A of T is trminl if h lmnt A (i) is ithr n mpty tr or lf of T (i) ; it is ll non-trminl, othrwis.

5 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MASP AND MCSP 365 T (1) T (2) A (1) Z Y A (2) Figur 4: Consir T = {T (1),T (2) } n its ut-suforst A = {A (1),A (2) }. Although Z is omptil suprtr of A, it is not omptil suprtr of T. Th mximum omptil suprtr of T is Y tht ontins only 2 lvs. For h trminl ut-suforst A, lt Λ(A) = {l } L(A (j) ) l L(T (i) ) L(A (i) ) for i = 1,2,...,k. (3.1) j=1..k For xmpl, with T in Figur 2, if A (1) n A (2) r lvs ll y n rsptivly thn Λ(A) = {}. In Lmm 3.5, w show tht msp(a) = Λ(A). Lmm 3.5. If A is trminl ut-suforst thn msp(a) = Λ(A). Proof. Consir ny m suprtr Y of A. By Dfinition 3.4, vry lf of Y longs to Λ(A). Hn th vlu msp(a) os not x Λ(A). It rmins to giv n xmpl of som m suprtr of A whos lf st is Λ(A). Lt C root trpillr 1 whos lf st is Λ(A). Th finition of Λ(A) implis tht L(C) L(T (i) ) L ( A (i)) for vry i k. Sin h A (i) hs t most on lf, it is strightforwr tht C is omptil suprtr of A. Hn C is th sir xmpl. Dfinition 3.6 (Biprtit). Lt A ut-suforst of T. W sy tht th ut-suforsts A L n A R iprtition A if for vry i k, th trs A (i) L n A(i) R n otin y (1) prtitioning th sutrs tth to th root of A (i) into two sts S (i) L n S(i) R ; n (2) onnting th sutrs in S (i) L (rsp. S(i) R ) y ommon root to form A(i) L (rsp. A(i) R ). Figur 5 shows n xmpl of th pring finition. For h non-trminl utsuforsta, w omputmsp(a) s on th msp vlus of A L n A R for h iprtit (A L,A R ) of A. Mor prisly, w prov tht msp(a) = mx{msp(a L )+msp(a R ) A L n A R iprtition A}. (3.2) Th intity (3.2) is thn stlish y Lmms 3.8 n Lmm 3.7. Consir iprtit (A L,A R ) of som ut-suforst A of T. If Y L n Y R r m suprtrs of A L n A R rsptivly thn Y is n m suprtr of A, whr Y is form y onnting Y L n Y R to ommon root. 1 A root trpillr is root, unorr, n istintly lf-ll inry tr whr vry intrnl no hs t lst on hil tht is lf.

6 366 HOANG AND SUNG A (1) A (2) A L (1) A L (2) A R (2) A R (1) Figur 5: A iprtit (A L,A R ) of ut-suforst A. Th mpty tr is rprsnt y whit irl. Lmm 3.8. Lt A ut-suforst of T. If (A L,A R ) is iprtit of A thn msp(a) msp(a L )+msp(a R ). Proof. Consir n m suprtr Y L of A L suh tht L(Y L ) = msp(a L ). Dfin Y R for A R similrly. Lt Y tr form y onnting Y L n Y R with ommon root. Not tht Y is of siz msp(a L )+msp(a R ). By Lmm 3.7, Y is n m suprtr of A n hn th lmm follows. Lmm 3.9. Givn ut-suforst A of T, lt Y inry m suprtr of A with lft sutr Y L n right sutr Y R. Thr xists iprtit (A L,A R ) of A suh tht ithr (i) Y is n m suprtr of A L ; or (ii) Y L n Y R r m suprtrs of A L n A R rsptivly. Lmm For h non-trminl ut-suforst A of T, thr xists iprtit (A L,A R ) of A suh tht msp(a) msp(a L )+msp(a R ). Proof. Lt Y inry m suprtr of A suh tht L(Y) = msp(a). By Lmm 3.9, thr xists iprtit (A L,A R ) of A suh tht ithr (1) Y is n m suprtr of A L ; or (2) Y L n Y R r m suprtrs of A L n A R rsptivly, whr Y L is th lft sutr n Y R is th right sutr of Y. In oth ss, L(Y) msp(a L )+msp(a R ). Thn th lmm follows. Th ov isussion thn ls to Thorm Thorm For vry ut-suforst A of T, th vlu msp(a) quls to { Λ(A), if A is trminl, mx{msp(a L )+msp(a R ) A L n A R iprtition A}, othrwis. W fin n orring of th ut-suforsts in O s follows. For ny ut-suforsts A 1,A 2 in O, w sy tht A 1 is smllr thn A 2 if A (i) 1 is ut-sutr of A (i) 2 for i = 1,2,...,k. Ourlgorithm numrts A O intopologilly inrsingorrnomputs msp(a) s on Thorm Thorm 3.12 stts th omplxity of our lgorithm. Thorm A mximum omptil suprtr of k root phylognti trs n otin in O ( 2 2kD n k) tim.

7 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MASP AND MCSP 367 Proof. Tsting if ut-suforst is trminl tks O(k) tims, n h trminl utsuforstathn rquirs O(k 2 ) tim for th omputtion of Λ(A). In viw of Lmm 3.3, it suffis to show tht h non-trminl ut-suforst A hs O(2 kd ) iprtits. This rsult follows from th ft tht for h i k, thr r t most 2 D wys to prtition th st of th sutrs tth to th root of A (i). In th spil s whr vry tr T (i) is inry, Thorm 3.13 shows tht our lgorithm tully hs ttr tim omplxity. Not tht th onpts of grmnt suprtr n omptil suprtr will oini for inry trs. Hn, our lgorithm improvs th O ( 8 k n k) -tim lgorithm in [6] for omputing mximum grmnt suprtr of k root inry trs. Thorm If vry tr in T is inry, mximum omptil suprtr (or mximum grmnt suprtr) n omput in O ( 6 k n k) tim. Proof. W lim tht th prossing of non-trminl ut-suforsts of T rquirs O ( 6 k n k) tim. Th rgumnt in th proof of Thorm 3.12 tlls tht th rmining omputtion runs within th sm symptoti tim oun. Consir n intgr r {0,1,...,k}. W shll ling with ut-suforst A suh tht thr r xtly r ut-sutrs A (i) whos roots r intrnl nos of T (i) (. Th) ky of this proof is to show tht th numr of thos k ut-suforsts os not x (n 1) r r (n+1) k r, n th running tim for h utsuforst is O ( 4 r 2 k r). Hn, th totl running tim for ll non-trminl ut-suforsts is k ( k r r=0 ) ( (n 1) r (n+1) k r O 4 r 2 k r) ( = O 6 k n k). ( ) n ount th numr of th spifi ut-suforsts A s follows. First thr r k options for r inis i suh tht th roots of ut-sutrs A rw (i) r intrnl nos of T (i). For thos ut-sutrs, w thn ppoint on of th (n 1) or fwr intrnl nos of T (i) to th root no of A (i). Evry othr ut-sutr of A is lf or th mpty tr, n thn n trmin from t most n + 1 ltrntivs. Multiplying thos possiilitis givs us th oun stipult in th pring prgrph. It rmins to stimt th running tim for h spifi ut-suforst A. This tsk rquirs us to oun th numr of iprtits of h ut-suforst. If th root v of A (i) is n intrnl no of T (i) thn A (i) ontriuts 4 or fwr wys of prtitioning th st of th sutrs tth to v. Othrwis, w hv t most 2 wys of prtitioning this st. Hn A owns t most 4 r 2 k r iprtits, n this omplts th proof. 4. Algorithm for MCSP of unroot trs Lt T st of k unroot phylognti trs. This stion xtns th lgorithm in Stion 3 to fin th siz of mximum omptil suprtr of T. Th mximum omptil suprtr n otin y ktrking. Surprisingly, th xtn lgorithm for unroot trs runs within th sm symptoti tim oun s th originl lgorithm for root trs.

8 368 HOANG AND SUNG W will follow th sm pproh s Stion 3, i.., for h ut-suforst A of T, w fin n m suprtr of A of mximum siz. Dfinitions 3.1, 3.2, n 3.4 for utsuforst n m suprtr in th prvious stion r still vli for unroot trs. Noti tht lthough T is th st of unroot trs, h ut-suforst A of T onsists of root trs. (S Figur 6 for n xmpl of ut-suforst for unroot trs.) Hn w n us th lgorithm in Stion 3 to fin th mximum m suprtr of A. W thn slt th iggst tr T mong thos mximum m suprtrs for ll ut-suforsts of T, n unroot T to otin th mximum omptil suprtr of T. T (1) T (2) A (1) A (2) f f Figur 6: Th st of root trs A = {A (1),A (2) } is ut-suforst of T = {T (1),T (2) }. Thorm 4.1 shows tht th xtn lgorithm hs th sm symptoti tim oun s th lgorithm in Stion 3. Thorm 4.1. W n fin mximum omptil suprtr of k unroot phylognti trs in O ( 2 2kD n k) tim. Proof. Using similr proof s Lmm 3.3, w n prov tht thr r O ( 2 kd n k) utsuforsts of T. As givn in th proof of Thorm 3.12, fining th mximum m suprtrs of h ut-suforst tks O(2 kd ) tim. Hn th xtn lgorithm runs within th spifi tim oun. 5. Algorithm for MASP of root trs Lt T st of k root phylognti trs. This stion prsnts ynmi progrmming lgorithm to omput th siz of mximum grmnt suprtr of T in O ( (kd) kd+3 (2n) k) tim. Th mximum grmnt suprtr n otin in th sm symptoti tim oun y ktrking. Th i hr is similr to tht of Stion 3. Howvr, whil w n ssum tht omptil suprtrs r inry, th mximum gr of grmnt suprtrs n grow up to kd. It is th rson why w hv th ftor O((kD) kd+3 ) in th omplxity. Dfinition 5.1 (Su-forst). Givn st of k root trs T, su-forst of T is st A = {A (1),...,A (k) }, whr h A (i) is ithr n mpty tr or omplt sutr root t som no of T (i), n t lst on lmnt of A is not n mpty tr. Noti tht th finition of su-forst os not oini with th onpt of utsuforst in Dfinition 3.2 of Stion 3. For xmpl, th ut-suforst A in Figur 3 is not su-forst of T, us A (2) is not omplt sutr root t som no of T (2). Lt O not th st of ll possil su-forsts of T. Thn O = O ( (2n) k).

9 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MASP AND MCSP 369 Dfinition 5.2 (Enlos suprtr). For ny su-forst A of T, tr X is ll n nlos suprtr of A if X is n grmnt suprtr of A, n L(X) L(T (i) ) L(A (i) ) for ll i k. For h su-forstaof T, ltmsp(a) not th mximum siz of nlos suprtrs of A. W us similr pproh s Stion 3, i.., w omput msp(a) for ll A O, n msp(t ) is th siz of mximum grmnt suprtr of T. W prtition th su-forsts in O to two lsss. A su-forst A is trminl if h A (i) is ithr n mpty tr or lf. Othrwis, A is ll non-trminl. Noti tht for trminl su-forst, th finition of nlos suprtr oinis with th onpt of m suprtr in Dfinition 3.4 of Stion 3. Thn y Lmm 3.5, w hv msp(a) = Λ(A). (Pls rfr to th formul (3.1) in th prgrph pring Lmm 3.5 for th finition of funtion Λ.) Dfinition 5.3 (Domposition). Lt A su-forst of T. W sy tht su-forsts B 1,...,B (with 2) ompos A if for ll i k, ithr (i) Extly on of B (i) 1,...,B(i) is isomorphi to A (i) whil th othrs r mpty trs; or (ii) Thr r t lst 2 nonmpty trs in B (i) 1,...,B(i), n ll thos nonmpty trs r isomorphi to pirwis istint sutrs tth to th root of A (i). A (1) A (2) B 1 (1) B 2 (1) (2) (2) (1) B τ 1 τ 2 τ 3 τ 4 τ 1 B B 1 τ τ 4 B 3 (2) Figur 7: A omposition (B 1,B 2,B 3 ) of su-forst A. Th mpty trs r rprsnt y whit irls. Figur 7 illustrts th onpt of omposition. For h su-forst A of T, w will prov tht msp(a) = mx{msp(b 1 )+...+msp(b ) B 1,...,B ompos A}. (5.1) Th intity (5.1) is thn stlish y Lmms 5.5 n 5.7. Lmm 5.4. Suppos (B 1,...,B ) is omposition of som su-forst A of T. Lt τ 1,...,τ som nlos suprtrs of B 1,...,B rsptivly, n lt X th tr otin y onnting τ 1,...,τ to ommon root. Thn, X is n nlos suprtr of A. Lmm 5.5. If (B 1,...,B ) is omposition of su-forst A of T thn msp(a) msp(b 1 )+...+msp(b ). Proof. For h B j, lt τ j n nlos suprtr of B j suh tht L(τ j ) = msp(b j ). Lt X th tr otin y onnting τ 1,...,τ to ommon root. By Lmm 5.4, X is n nlos suprtr of A. Hn L(τ 1 ) L(τ ) = L(X) msp(a).

10 370 HOANG AND SUNG Lmm 5.6. Lt X n nlos suprtr of som su-forst A of T, n lt τ 1,...,τ ll sutrs tth to th root of X. Thn ithr (i) Thr is omposition (B 1,B 2 ) of A suh tht X is n nlos suprtr of B 1 ; or (ii) Thr is omposition (B 1,...,B ) of A suh tht h τ j is n nlos suprtr of B j. Lmm 5.7. For h non-trminl su-forst A of T, thr is omposition (B 1,...,B ) of A suh tht msp(a) msp(b 1 )+...+msp(b ) Proof. LtX nnlos suprtrof Asuhtht L(X) = msp(a) nlt τ 1,...,τ llsutrstthtothrootofx. ByLmm5.6,ithr(i)Thrxistsomposition (B 1,B 2 ) of A suh tht X is n nlos suprtr of B 1 ; or (ii) Thr is omposition (B 1,...,B ) of A suh tht h τ j is n nlos suprtr of B j. In s (i), w hv L(X) msp(b 1 ) msp(b 1 ) + msp(b 2 ). On th othr hn, in s (ii), w hv L(X) = L(τ 1 ) L(τ ) msp(b 1 )+...+msp(b ). Th ov isussion thn ls to Thorm 5.8. Thorm 5.8. For vry su-forst A of T, th vlu msp(a) quls to { Λ(A), if A is trminl, mx{msp(b 1 )+...+msp(b ) B 1,...,B ompos A}, othrwis. W fin n orring of th su-forsts in O s follows. For ny su-forsts A 1,A 2 in O, w sy A 1 is smllr thn A 2 if A (i) 1 is ithr n mpty tr or sutr of A (i) 2 for i = 1,2,...,k. Our lgorithm numrts A O in topologilly inrsing orr n omputs msp(a) s on Thorm 5.8. In Lmm 5.9, w oun th numr of ompositions of h su-forst of T. Thorm 5.10 stts th omplxity of th lgorithm. Lmm 5.9. Eh su-forst of T hs O ( (kd) kd+1) ompositions, n gnrting thos ompositions tks O ( k 2 D 2) tim pr omposition. Proof. Lt A su-forst of T. Sin th mximum gr of ny grmnt suprtrof A is oun y kd, w onsir only ompositions tht onsist of t most kd lmnts. Wlimthtforh {2,...,kD}, thsu-forstaownso ( (+2) kd) ompositions (B 1,...,B ). Summing up thos symptoti trms givs us th spifi oun. Th ky of this proof is to prov tht for h s {1,...,k}, th tr A (s) ontriuts t most ( +1) D + < ( +2) D squns B (s) 1,...,B(s), n gnrting thos squns rquirs O() tim pr squn. W hv two ss, h orrspons to typ of th ov squn. Cs 1: On trm in th squn is A (s) ; thrfor th othr trms r mpty trs. Thn, w n gnrt this squn y ssigning A (s) to xtly on trm n stting th rst to mpty trs. This s provis xtly squns n numrts thm in O() tim pr squn. Cs 2: No trm in th ov squn is A (s). Consir n intgr r {0,1,...,} n ssum tht th squn onsists of xtly r trms tht r nonmpty nos. Thn thos r nonmpty trs r isomorphi to pirwis istint sutrs tth to th root of A (s). Lt δ th gr of th root of A (s). W gnrt th squn s follows. First w rw r pirwis istint sutrs tth to th root of A (s). Nxt, w slt r trms

11 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MASP AND MCSP 371 in th squn n istriut th ov sutrs to thm. Finlly w st th rmining trms to mpty trs. Hn this s givs t most ( ) δ! D r ( r)! < ( ) D r r = (+1) D r min{δ,} r=0 squns, n gnrts thm in O() tim pr squn. Thorm A mximum grmnt suprtr of k root phylognti trs n otin in O ( (kd) kd+3 (2n) k) tim. Proof. Tsting if su-forst is trminl tks O(k) tims, n h trminl su-forst A thn rquirs O(k 2 ) tim for omputing Λ(A). By Lmm 5.9, h non-trminl su-forst rquirs O ( (kd) kd+3) running tim. Summing up thos symptoti trms for O ( (2n) k) su-forsts of T givs us th spifi tim oun. 6. Algorithm for MASP of unroot trs Lt T st of k unroot phylognti trs. This stion xtns th lgorithm in Stion 5 to fin th siz of mximum grmnt suprtr of T in O ( (kd) kd+3 (4n) k) tim. Th mximum grmnt suprtr n otin y ktrking. W sy tht st of k root trs F = {F (1),...,F (k) } is root vrint of T if w n otin h F (i) y rooting T (i) t som intrnl no. On niv pproh is to us th lgorithm in th prvious stion to solv MASP for h root vrint of T. Eh root vrint thn givs us solution, n th mximum of thos solutions is th siz of mximum grmnt suprtr of T. Bus thr r O ( n k) root vrints of T, this pproh s n O ( n k) ftor to th omplxity of th lgorithm for root trs. W now show how to improv th ov niv lgorithm. As mntion in th prvious stion, th omputtion of h root vrint of T onsists of O ( (2n) k) su-prolms whih orrspon to its su-forsts. (Pls rfr to Dfinition 5.1 for th onpt of suforst.) Sin iffrnt root vrints my hv som ommon su-forsts, th totl numr of su-prolmsw hv to runis muh smllr thn O(2 k n 2k ). Mor prisly, w will show tht th totl numr of su-prolms is only O ( (4n) k). A (root or unroot) tr is trivil if it is lf or n mpty tr. A mximl sutr of n unroot tr T is root tr otin y first rooting T t som intrnl no v n thn rmoving t most on nontrivil sutr tth to v. Lt O not th st of su-forsts of ll root vrints of T. Lmm 6.1. Lt A = {A (1),...,A (k) } st of root trs. Thn A O if n only if h A (i) is ithr trivil sutr or mximl sutr of T (i). Proof. Lt F root vrint of T suh tht A is su-forst of F. Fix n inx s {1,...,k} n lt v th root no of A (s). Our lim is strightforwr if ithr A (s) is trivil or v is th root no of F (s). Othrwis, lt u th prnt of v in F (s). Hn A (s) is th mximl sutr of T (s) otin y first rooting T (s) t v n thn rmoving th omplt sutr root t u. Convrsly, w onstrut root vrint F of T suh tht A is su-forst of F s follows. For h i k, if A (i) is trivil or A (i) is tr otin y rooting T (i) t som intrnl nothn onstruting F (i) is strightforwr. OthrwisA (i) is mximl sutr

12 372 HOANG AND SUNG of T (i) otin y first rooting T (i) t som intrnl no v n thn rmoving xtly on nontrivil sutr τ tth to v. Hn F (i) is th tr otin y rooting T (i) t u, whr u is th root of τ. Thorm 6.2. W n fin mximum grmnt suprtr of k unroot phylognti trs in O ( (kd) kd+3 (4n) k) tim. Proof. Th ky of this proof is to show tht h tr T (i) ontriuts t most (3n 1) mximl sutrs. It follows tht O (4n) k. Th spifi running tim of our lgorithm is thn strightforwr us h suprolm rquirs O ( (kd) kd+3) tim s givn in th proof of Thorm Assum tht th tr T (i) hs xtly L lvs, with L n. W now ount th numr of mximl sutrs T of T (i) in two ss. Cs 1: T is otin y rooting T (i) t som intrnl no. Hn this s provis t most L 1 < n mximl sutrs. Cs 2: T is otin y firstrooting T (i) t som intrnl no v n thn rmoving nontrivil sutr τ tth to v. Noti tht thr is on-to-on orrsponn twn th tr T n th irt g (v,u) of T (i), whr u is th root no of τ. Thr r 2L 2 or fwr unirt gs in T (i) ut xtly L of thm r jnt to th lvs. Hn this s givs us t most 2(2L 2 L) < 2n 1 mximl sutrs. Rfrns [1] A. Amir n D. Kslmn. Mximum Agrmnt Sutr in st of Evolutionry Trs: Mtris n Effiint Algorithms. SIAM Journl on Computing, 26(6): , [2] V. Brry n F. Niols. Mximum Agrmnt n Comptil Suprtrs. In Pro. 15 th Symposium on Comintoril Pttrn Mthing (CPM 2004), Lt. Nots in Comp. Sin 3109, pp Springr, [3] M. Frh, T. Przytyk, n M. Thorup. On th grmnt of mny trs. Informtion Prossing Lttrs, 55: , [4] G. Gnpthysrvnvn n T. Wrnow. Fining mximum omptil tr for oun numroftrs with oungr is solvl inpolynomil tim. InPro. 1 st Workshop on Algorithms in Bioinformtis (WABI 2001), Lt. Nots in Comp. Sin 2149, pp Springr, [5] A. G. Goron. Consnsus suprtrs: th synthsis of root trs ontining ovrlpping sts of lll lvs. Journl of Clssifition, 3: , [6] Sylvin Guillmot n Vinnt Brry. Fix-Prmtr Trtility of th Mximum Agrmnt Suprtr Prolm. InPro. 18 th Symposium on Comintoril Pttrn Mthing (CPM 2007), Lt. Nots in Comp. Sin 4580, pp Springr, [7] J. Hin, T. Jing, L. Wng, n K. Zhng. On th omplxity of ompring volutionry trs. Disrt Appli Mthmtis, 71: , [8] Jspr Jnsson, Josph H.-K. Ng, Kunihiko Skn, n Wing-King Sung. Root Mximum Agrmnt Suprtrs. Algorithmi, 43: , [9] M.-Y. Ko, T.-W. Lm, W.-K. Sung, n H.-F. Ting. An Evn Fstr n Mor Unifying Algorithm for Compring Trs vi Unln Biprtit Mthings. Journl of Algorithms, 40(2): , [10] Mison, D.R., n K.-S. Shulz (s.). Th Tr of Lif W Projt This work is lins unr th Crtiv Commons Attriution-NoDrivs Lins. To viw opy of this lins, visit

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

LEO VAN IERSEL TU DELFT

LEO VAN IERSEL TU DELFT LEO VAN IERSEL TU DELFT UT LEO VAN IERSEL TU DELFT UT LEO VAN IERSEL TU DELFT TU/ CWI UT LEO VAN IERSEL TU DELFT TU/ CWI UT TUD LEO VAN IERSEL TU DELFT TU/ Tnzni & Kny yr LEO VAN IERSEL TU DELFT Nw Zln.5

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

On Contract-and-Refine Transformations Between Phylogenetic Trees

On Contract-and-Refine Transformations Between Phylogenetic Trees On Contrt-n-Rfin Trnsformtions Btwn Phylognti Trs Gnshkumr Gnpthy Vijy Rmhnrn Tny Wrnow Astrt Th infrn of volutionry trs using pprohs whih ttmpt to solv th mximum prsimony (MP) n mximum liklihoo (ML) optimiztion

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Quartets and unrooted level-k networks

Quartets and unrooted level-k networks Phylogntis Workshop, Is Nwton Institut or Mthmtil Sins Cmrig 21/06/2011 Qurtts n unroot lvl-k ntworks Philipp Gmtt Outlin Astrt n xpliit phylognti ntworks Lvl-k ntworks Unroot lvl-1 ntworks n irulr split

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

Journal of Solid Mechanics and Materials Engineering

Journal of Solid Mechanics and Materials Engineering n Mtrils Enginring Strss ntnsit tor of n ntrf Crk in Bon Plt unr Uni-Axil Tnsion No-Aki NODA, Yu ZHANG, Xin LAN, Ysushi TAKASE n Kzuhiro ODA Dprtmnt of Mhnil n Control Enginring, Kushu nstitut of Thnolog,

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

THE evolutionary history of a set of species is usually

THE evolutionary history of a set of species is usually COMPUTATION OF HYBRIDIZATION NETWORKS FOR REALISTIC PHYLOGENETIC TREES 1 Autumn Algorithm Computtion of Hyriiztion Ntworks for Rlisti Phylognti Trs Dnil H. Huson n Simon Linz Astrt A minimum hyriiztion

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Discovering Frequent Graph Patterns Using Disjoint Paths

Discovering Frequent Graph Patterns Using Disjoint Paths Disovring Frqunt Grph Pttrns Using Disjoint Pths E. Gus, S. E. Shimony, N. Vntik {hu,shimony,orlovn}@s.gu..il Dpt. of Computr Sin, Bn-Gurion Univrsity of th Ngv, Br-Shv, Isrl Astrt Whrs t-mining in strutur

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

Binomials and Pascal s Triangle

Binomials and Pascal s Triangle Binomils n Psl s Tringl Binomils n Psl s Tringl Curriulum R AC: 0, 0, 08 ACS: 00 www.mthltis.om Binomils n Psl s Tringl Bsis 0. Intif th prts of th polnomil: 8. (i) Th gr. Th gr is. (Sin is th highst

More information

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES

ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES ON STOICHIOMETRY FOR THE ASSEMBLY OF FLEXIBLE TILE DNA COMPLEXES N. JONOSKA, G. L. MCCOLM, AND A. STANINSKA Astrt. Givn st of flxil rnh juntion DNA moluls with stiky-ns (uiling loks), ll hr tils, w onsir

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

Can transitive orientation make sandwich problems easier?

Can transitive orientation make sandwich problems easier? Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information