Discovering Pairwise Compatibility Graphs

Size: px
Start display at page:

Download "Discovering Pairwise Compatibility Graphs"

Transcription

1 Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut.. Astrt. Lt T n g wight tr, lt T (u, v) th sum of th wights of th gs on th pth from u to v in T,nlt min n mx two nonngtiv rl numrs suh tht min mx. Thn pirwis omptiility grph of T for min n mx is grph G =(V,E), whr h vrtx u V orrspons to lf u of T n thr is n g (u,v ) E if n only if min T (u, v) mx. AgrphG is ll pirwis omptiility grph (PCG) if thr xists n g wight tr T n two non-ngtiv rl numrs min n mx suh tht G is pirwis omptiility grph of T for min n mx. Krny t l. onjtur tht vry grph is PCG [3]. In this ppr, w rfut th onjtur y showing tht not ll grphs r PCGs. W lso show tht th wll known tr powr grphs n som of thir xtnsions r PCGs. Introution Lt T n g wight tr n lt min n mx two non-ngtiv rl numrs suh tht min mx.apirwis omptiility grph of T for min n mx is grphg =(V,E), whr h vrtx u V rprsnts lf u of T n thr is n g (u,v ) E if n only if th istn twn u n v in T lis within th rng from min to mx. T is ll th pirwis omptiility tr of G. W not pirwis omptiility grph of T for min n mx y PCG(T, min, mx ).Agrph G is pirwis omptiility grph (PCG) if thr xists n g wight tr T n two non-ngtiv rl numrs min n mx suh tht G = PCG(T, min, mx ). Figur () pits n g wight tr T n Fig. () pits pirwis omptiility grph G of T for min =4n mx =7; thr is n g twn n in G sin in T th istn twn n is six, ut G os not ontin th g (, ) sin in T th istn twn n is ight, whih is lrgr thn svn. It is quit pprnt tht singl g wight tr my hv mny pirwis omptiility grphs for iffrnt vlus of min n mx. Likwis, singl pirwis omptiility grph my hv mny trs of iffrnt topologis s its pirwis omptiility trs. For xmpl, th grph in Fig. () is PCGofthtrinFig.()for min =4n mx =7, n it is lso PCGof th tr in Fig. () for min =5n mx =6. In th rlm of pirwis omptiility grphs, two funmntl prolms r th tr onstrution prolm n th pirwis omptiility grph rognition prolm. Givn PCG G, th tr onstrution prolm sks to onstrut n g wight tr T, suh tht G is pirwis omptiility grph of T for suitl min n mx.th M.T. Thi n S. Shni (Es.): COCOON 200, LNCS 696, pp , 200. Springr-Vrlg Brlin Hilrg 200

2 400 M.N. Ynhon, M.S. Byzi, n M.S. Rhmn () () () Fig.. () An g wight tr T, () pirwis omptiility grph G, n () n g wight tr T 2 pirwis omptiility grph rognition prolm sks th nswr whthr or not givn grph is PCG. Pirwis omptiility grphs hv thir origin in Phylogntis, whih is rnh of omputtionl iology tht onrns with ronstruting volutionry rltionships mong orgnisms [2,4]. Phylognti rltionships r ommonly rprsnt s trs known s th phylognti trs. From prolm of ollting lf smpls from lrg phylognti trs, Krny t l. introu th onpt of pirwis omptiility grphs [3]. As thir origin suggsts, ths grphs n us in ronstrution of volutionry rltionships. Howvr, thir most intriguing potntil lis in solving th Cliqu Prolm. A liqu in grph G is st of pirwis jnt vrtis. Th liqu prolm sks to trmin whthr grph ontins liqu of t lst givn siz k. It is wll known NP-omplt prolm. Th orrsponing optimiztion prolm, th mximum liqu prolm, sks to fin th lrgst liqu in grph []. Krny t l. hv shown tht for pirwis omptiility grph G, th liqu prolm is quivlnt to lf smpling prolm whih is solvl in polynomil tim in ny pirwis omptiility tr T of G [3]. Sin thir inption, pirwis omptiility grphs hv ris svrl intrsting prolms, n hithrto most of ths prolms hv rmin unsolv. Among th othrs, intifying iffrnt grph lsss s pirwis omptiility grphs is n importnt onrn. Although ovrlpping of pirwis omptiility grphs with mny wll known grph lsss lik horl grphs n omplt grphs is quit pprnt; slight progrsss hv n m on stlishing onrt rltionships twn pirwis omptiility grphs n othr known grph lsss. Phillips hs shown tht vry grph of fiv vrtis or lss is PCG [6] n Ynhon t l. hv shown tht ll yls, yls with singl hor, n tus grphs r PCGs [7]. Sing th

3 Disovring Pirwis Comptiility Grphs 40 xponntilly inrsing numr of possil tr topologis for lrg grphs, th proponnts of PCGs oniv tht ll unirt grphs r PCGs [3]. In this ppr, w rfut th onjtur y showing tht not ll grphs r PCGs. Pirwis omptiility grphs hv striking similrity, in thir unrlying onpt, with th wll stui grph roots n powrs. A grph G =(V,E ) is k-root of grph G =(V,E) if V = V n thr is n g (u, v) E if n only if th lngth of th shortst pth from u to v in G is t most k. G is ll th k-powr of G [5]. A spil s of grph powr is th tr powr, whih rquirs G to tr. Tr powr grphs n thir xtnsions (Stinr k-powr grphs, phylognti k-powr grphs, t.) r y finition similr to pirwis omptiility grphs. Howvr, th xt rltionship of ths grph lsss with pirwis omptiility grphs ws unknown. In this ppr, w invstigt th possiility of th xistn of suh rltionship, n show tht tr powr grphs n som of thir xtnsions r in ft pirwis omptiility grphs. Suh rltionship my srv th purpos of not only unifying rlt grph lsss ut lso utilizing th mtho of tr onstrutions for on grph lss in nothr. Th rst of th ppr is orgniz s follows. Stion 2 sris som of th finitions w hv us in our ppr, Stion 3 shows tht not ll grphs r pirwis omptiility grphs. Stion 4 stlishs rltionship of tr powr grphs n thir xtnsions with pirwis omptiility grphs. Finlly, Stion 5 onlus our ppr with isussions. 2 Prliminris In this stion w fin som trms tht w hv us in this ppr. Lt G =(V,E) simpl grph with vrtx st V n g st E. Th sts of vrtis n gs of G r not y V (G) n E(G), rsptivly. An g twn two vrtis u n v of G is not y (u, v). Two vrtis u n v r jnt n ll nighors if (u, v) E; th g (u, v) is thn si to inint to vrtis u n v. Thgr of vrtx v in G is th numr of gs inint to it. A sugrph of grph G =(V,E) is grph G =(V,E ) suh tht V V n E E; w thn writ G G. IfG ontins ll th gs of G tht join two vrtis in V thn G is si to th sugrph inu y V.Apth P uv = w 0,w,,w n is squn of istint vrtis in V suh tht u = w 0,v = w n n (w i,w i ) E for vry i n. Asupth of P uv is susqun P wj w k = w j,w j+,..., w k for som 0 j < k n. Avrtxx on P uv is ll n intrnl no of P uv if x u, v. G is onnt if h pir of vrtis of G longs to pth, othrwis G is isonnt.asts of vrtis in G is ll n inpnnt st of G if th vrtis in S r pirwis non-jnt. A grph G =(V,E) is iprtit grph if V n xprss s th union of two inpnnt sts; h inpnnt st is ll prtit st. Aomplt iprtit grph is iprtit grph whr two vrtis r jnt if n only if thy r in iffrnt prtit sts. A yl of G is squn of istint vrtis strting n ning t th sm vrtx suh tht two vrtis r jnt if thy ppr onsutivly in th list. A tr T is onnt grph with no yl. Vrtis of gr on in T r ll lvs, n th rsts r ll intrnl nos. AtrT is wight if h g is ssign numr s th wight of th g. A sutr inu y st of lvs of

4 402 M.N. Ynhon, M.S. Byzi, n M.S. Rhmn T is th miniml sutr of T whih ontins thos lvs. Figur 2 illustrts tr T with six lvs u, v, w, x, y n z, whr th gs of th sutr of T inu y u, v n w is rwn y thik lins. W not y T uvw th sutr of tr inu y thr lvs u, v n w. On n osrv tht T uvw hs xtly on vrtx of gr 3. W ll th vrtx of gr 3 in T uvw th or of T uvw.thvrtxo is th or of T uvw in Fig. 2. Th istn twn two vrtis u n v in T, not y T (u, v), isth sum of th wights of th gs on P uv. In this ppr w hv onsir only wight trs. W us th onvntion tht if n g of tr hs no numr ssign to it thn its fult wight is on. A str is tr whr vry lf hs ommon nighor whih w ll th s of th str. w y u o x z Fig. 2. Illustrtion for lf inu sutr v AgrphG =(V,E) is ll phylognti k-powr grph if thr xists tr T suh tht h lf of T orrspons to vrtx of G nng(u, v) E if n only if T (u, v) k,whrk is givn proximity thrshol. Stinr k-powr grphs xtn th notion of phylognti k-powr. For Stinr k-powr grph th orrsponing tr my hv som intrnl nos s wll s th lvs tht orrspon to th vrtis of th grph. Both Stinr k-powr grphs n phylognti k-powr grphs long to th wily known fmily of grph powrs. Anothr spil s of grph powrs is th tr powr grph. A grph G =(V,E) is si to hv tr powr for rtin proximity thrshol k if tr T n onstrut on V suh tht (u, v) E if n only if T (u, v) k. 3 Not All Grphs Ar PCGs In this stion w show tht not ll grphs r pirwis omptiility grphs, s in th following thorm. Thorm. Not ll grphs r pirwis omptiility grphs. To prov th lim of Thorm w n th following lmms. Lmm. Lt T n g wight tr, n u, v n w thr lvs of T suh tht P uv is th lrgst pth in T uvw.ltx lf of T othr thn u, v n w. Thn, T (w, x) T (u, x) or T (w, x) T (v, x). Proof. Lt o th or of T uvw. Thn h of th pths P uv, P uw n P wv is ompos of two of th thr supths P uo, P ow n P ov.sin T (u, v) is th lrgst pth

5 Disovring Pirwis Comptiility Grphs 403 in T uvw, T (u, v) T (u, w). Thisimplistht T (u, o) + T (o, v) T (u, o) + T (o, w). Hn T (o, v) T (o, w). Similrly, T (u, o) T (o, w) sin T (u, v) T (w, v). SinT is tr, thr is pth from x to o. Lto x th first vrtx in V (T uvw ) V (P xo ) long th pth P xo from x. Thn lrly o x is on P uo, P vo or P wo. W first ssum tht o x is on P uo, s illustrt in Fig. 3(). Thn T (v, x) T (w, x) sin T (w, x) = T (x, o)+ T (w, o), T (v, x) = T (x, o)+ T (v, o) n T (v, o) T (w, o). W now ssum tht o x is on P vo, s illustrt in Fig. 3(). Thn T (u, x) T (w, x) sin T (w, x) = T (x, o)+ T (w, o), T (u, x) = T (x, o)+ T (o, u) n T (u, o) T (w, o). W finlly ssum tht o x is on P wo, s illustrt in Fig. 3(). Thn T (u, x) = T (u, o) + T (o, o x )+ T (o x,x) n T (w, x) = T (w, o x )+ T (o x,x). As T (w, o x ) T (w, o) n T (u, o) T (w, o), T (u, x) T (w, x). Likwis, T (v, x) T (w, x). Thus, in h s, t lst on of u n v is t istn from x tht is ithr lrgr thn or quls to th istn twn w n x. w w x o x o x u o v u o v x () () w u o x o x () Fig. 3. Diffrnt positions of x v Lmm 2. Lt G = (V,E) PCG(T, min, mx ).Lt,,, n fiv lvs of T n lt,,, n fiv vrtis of G orrsponing to th fiv lvs,,, n of T, rsptivly. Lt P th lrgst pth in th sutr of T inu y th lvs,,, n, n P th lrgst pth in T.ThnGhs no vrtx x suh tht x is jnt to, n ut not jnt to n. Proof. Assum for ontrition tht G hs vrtx x suh tht x is nighor of, n ut not of n.ltx th lvs of T orrsponing to th vrtx x of G. SinP is th lrgst pth in T mong ll th pths tht onnt pir of lvs from th st {,,,, }, mx T (x, y) mx T (x, z) y {,} z {,,} y Lmm. Sin oth n r jnt to x in G, mx T (x, y) mx. y {,} This implis tht T (x, y) mx, y {,,,, }. SinP is th lrgst pth in T, mx T (x, y) T (x, ) y Lmm. Without loss of gnrlity ssum y {,}

6 404 M.N. Ynhon, M.S. Byzi, n M.S. Rhmn tht T (x, ) T (x, ). Sin n x r not jnt in G n T (x, ) mx, T (x, ) < min.thn T (x, ) < min sin T (x, ) T (x, ). Sin T (x, ) < min, nnot jnt to x in G, ontrition. Using Lmm 2 w now prsnt grph whih is not PCG s in th following Lmm. Lmm 3. Lt G =(V,E) grph of 5 vrtis, n lt {V,V 2 } prtition of th st V suh tht V =5n V 2 =0. Assum tht h vrtx in V 2 hs xtly thr nighors in V n no two vrtis in V 2 hs th sm thr nighors in V. Thn G is not pirwis omptiility grph. Proof. Assum for ontrition tht G is pirwis omptiility grph, i.., G = PCG(T, min, mx ) for som T, min n mx.ltp uv th longst pth in th sutr of T inu y th lvs of T rprsnting th vrtis in V. Clrly u n v r lvs of T.Ltu n v th vrtis in V orrsponing to th lvs u n v of T, rsptivly. Lt P wx th longst pth in th sutr of T inu y th lvs of T orrsponing to th vrtis in V {u,v }. Clrly w n x r lso th lvs of T,nltw n x th vrtis in V orrsponing to w n x of T.Sin V =5, T hs lf y orrsponing to th vrtx y V suh tht y / {u,v,w,x }.Sin G is PCG of T, G nnot hv vrtx jnt to u,v n y ut not jnt to w n x y Lmm 2. Howvr, for vry omintion of thr vrtis in V, V 2 hs vrtx whih is jnt to only thos thr vrtis of th omintion. Thus thr is in vrtx in V 2 whih is jnt to u,v n y ut not to w n x. Hn G n not pirwis omptiility grph of T y Lmm 2, ontrition. Lmm 3 immitly provs Thorm. Figur 4 shows n xmpl of iprtit grph whih is not PCG. Quit intrstingly, howvr, vry omplt iprtit grph is PCG. It n shown s follows. Lt K m,n omplt iprtit grph with two prtit sts X = {x,x 2,x 3,,x m },ny = {y,y 2,y 3,,y n }. W onstrut str for h prtit st suh tht h lf orrspons to vrtx of th rsptiv prtit st. Thn w onnt th ss of th strs through n g s illustrt in Fig. 5. Finlly, w ssign on s th wight of h g. Lt T th rsulting tr. Now on n sily vrify tht K m,n = PCG(T,3, 3) Fig. 4. Exmpl of grph whih is not PCG

7 Disovring Pirwis Comptiility Grphs 405 x y x 2 x 3 y 2 y 3 x m y n Fig. 5. Pirwis omptiility tr T of omplt iprtit grph K m,n Tking th grph sri in Lmm 3 s sugrph of lrgr grph, w n show lrgr lss of grphs whih is not PCG, s sri in th following lmm. Lmm 4. Lt G =(V,E) grph, n lt V n V 2 two isjoint susts of vrtis suh tht V =5n V 2 =0. Assum tht h vrtx in V 2 hs xtly thr nighors in V n no two vrtis in V 2 hs th sm thr nighors in V. Thn G is not pirwis omptiility grph. Proof. Assum for ontrition tht G is PCG, i.., G = PCG(T, min, mx ) for som T, min n mx.lth th sugrph of G inu y V V 2.Now,ltT H th sutr of T inu y th lvs rprsnting th vrtis in V V 2. Aoring to th finition of lf inu sutr, for ny pir of lvs u, v in T H, TH (u, v) = T (u, v). ThnH = PCG(T H, min, mx ) sin G = PCG(T, min, mx ).Howvr, H is not PCGy Lmm 3, ontrition. 4 Vrints of Tr Powr Grphs n PCGs In this stion w will show tht tr powr grphs n two of thir xtnsions r PCGs. Tr powr grphs n thir xtnsions (Stinr k-powr n phylognti k-powr grphs) hv striking rsmln, in thir unrlying onpt, with PCGs. But os this similrity signify ny rl rltionship? It os in: w fin tht tr powr grphs n ths two xtnsions r ssntilly PCGs. To stlish this rltionship of formntion thr grph lsss with pirwis omptiility grphs, w introu gnrliz grph lss whih w ll tr omptil grphs. A grph G =(V,E) is tr omptil grph if thr xists tr T suh tht ll lvs n sust of intrnl nos of T orrspon to th vrtx st V of G, n for ny two vrtis u, v V ; (u, v) E if n only if k min T (u, v) k mx.hrk min n k mx r rl numrs. W ll G th tr omptil grph of T for k min n k mx. It is quit vint from this finition tht tr omptil grph ompriss tr powr grphs, Stinr k-powr grphs, n phylognti k-powr grphs. W now hv th following thorm. Thorm 2. Evry tr omptil grph is pirwis omptiility grph. Proof. Lt G tr omptil grph of tr T for non-ngtiv rl numrs k min n k mx. Thn to prov th lim, it is suffiint to onstrut tr T n fin two non-ngtiv rl numrs min n mx suh tht G = PCG(T, min, mx ).

8 406 M.N. Ynhon, M.S. Byzi, n M.S. Rhmn Clrly G = PCG(T, min, mx ) for T = T, min = k min n mx = k mx if vry vrtx in V orrspons to lf in T. W thus ssum tht V ontins vrtx whih orrspons to n intrnl no of T. In this s w onstrut tr T from T s follows. For vry intrnl no u of T tht orrspons to vrtx in V, w introu surrogt intrnl no u. In ition, w trnsform u into lf no y onnting u through n g of wight λ with u. Figur 6 illustrts this trnsformtion. Hr, in ition to th lvs of T, two intrnl nos n orrspon to th vrtis in V. T is th moifi tr ftr trnsforming n into lf nos y rpling thm y n, rsptivly. f g f g h h λ λ i i () () Fig. 6. () T n () T Th formntion trnsformtion trnsmuts th sust of intrnl nos of T tht prtiipts in V into sust of lvs in T.Ltu n v two ritrry nos in T. If u n v r oth lvs in T thn T (u, v) = T (u, v). If oth u n v r intrnl nos of T tht r ontriuting to V thn in T thy r two lf nos, n T (u, v) = T (u, v)+2λ. Finlly, if only on of u n v is trnsform to lf thn T (u, v) = T (u, v) +λ. Wnxtfin min = k min n mx = k mx +2λ. Sin vry vrtx u V is rprsnt s lf in T, T my pirwis omptiility tr of G. W will prov tht T is in pirwis omptiility tr y showing tht G = PCG(T, min, mx ) for n pproprit vlu of λ. Not tht w nnot simply ssign λ =0us, in th ontxt of root fining s wll s phylogntis, n g of zro wight is not mningful. For xmpl, if n volutionry tr ontins zro wight gs thn w my fin pth of lngth zro twn two iffrnt orgnisms, whih is lrly unptl. Thrfor, w hv to hoos vlu for λ mor intlligntly. Aoring to th finition of tr omptil grphs, for vry pir of vrtis u, v V, (u, v) E if n only if k min T (u, v) k mx. Mnwhil, w hv riv T from T in suh wy tht ithr th istn twn u n v in T rmins th sm s in T, or inrs y t most 2λ. Thrfor, if w n prov tht min T (u, v) mx if n only if k min T (u, v) k mx thn it will imply tht G = PCG(T, min, mx ). Dpning on th ntur of th hng in th istn twn u n v from T to T, w hv to onsir thr iffrnt ss.

9 Disovring Pirwis Comptiility Grphs 407 f g f g g h h 0.4 f 0.4 i i () () () Fig. 7. () A tr omptil grph, () th orrsponing tr T, n () th orrsponing pirwis omptiility tr T Cs : T (u, v) = T (u, v). In this s, thr possil rltionships n xist mong T (u, v), k min n k mx. First, if T (u, v) <k min thn T (u, v) < min sin min = k min. Nxt, if k min T (u, v) k mx thn k min T (u, v) k mx +2λ. Tht implis, min T (u, v) mx. Finlly, lt T (u, v) >k mx. Suppos p is th minimum iffrn twn k mx n th lngth of pth in T tht is longr thn k mx,thtisp= min { T (u, v) u,v V k mx }.Thn T (u, v) k mx p. By sutrting 2λ from oth si of th inqulity w gt, T (u, v) k mx 2λ p 2λ. Whih implis T (u, v) mx p 2λ. Thrfor, if w n nsur tht p>2λthn T (u, v) will lrgr thn mx. Cs 2: T (u, v) = T (u, v)+2λ. In this s, w hv to onsir thr snrios s w hv in s. First, if k min T (u, v) k mx thn k min T (u, v)+2λ k mx +2λ. Whih implis min T (u, v)+2λ mx. Hn min T (u, v) mx. Nxt, if T (u, v) >k mx thn ing 2λ in oth sis w gt T (u, v) +2λ > k mx +2λ. Tht implis T (u, v) > mx. Finlly, lt ssum tht T (u, v) <k min. Suppos q is th minimum iffrn twn k min n th lngth of pth in T tht is smllr thn k min ; tht is q = min {k min T (u, v)}. Thnk min T (u, v) q. Sutrting 2λ u,v V from oth sis of th inqulity w gt k min T (u, v) 2λ q 2λ. Whih implis min T (u, v) q 2λ. Thrfor, if w n nsur tht q > 2λ thn T (u, v) < min. Cs 3: T (u, v) = T (u, v)+λ. This s is similr to s 2. By following th sm rsoning s in s 2, w n show tht min T (u, v) mx if n only if k min T (u, v) k mx, provi q λ. If w n stisfy th inqulity riv from s 2 (q > 2λ) thn th inqulity q>λwill immitly stisfi. From our nlysis of th thr ss ov, it is vint tht if w n stisfy th two inqulitis p>2λn q>2λsimultnously thn G = PCG(T, min, mx ).W n o this y ssigning λ ny vlu smllr thn min(p, q)/2. Thus T is pirwis omptiility tr of G, n hn G is PCG.

10 408 M.N. Ynhon, M.S. Byzi, n M.S. Rhmn Figur 7() illustrts n xmpl of tr omptil grph G = (V,E) n th orrsponing tr T is pit in Fig. 7(). Hr k min = 2, k mx = 4,nth wight of vry g is on. Two intrnl nos n long with th lvs of T orrspon to th vrtis in V of G. W now trnsfr T into T oring to th prour sri in Thorm 2. Figur 7() illustrts this trnsformtion. Hr, p = q =n hn w n hos ny positiv vlu lss thn 0.5 for λ. Ltλ =0.4 n thn, min = k min =2n mx = k mx +2λ =4.8. On n now sily vrify tht G = PCG(T, 2, 4.8). 5 Conlusion In this ppr, w hv provtht ll grphsr not PCGs. Aitionlly, w hv prov tht tr powr grphs n two of thir xtnsions r PCGs. Our first proof stlishs nssry onition ovr th jny rltionships tht grph must stisfy to PCG. Howvr, omplt hrtriztion of PCGs is not known. W lft it s futur work. It woul quit hllnging n signifint to vlop ffiint lgorithms for solving pirwis tr onstrution prolm for othr lsss of grphs. Suh lgorithms my om hny in oth liqu fining n volutionry rltionships moling ontxts. Aknowlgmnt This work is prt of n ongoing Mstr s thsis whih is on in Grph Drwing & Informtion Visuliztion Lortory of th Dprtmnt of CSE, BUET stlish unr th projt Fility Upgrtion for Sustinl Rsrh on Grph Drwing & Informtion Visuliztion support y th Ministry of Sin n Informtion & Communition Thnology, Govrnmnt of Bnglsh. W thnk BUET for proviing nssry supports. Rfrns. Cormn, T.H., Lisrson, C.E., Rivst, R.L., Stin, C.: Introution to Algorithms, 2n n. Th MIT Prss, Cmrig (200) 2. Jons, N.C., Pvznr, P.A.: An Introution to Bioinformtis Algorithms. Th MIT Prss, Cmrig (2004) 3. Krny, P., Munro, I., Phillips, D.: Effiint Gnrtion of Uniform Smpls from Phylognti Trs. In: Bnson, G., Pg, R.D.M. (s.) WABI LNCS (LNBI), vol. 282, pp Springr, Hilrg (2003) 4. Lsk, A.M.: Introution to Bioinformtis. Oxfor Univrsity Prss, Oxfor (2002) 5. Lin, G.H., Jing, T., Krny, P.E.: Phylognti k-root n stinr k-root. In: L, D.T., Tng, S.-H. (s.) ISAAC LNCS, vol. 969, pp Springr, Hilrg (2000) 6. Phillips, D.: Uniform Smpling From Phylogntis Trs. Mstr s thsis, Univrsity of Wtrloo (August 2002) 7. Ynhon, M.N., Hossin, K.S.M.T., Rhmn, M.S.: Pirwis omptiility grphs. Journl of Appli Mthmtis n Computing 30, (2009)

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

On Contract-and-Refine Transformations Between Phylogenetic Trees

On Contract-and-Refine Transformations Between Phylogenetic Trees On Contrt-n-Rfin Trnsformtions Btwn Phylognti Trs Gnshkumr Gnpthy Vijy Rmhnrn Tny Wrnow Astrt Th infrn of volutionry trs using pprohs whih ttmpt to solv th mximum prsimony (MP) n mximum liklihoo (ML) optimiztion

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Journal of Solid Mechanics and Materials Engineering

Journal of Solid Mechanics and Materials Engineering n Mtrils Enginring Strss ntnsit tor of n ntrf Crk in Bon Plt unr Uni-Axil Tnsion No-Aki NODA, Yu ZHANG, Xin LAN, Ysushi TAKASE n Kzuhiro ODA Dprtmnt of Mhnil n Control Enginring, Kushu nstitut of Thnolog,

More information

Witness-Bar Visibility Graphs

Witness-Bar Visibility Graphs Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Witnss-Br Visiility Grphs Crmn Cortés Frrn Hurto Alrto Márquz Jsús Vlnzul Astrt Br visiility grphs wr introu in th svntis s mol for som VLSI lyout prolms.

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Quartets and unrooted level-k networks

Quartets and unrooted level-k networks Phylogntis Workshop, Is Nwton Institut or Mthmtil Sins Cmrig 21/06/2011 Qurtts n unroot lvl-k ntworks Philipp Gmtt Outlin Astrt n xpliit phylognti ntworks Lvl-k ntworks Unroot lvl-1 ntworks n irulr split

More information

Can transitive orientation make sandwich problems easier?

Can transitive orientation make sandwich problems easier? Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Research Article On the Genus of the Zero-Divisor Graph of Z n

Research Article On the Genus of the Zero-Divisor Graph of Z n Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity,

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii - Nming frtions Chptr Frtions Eh shp rprsnts ONE whol. i ii Wht frtion is shdd? Writ s frtion nd in words. Wht frtion is not shdd? Writ s frtion nd in words. i ii i ii Writ s mny diffrnt frtions s you

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

Discovering Frequent Graph Patterns Using Disjoint Paths

Discovering Frequent Graph Patterns Using Disjoint Paths Disovring Frqunt Grph Pttrns Using Disjoint Pths E. Gus, S. E. Shimony, N. Vntik {hu,shimony,orlovn}@s.gu..il Dpt. of Computr Sin, Bn-Gurion Univrsity of th Ngv, Br-Shv, Isrl Astrt Whrs t-mining in strutur

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Binomials and Pascal s Triangle

Binomials and Pascal s Triangle Binomils n Psl s Tringl Binomils n Psl s Tringl Curriulum R AC: 0, 0, 08 ACS: 00 www.mthltis.om Binomils n Psl s Tringl Bsis 0. Intif th prts of th polnomil: 8. (i) Th gr. Th gr is. (Sin is th highst

More information

CSI35 Chapter 11 Review

CSI35 Chapter 11 Review 1. Which of th grphs r trs? c f c g f c x y f z p q r 1 1. Which of th grphs r trs? c f c g f c x y f z p q r . Answr th qustions out th following tr 1) Which vrtx is th root of c th tr? ) wht is th hight

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information