Generalized swap operation for tetrahedrizations

Size: px
Start display at page:

Download "Generalized swap operation for tetrahedrizations"

Transcription

1 Gnrliz swp oprtion for ttrhriztions B. Lhnr 1, B. Hmnn 2, G. Umluf 3 1 Dprtmnt of Computr Sin, Univrsity of Kisrslutrn, Grmny lhnr@s.uni-kl. 2 Institut for Dt Anlysis n Visuliztion (IDAV), Dprtmnt of Computr Sin, Univrsity of Cliforni, Dvis, USA hmnn@s.uvis.u 3 Dprtmnt of Computr Sin, HTWG Constn, Grmny umluf@htwg-konstnz. Astrt. Msh optimiztion of 2D n 3D tringultions is us in multipl pplitions xtnsivly. For xmpl, msh optimiztion is ruil in th ontxt of ptivly isrtizing gomtry, typilly rprsnting th gomtril ounry onitions of numril simultion, or ptivly isrtizing th ntir sp ovr whih vrious pnnt vrils of numril simultion must pproximt. Togthr with oprtions ppli to th vrtis th so-ll g or f swp oprtions r th uiling lok of ll optimiztion pprohs. To sp up th optimiztion or to voi lol minim of th funtion msuring ovrll msh qulity ths swps r omin to gnrliz swp oprtions with lss lol impt on th tringultion. Dspit th ft tht ths swp oprtions hng only th onntivity of tringultion, it pns on th gomtry of th tringultion whthr th gnrliz swp will gnrt inonsistntly orint or gnrt simplis. Bus ths r unsirl for numril rsons, this ppr is onrn with gomtri ritri tht gurnt th gnrliz swps for 3D tringultion to yil only vli, non-gnrt tringultions. Ky wors: 3D tringultion; gomtri onitions; swp oprtions. 1 Introution Tringultions of points in 2D sp for msh of tringls or points in 3D sp for msh of ttrhrr ruilly importnt for numrous pplitions nountr in sintifi n nginring pplition, inluing numril simultion, shp pproximtion, or visuliztion. In sttr t pproximtion [8, 15, 20] 2D tringultions r us to fin piwis linr ors pproximtion of ns t st, ssigning hight vlu for vry vrtx. This thniqu n lso us for img omprssion [4, 5, 18, 21] n vio omprssion [17, 19]. For rvrs nginring [1, 6, 9, 12], th 2-mnifol surf to ronstrut is pproximt y 3D tringultion tht ontins no ttrhr. For mhnil nginring n physil simultions [14, 24], 3D tringultions r us s mshs for finit lmnt mthos.

2 2 B. Lhnr, B. Hmnn, G. Umluf For ll of ths pplitions th tringultion ns to optimiz with rspt to n pplition-pnnt ost funtion msuring msh qulity s on multitu of propr msh qulity vrils, inluing, for xmpl, point istriution, pproximtion rror [7,18], tringl shp [10], ihrl ngls [14], t. Th optimiztion pross is usully s on simpl, lol hngs in th tringultions suh s rpositioning of vrtis [15], insrtions n rmovl of vrtis [7, 11] n g n f swps [22]. Whil th first of ths oprtions hng gomtry n onntivity of th tringultion th swps hng only th onntivity of tringultion. To sp up th optimiztion or to voi lol minim uring msh optimiztion multipl g n f swps r omin to gnrliz swp oprtions tht hng th onntivity of mor thn thr ttrhr of th tringultion [13, 17, 23, 25], s Stion 2. Howvr, it pns on th gomtry of th tringultion if gnrliz swp will gnrt flipp or gnrt simplis. W prsnt in this ppr gomtri ritri tht gurnt tht gnrliz swp oprtion in 3D tringultion will gnrt only vli, non-gnrt tringultions. 2 Rlt Work In gnrl, swp oprtion rpls -imnsionl simplis of tringultion ( 1) y othr simplis. It usully ffts only lol r of th tringultion, n hngs th onntivity of th tringultion without hnging th numr or position of th vrtis. Lwson [16] ws ws mong th first sintists stuying n pulishing swp oprtions systmtilly. H show tht + 2 points in imnsions, whih o not ll li in hypr-pln, hv ithr on uniqu tringultion T or two possil tringultions T 1 n T 2. Whih s hppns pns on th vrtx positions, s Figur 1 for th 2D s. In th lttr s, T 1 n T 2 iffr only in onntivity n th trnsformtion from T 1 to T 2 is ll swp oprtion s 1 2 (T 1 ) = T 2. Th opposit trnsformtion is s 2 1 (T 2 ) = T 1. Bus s 1 2 s 2 1 = s 2 1 s 1 2 = i, s 1 2 n s 2 1 r invrs oprtions. s 1 2 s 2 1 Fig. 1. Tringultions of four points in th 2D s.

3 Gnrliz swp oprtion for ttrhriztions 3 If T 1 is sust of lrgr tringultion T, th swp oprtion n ppli y rpling only th simplis of T 1 with thos of T 2, n lving ll simplis of T unhng, i.., T = (T \ T 1 ) T 2. Not tht th sust T 1 hs to tringultion, i.. it hs to fill th onvx hull of its vrtis, n must onvx. Aitionlly to ths si swps, on n onstrut gnrliz swp oprtions tht rpl st of simplis C of th tringultion y iffrnt st of simplis C. Thus, C n C r not rquir to ovr th onvx hull of thir vrtis. Sin th gnrliz swps r usully mor powrful, thy n l to goo tringultion with lss swp oprtions, ut r oftn lss ffiint. On wy to onstrut gnrliz swp oprtion is to omin squn of si swp oprtions to so-ll ompos swp oprtion. For th 2D s Yu t l. [25] us omintion of two g swp oprtions. If simpl g swp os not ru th ost funtion, thy swp th g n on of its jnt gs. Thus, th fft fs o not n to form onvx polygon for th ompos swp oprtions. Using th ompos swp oprtions n improv th optimiztion rsults signifintly. Conrning th 3D s, th st of swp oprtions is lrgr n mor vri thn in th 2D s. Agin, w n tgoriz thm into si swp oprtions n ompos swp oprtions. Aoring to Lwson [16], thr r fiv iffrnt sttings of fiv points,,, n in 3D sp, only two of whih hv two iffrnt tringultions n thrfor provi swp oprtions, s Figur 2. If thr points r ollinr, or four points,,, r oplnr with onv(,, ), or onv(,,, ) thr is only on possil tringultion, s Figurs 2 I., III., n V. If xtly four points r oplnr n form onvx quriltrl q thr r two possil tringultions with flipp igonls of q, s Figur 2 II. Bus th tringultion onsists of two lls for n ftr th swp, th swp is ll 2-2 swp. For th most gnrl s in whih ll fiv points r ornrs of onv(,,,, ) thr r lso two possil tringultions, s Figur 2 IV. Bus this swp rpls thr lls y two n vi vrs, it is ll 3-2 swp or 2-3 swp, rsptivly. Whn ppli to sust of tringultion T, th 2-2 swp is only possil if th two fs {,, } n {,, } r orr fs of T. If thy r intrior fs, th inint two lls lso hv to swpp, s Figur 3. This ls to th 4-4 swp, whih rpls four lls with four othr lls. In 3D lso omintion of si swp oprtions n mor powrful. Jo [13] systmtilly nlyz th possil sttings. Evry f of tringultion is ssign to nin iffrnt tgoris, sriing thir lol stting n thir sttus of ing trnsforml y si swp oprtion. H proposs st of ompos swp oprtions to trnsform fs tht r initilly not trnsforml, y first swpping jnt fs. For vry ompos swp oprtion, h lists th lls tht r rmov n rt. From this list, h provis ritri in [13] to omput th hng of ost funtion rsulting from h of th oprtions, if is th minimum of th osts of th iniviul lls. Anothr lss of ompos swp oprtions is th lss fin y th gnrliztions of th 3-2 n 2-3 swps, s [3, 24].

4 4 B. Lhnr, B. Hmnn, G. Umluf 2 2 swp 2 2 swp I. II. II. III. 3 2 swp 2 3 swp IV. IV. V. Fig. 2. Th iffrnt sttings of fiv points in th 3D s. Gnrliz 3-2 swp (G 32 ) A gnrliz 3-2 swp (G 32 ) n ppli to n g = {, } with n 3 inint lls C = { 1,..., n }, with i = {,, v i, v i+1 } n v n+1 v 1, s Figur 4 (lft). Th loop (v 1,..., v n ) is split into st of n 2 onnt fs F = {f 1,..., f n 2 }. Not tht th hoi of F is not uniqu. G 32 rpls th g with th fs F, whr th n lls C r rpl y th 2(n 2) lls C = {,1,,1,...,,n 2,,n 2 } with,i = f i {} n,i = f i {}. Gnrliz 2-3 swp (G 23 ) W sy f f = {v 1, v 2, v 3 } is snwih twn vrtis n, if th two lls inint to f r 1 = {, v 1, v 2, v 3 } n 2 = {, v 1, v 2, v 3 }. A gnrliz 2-3 swp (G 23 ) is ppli to st F = {f 1,..., f n 2 } of fs, whih r snwih twn two points n, s Figur 4 (right). A nw g = {, } is insrt into th tringultion, n th orr gs of F r onnt to th nw g to form th nw lls. Lt C = {,1,,1,...,,n 2,,n 2 } th st of lls inint to th fs,i = f i {} n,i = f i {} of F, n (v 1,..., v n ) th loop of vrtis fin y th orr gs of F. G 23 rpls th fs of F y th g = σ {,}, n th 2(n 2) lls of C r rpl y th n lls C = { 1,..., n }, with i = {,, v i, v i+1 }, n v n+1 v 1.

5 Gnrliz swp oprtion for ttrhriztions swp 4-4 swp f f Fig. 3. Th 4-4 swp is us if th fs of th 2-2 swp r no orr fs. G 23 is th invrs of G 32. Sin th hoi of fs is not uniqu in ithr irtion, pplying th on swp oprtion ftr th othr ls to th strt tringultion only if for oth swps th sm fs r hosn. Also not tht th 2-3 swp is spil s of G 23, th 3-2 swp of G 32, n th 4-4 swp spil s of G 23 n G 32. Th xution of G 32 n G 23 n rsult in invli tringultions. In Stions 4 n 5 w isuss nssry n suffiint gomtri onitions to nsur th vliity of th rsulting tringultion. Shwhuk [23] nots tht ths swps n rpl y sris of 2-3 n 3-2 swps, whr th intrmit tringultions r topologilly orrt, ut my ontin gnrt or invrt lls. In Stion 6 w show tht thr is lwys squn of 2-3, 3-2, n 4-4 swps to rpl G 23 or G 32 swp without gnrt or invrt lls. 3 Nottion In orr to fin th gnrliz swp oprtion in trms of onntivity hngs n ssoit gomtri onitions, w first just our nottion proprly. A 3D tringultion T = (V, E, F, C) (ttrhriztion) onsists of st of vrtis V, gs E V 2, fs F V 3 (tringls), n lls C V 4 (ttrhr). Thus, n g is pir of vrtis, f tripl of vrtis, n ll qurupl of vrtis. All ths ntitis r orr suh tht T is n orint simpliil 3-omplx, whr th gs of jnt fs n th fs of jnt lls r orr rvrsly. In this s, w ll T vli tringultion. W will us st oprtions to fin nw fs n lls, i.., for v 1 V, = (v 2, v 3 ) E, f = (v 2, v 3, v 4 ) F n C w fin n {v 1 } = (v 1, v 2, v 3 ) F, f {v 1 } = (v 1, v 2, v 3, v 4 ) C f (v 2, v 3 ) is su-tupl of f, f (v 2, v 3, v 4 ) is su-tupl of.

6 6 B. Lhnr, B. Hmnn, G. Umluf v 5 v 4 v 5 G 32 v 4 v 1 v G 1 23 f 1 f 2 f 3 v 2 v 3 v 2 v 3 Fig. 4. Th gnrliz 3-2 n 2-3 swps. Whil V, E, F, n C sri only th onntivity of th tringultion, gomtri rliztion of T is fin y ssoiting point v R 3 to vry vrtx v V. Th gomtri rliztions of n g V 2, f f V 3, or ll V 4 r thn fin s th onvx hull of th gomtri rliztions of thir vrtis, n r lso not in olf lttrs, f, n, rsptivly. Furthrmor, for st M of gs, fs, or lls, w not y M th union of th gomtri rliztions of th lmnts of M. Throughout this ppr, gomtri rliztions of lmnts of tringultion r not y olf lttrs. W sy vli tringultion T is onsistntly orint, whn th gomtri rliztions of ll lls hv th sm gomtri orinttion. Th orinttion of ll inus notion of orinttion on ll of its ontin k-su-simplis for k = 1, 2. A k-su-simplx is ll positivly orint if it is positivly orint in th k-imnsionl hyprpln ouning th nlosing (k + 1)-su-simplx with outwr pointing norml. This mns in prtiulr, tht ll fs of ll r positivly orint with rspt to th hlf-pln ouning th ll with norml pointing to th outsi of th ll. If th vrtis of ll r not ffinly inpnnt, it is ll gnrt, n if ll or ny of its k-su-simplis r not positivly orint, w ll it inonsistntly orint. Borr fs r fs of tringultion T tht r inint to only on ll in T, ll othr fs r ll innr fs. Anlogously, orr gs r inint to only on innr f, ll othr gs r ll innr gs Th orr of tringultion T is th st of ll its orr fs. If T is vli, onsistntly orint tringultion, th gomtri rliztion of its orr is 2-mnifol.

7 Gnrliz swp oprtion for ttrhriztions 7 Th ounry S of sust S of mnifol M r th points in S for whih vry ε-ll in M ontins points in M \ S. Not tht th trm orr is n ttriut of th onntivity of tringultion, whrs ounry is proprty of its gomtri rliztion. W n to provi som finitions onrning sphril projtions, whih w will us to stlish gomtri onitions for llowl swp oprtions. Dfinition 1. Th sphril projtion of point p R 3 onto th sphr S q with ntr q R 3 n rius r is fin s Π q (p) = q + r(p q)/ p q 2, p q. A projtion of st of points P R 3 \ {q} is th st of th projt points, Π q (P ) = {Π q (p) p P }. Som proprtis of th sphril projtion (without proof) r: If P is lin, Π q (P ) is ithr two ntipol points (for q P ), or hlf grt irl (for q / P ) of S q. If P is pln, Π q (P ) is ithr grt irl (for q P ), or n opn hlf sphr (for q / P ) of S q. If P = onv(p 1, p 2, p 3 ) is tringl n th pln fin y P os not ontin q, Π q (P ) is sphril tringl, oun y th projtion of th gs Π q (onv(p 1, p 2 )), Π q (onv(p 2, p 3 )), Π q (onv(p 3, p 1 )), whih r sgmnts of grt irls of S q. 4 Gomtri Conitions for G 32 For th gomtri onitions to stisfi for G 32 -swp s fin in Stion 2 w hv n g = (, ) with n inint lls tht is swpp. Th tringultion for n ftr th G 32 -swp is not y T n T. Conition 1 Th tringultion T = (V, E, F, C) is vli, n ll lls of T hv positiv orinttion. Conition 2 Th g is n innr g of T, i.., vry f f inint to is inint to xtly two lls f,1 f,2. Not tht th lst onition implis tht is not on th orr of T. Furthrmor, ths onitions inu n orr of th fs inint to. Lmm 1. All fs ontining n orr to form yli squn G = (g 1,..., g n ), i.., th inx i = 1,..., n of g i is unrstoo moulo n. Furthrmor, th ihrl ngls θ i twn g i n g i+1 (in th irtion to ) r in th intrvl (0, π), n sum to 2π.

8 8 B. Lhnr, B. Hmnn, G. Umluf Proof. Du to Conition 2, f g = (,, v) inint to is inint to two lls g,1, g,2. Both hv two fs inint to, on of th two is g, th othr ons r g 1 n g 2, rsptivly. Th sussor of g is th f g k of ll g,k on th positiv si of g (in th irtion to ), k = 1, 2. Th prssor of g is th othr f. Du to Conition 2 this rltion trmins yli sussor-grph without rnhs. Th ihrl ngl θ i twn f g i n its sussor g i+1 is th ihrl ngl t of th ll tht ontins oth fs. Thrfor, 0 < θ < π, us othrwis th ll woul invrt or gnrt, ontriting Conition 1. Sin th squn of fs is yli, it surrouns. It n only yl xtly on roun, us othrwis lls twn th fs woul intrst in thir intrior, whih ontrits Conition 1. Th sum of th ihrl ngls twn th fs is thrfor 2π. W not th ll twn g i n g i+1 s i, n th thir vrtx of g i s v i. Thus, Lmm 1 inus lso yli orr on th lls C = ( 1,..., n ) n vrtis V = (v 1,..., v n ) roun. Bus G 32 rpls th lls of C y othr lls, w ll C th fft rgion, n th orr fs of it r givn y C := {(, v 2, v 1 ), (, v 1, v 2 ),..., (, v 1, v n ), (, v n, v 1 )}, i.., C = f C f. Th lin through n is not y l = { + λ( ) λ R}. (1) Lmm 2. Thr is los loop of gs B = { 1,..., n } tht wins roun l xtly on. Proof. This follows from Lmm 1, whr i is th g of i opposit to. For th sphr S roun ontin in th onvx hull of ll lls ontining w st t I = Π () n not y t O th ntipol point of t I. Lt B = Π (B) th sphril projtion of B onto S. Sin B is los loop on S, it splits S into two prts SI n SO, whih r hrtriz y t I S I n t O S O, s Figur 5. Anlogously, S, t I, t O, B, SI, n S O r fin. Dfinition 2. A prtition of B is st F = {f 1,..., f m } of fs f i / F, whr 1. ll vrtis of f i long to gs of B, i.., f i V, 2. ll gs of f i r ithr gs of B or innr gs I, n 3. () vry g of B is inint to xtly on f of F, () vry g of I is inint to xtly two fs of F. Lmm 3. Evry prtition F of B hs n 3 innr gs n m = n 2 fs. Proof. As onsqun of Lmm 1 prtitioning B is quivlnt to tringultion of simpl polygon B in pln prpniulr to l without introuing nw vrtis. This polygon is th orthogonl projtion of B long irtion l. Sin vry simpl polygon with n vrtis n tringult with n 2 tringls (s [2]), i.., n 3 innr gs, th lim follows.

9 Gnrliz swp oprtion for ttrhriztions 9 t O S O B v 1 v 5 t I B v 4 S I v 2 v 3 Fig. 5. Trms us in sphril projtion with B in lu n B in grn. Th prtition F of B fins th lls tht r rt y th G 32 -swp. Evry f of th prtition is onnt to n to form two nw lls. Th st of nw lls is C = {,1,,1,...,,m,,m } with,j = f j {} n,j = f j {} for f j F. Not tht for n > 3 th prtitions n lso th G 32 -swp is not uniqu. It n hppn tht C ontins inonsistntly orint or gnrt lls. Thrfor, th G 32 -swp woul rsult in n invli tringultion n must not ppli. Whthr this is hppns pns on n B n lso on th hoi of F. W ll F vli prtition if ll lls in C r vli. Dpning on th gomtry, thr r thr iffrnt ss. For vry s w prsnt n xmpl for n = 4, so tht two iffrnt prtitions xist: F 1 = {(v 1, v 2, v 3 ), (v 1, v 3, v 4 )} n F 2 = {(v 1, v 2, v 4 ), (v 2, v 3, v 4 )}. For vry xmpl, = (0, 0, 1) n = (0, 0, 1). Furthrmor, th x n y oorints of v 1 to v 4 r ( 0.3, 0.3), (0.7, 1.3), (1.7, 0.3), n (0.7, 0.7), rsptivly. Evry prtition is vli For vry prtition F, ll lls in C r vli. For our xmpl, w hoos th z oorints to z 1 = z 2 = z 3 = z 4 = 0. Both prtitions F 1 n F 2 r vli in this s. Not, tht vry prtition is vli s long s th fft rgion C is onvx. whih is only th s if (s in this xmpl) ll v i r oplnr. But lso for non-onvx fft rgion ll prtitions n vli. Som prtitions r invli For som prtitions, thr r lls in C tht r invrt or gnrt. But othr prtitions r vli. For onrt xmpl, st th z oorints to z 1 = z 2 = z 3 = 0.8 n z 4 = 0.8. Hr,

10 10 B. Lhnr, B. Hmnn, G. Umluf F 1 is n invli prtition, us th ll (, v 1, v 3, v 4 ) is invrt, whil prtition F 2 is vli. All prtitions r invli It n lso hppn tht no vli prtition xists t ll. In this s, G 32 nnot ppli to. An xmpl for this s is z 1 = z 3 = 0.8 n z 2 = z 4 = 0.8. Hr, F 1 is invli us of th invrt ll (, v 2, v 4, v 3 ), F 2 is invli us of th invrt ll (, v 1, v 3, v 4 ). Ths xmpls show tht w n nothr onition tht nsurs tht F is vli prtition. Unr th ssumption tht Conitions 1 n 2 r stisfi, w foun four quivlnt formultions 3.2., 3.1., 3.3., n 3.4. for th missing onition. Will prov thir quivln ltr in Thorm 2. Bfor w sri th missing onition in til w n to fin th supporting pln pl(t) of tringl t s th ffin hull of its vrtis. Conition All lls,j n,j hv positiv orinttion Evry f i hs on its positiv si, n on its ngtiv si Th sphril projtion of th fs f i onto S is ontin in SI B, n th intrior of th innr gs is projt into SI (for S nlogously), Π p (f i ) S p I Bp, for ll i = 1,..., n, (2) for p {, }. Π p ( ) S p I, for ll I, (3) 3.4. Th intrior of th innr gs is sust of th intrior of th fft rgion, n th supporting plns of ll fs f i intrsts th lin l in th intrior of, C \ C, for ll I, (4) pl(f i ) l. (5) Thorm 1. If Conitions 1, 2, n 3 r mt, th tringultion T = (V, E, F, C ) with C = (C \ C) C (n E n F oringly) is vli. Proof. Du to Conitions 1 n 3.1., ll lls of C hv positiv orinttion. To prov tht thr r no hols in C, w hk for orr fs of th lls of C : Th fs i {p} for p {, } r orr fs of oth C n C. Th fs f j r inint to,j n,j, i.., f j is not on th orr of C. For th fs f = {p}, I, p {, }, th g is inint to two f s f j n f k, i.., f is inint to p,j n p,k. So, f is not on th orr of C. Thus, thr r no nw orr fs, i.., thr r no hols in C. Lmm 4. Conition 3.1. n Conition 3.2. r quivlnt. Proof. By finition, is on th positiv si of f i if n only if th ll,i hs positiv orinttion. Furthrmor, is on th ngtiv si of f i if n only if th ll,i hs positiv orinttion.

11 Gnrliz swp oprtion for ttrhriztions 11 Lmm 5. Conitions 3.1. n 3.2. imply Conition 3.3. Proof. To prov (2) w first show tht Π (F) is onnt rgion on S tht is oun y B. Thn w show tht t I Π (F). Du to Conition 3.1. is not in F, sin this woul us gnrt lls, n Π (F) is onnt rgion on S. For f i, f j F with ommon g I, th sphril tringls Π (f i ) n Π (f j ) shr th sphril g Π (). Du to Conition 3.1. th oth lls,i n,j hv positiv orinttion, so thy r on opposit sis of th pln P through n. Thrfor, Π (f i ) n Π (f j ) r lso on opposit sis of Π (), s Figur 6. This implis tht th intrior of ll innr gs of I is not projt to th ounry of Π (F). Th sm hols tru for ll intrior points of F. Thus, th ounry of Π (F) onsists of projtions of th orr gs of B. Consquntly, th intrior of Π (F) is not intrst y B, so Π (F) is ithr ompltly in SI B, or in SO B. f i f j P Fig. 6. Th projtions of f i n f j r on opposit sis of th projtion of th g. Sin B wins roun l on, th l lin intrsts F in t lst on f f i. Lt p = l f i. Bus is on th positiv si of f i (Conition 3.2.), Π (p) = t I. Thrfor, Π (F) S I B. Anlogously, on n show Π (F) S I B. Espilly, th intrior of Π ( ) os not intrst B, whih implis (3). Lmm 6. Conition 3.3. implis Conition 3.4. Proof. Lt I n innr g of F, n p n intrior point of. Du to Conition 3.3., p = Π (p) SI. W split S I into sphril tringls y ing gs from Π (v i ) to t I. At lst on of ths tringls ontins p. Lt this tringl t = (t I, Π (v l ), Π (v l+1 )), s Figur 7. Th ounry B (grn) is prtition into sphril tringls (r lins), is (v 1, v 4 )

12 12 B. Lhnr, B. Hmnn, G. Umluf (lu lin) n p. In this s, Π (p) is within th sphril tringl t = (t I, Π (v 4 ), Π (v 5 )). Th st of points tht r projt into t is fin s th intrstion of th hlf sps fin y th plns spnn y n on of th gs of t, i.., g 1 = (,, v l ), g 2 = (, v l+1, ), n g 3 = (, v l, v l+1 ), whih ontins th fourth point {,, v l, v l+1 } \ g i. Th point p nnot on th ngtiv si of g 1, g 2 or g 3, s this woul mn tht its img is not in t. Also, it nnot in th pln fin y n g 3, s this woul mn tht it is projt to B. With th sm rgumnt for Π, w otin th fs g 4 = (, v l, ), g 5 = (, v l+1, ), n g 6 = (, v l+1, v l ). Rmoving th runnt fs g 4 g 1 n g 5 g 2, w n onlu tht p is not on th ngtiv si of g 1 n g 2, n it is on th positiv si of g 3 n g 6. Ths four fs fin th ll i. Thus, p C, n p / C, proving (4). W still hv to prov (5). Assum thr xists f f in F with {q} = pl(f) l n, without loss of gnrlity, λ 0. This f hs t lst on intrior g I n w hos n ritrry point p. Now, p is projt to p whih lis outsi of SI. This ontrits (3) n, thus, provs (5). v 5 v k+1 v 4 p q q v k t I g k v 1 v 3 v k 1 v 2 Fig. 7. SI is ivi into sphril tringls (r lins), on of whih ontins Π (p). Fig. 8. Th intrstion of th xtnsion of sgmnt v k to q with l is twn n. Lmm 7. If Conitions 1 n 2 r stisfi, Conition 3.4. implis Conition 3.2. Proof. For n = 3 w hv I = n F = {f 1 }. Sin B irls roun l, thr must n intrstion of l n f 1. Du to Conition 3.4., this is twn n

13 Gnrliz swp oprtion for ttrhriztions 13, n us of th orr of th vrtis of f 1 s inu y Lmm 1, is on th positiv n on th ngtiv si of f 1, n Conition 3.2. is stisfi. W now onsir n > 3. Th prtition F ontins n 2 fs, th orr B hs n gs (s Lmm 3). If vry f of F h t most on g of B, thr woul t lst two gs in B lft. Sin no f of F n hv thr gs of B (othrwis B woul hv su-yl of thr gs), t lst two fs of F must hv two gs of B. Lt ˆF F th st of fs with two gs in B. Th lin l intrsts ithr on f of F in its intrior, or it intrsts n innr g of I n thrfor two fs of F on thir orr. In th s tht l intrsts n innr g, n th jnt fs of F r th only two fs in ˆF, thr n no othr fs in F, u to th following: if two fs with h two gs in B n oth shring ommon innr g, thir gs in B lry fin yl. Sin B os not ontin ny su-yls, thr n no furthr gs in B. In this s w hv n = 4. Sin th intrstion of l with f 1 n f 2 is twn n (Conition 3.4.), n us of th orr of th vrtis of f 1 n f 2, is on th positiv si of f 1 n f 2, n is on th ngtiv si. Thus, in this s Conition 3.2. is stisfi. For th rmining s thr is t lst on f f in ˆF tht hs no intrstion with l, us othrwis Conitions 1 n 2 wr violt. Lt f = (v k 1, v k, v k+1 ). Bus f os not intrst l, θ k 1 + θ k < π. Thus, th innr g = (v k 1, v k+1 ) nnot ross ny othr ll sis k 1 n k. Du to Conition 3.4., k 1 k. With g k = (,, v k ), th intrstion g k = {q}, with q in g k. Whn xtning th lin sgmnt from v k to q, it intrsts th sgmnt in its intrior in point q, us of (5) (s Figur 8). Sin v k n q r points in f, th lin through v k n q is lso in th pln of f, n so is q. From ths onsirtions n th vrtx orr of f, it follows tht is on th positiv n is on th ngtiv si of f. Thus, f fulfills Conition Now w rmov f from F, i.., F oms F \{f}, B oms (B\{ k 1, k )}) {}, n I oms I \ {}. This nw g yl B still stisfis Conitions 1 n 2, ut hs on g lss. This prour n rpt until n = 3, or n = 4 n l intrsts oth fs in F. Thorm 2. If Conitions 1 n 2 r stisfi, Conitions 3.2., 3.1., 3.3., n 3.4. r quivlnt. Proof. This follows irtly from Lmmt 4, 5, 6, n 7. 5 Gomtri Conitions for G 23 W us th sm nottion s in Stion 4, i.., F = {f 1,..., f m } is st of fs snwih twn n, suh tht F is onnt 2-mnifol. Th g st B = { 1,..., n } r th orr gs of F. Th orr of gs in B is inu y th orr of ounry gs in F. Th tringultion for n ftr th G 23 -swp is not y T n T. W fin th orinttion of f i so tht is on th positiv si of f i. Th lls

14 14 B. Lhnr, B. Hmnn, G. Umluf inint to ths fs r C = {,1,,1,...,,m,,m } with p,i = f i {p} for i = 1,..., m n p {, }. Th nw g in T is = (, ). Nxt w fin th onitions for whih G 23 will rsult in vli tringultion. Conition 4 Th tringultion T = (V, E, F, C ) is vli, n ll lls of T hv positiv orinttion. Conition 5 Th gs of B form xtly on simpl yl (v 1,..., v n ). This onition nsurs tht th fs in F r onnt vi gs, tht thr is only on onnt omponnt of fs, n tht th fs form oun 2-mnifol without hols. Exmpls of sts F tht violting Conition 5 r shown in Figurs 9(), 9(), n 9(). Conition 6 All vrtis inint to f in F r on th orr B. Conition 6 th sn of intrior vrtis in F tht r not prt of B. Thos intrior vrtis woul rmov y G 23, ut swp my only moify th onntivity, ut not, rmov, or mov vrtis. Figur 9() shows n xmpl of st F tht violts Conition 6 u to n intrior vrtx. f 1 f 2 f 3 f 11 f 10 f 1 f 2 f 3 f4 f 5 f 6 f 1 f 2 f 3 f 4 f 1 f 2 f 3 f 4 f 9 f 8 f 7 f 4 f5 () Violting Conition 5. Con- () Violting ition 5. () Violting Conition 5. Con- () Violting ition 6. Fig. 9. Exmpls of sts F violting Conitions 5 or 6. Lmm 8. If Conition 6 is stisfi, th numr of vrtis in B is n = m+2. Proof. If Conition 6 is stisfi, F is prtition of B. Consiring Lmm 3 w n onlu m = n 2. Thrfor, n = m + 2. Th G 23 -swp will now rpl th lls C y th lls C = { 1,..., n } with i = (,, v i, v i+1 ) n fs g i = (,, v i ), whr th inx i is unrstoo moulo n. Conition 7 On of th quivlnt following onitions hols:

15 Gnrliz swp oprtion for ttrhriztions All lls i hv positiv orinttion Th ihrl ngl θ i twn th fs g i n g i+1 (in ountrlokwis irtion, sn from in irtion ) is in (0, π). Lmm 9. Conition 7.1. n Conition 7.2. r quivlnt. Proof. i hs positiv orinttion if n only if i is onsistntly orint or nongnrt. This is tru if n only if th innr ihrl ngl θ i is in (0, π). Thorm 3. If Conitions 4, 5, 6, n 7 r mt, th tringultion T = (V, E, F, C) with C = (C \ C ) C (n E n F oringly) is vli. Proof. Du to Conitions 4 n 7.1., ll lls of C hv positiv orinttion. To prov tht thr r no hols in C, w hk for orr fs of th lls of C: Th fs i {p} for p {, } r orr fs of oth C n C. Th fs g i r inint to i 1 n i, i.., g i is not on th orr of C. Thus, thr r no nw orr fs, i.., thr r no hols in C. 6 Rpling Gnrliz Swps y Sris of Bsi Swps In [23] Shwhuk show tht th multi-f rmovl (quivlnt to G 23 ) n g rmovl (quivlnt to G 32 ) n rpl y sris of si 2-3 n 3-2 swps. Th intrmit tringultions r topologilly orrt, ut my ontin inonsistntly orint or gnrt ttrhr. W will show tht thr lwys xists sris of si 2-3, 3-2, n 4-4 swps to mimi th fft of G 23 - n G 32 -swp, whr ll intrmit tringultions r vli. This rsult shows tht th G 23 - n G 32 -swps o not itionl potntil tht is not lry possil with 2-3, 3-2 n 4-4 swps. An optimiztion prour lik simult nnling shoul thortilly l to fin nr-optiml solution lso without utilizing G 23 n G 32. In prti, th onvrgn rt n inrs y implmnting G 23 n G Rpling G 32 Lt n innr g of tringultion T, B th st of orr gs, n F vli prtition of B, so tht th Conitions 1, 2, n 3 for G 32 r stisfi. Thorm 4. Th sm fft s th G 32 swp oprtion of n prtition F n otin y sris of ithr n 3 si 2-3 swps follow y 3-2 swp, or n 4 si 2-3 swps follow y 4-4 swp, for n 4.

16 16 B. Lhnr, B. Hmnn, G. Umluf Proof. W us th sm rgumnts s in th proof of Lmm 7. For n = 3, F onsists of xtly on f f 1, n th vrtis of f 1 irl roun xtly on. Thrfor, th onitions r stisfi to pply 3-2 swp to, so w n sustitut G 32 y singl 3-2 swp. For n = 4, n th singl innr g = (v i, v i+2 ) with i {1, 2} intrsts with, th quriltrl (v i,, v i+2, ) is plnr n onvx, fulfilling th onitions of 4-4 swp. This 4-4 swp rpls y n th four lls of C with th four lls of C. Thus, th G 32 swp n rpl y singl 4-4 swp. If n = 4 n n o not intrst, or if n > 4, thr is t lst on f in F with two gs in B tht os not intrst. Lt this f f j = (v i 1, v i, v i+1 ). As in th proof for Lmm 7, th g = (v i 1, v i+1 ) intrsts th f g i in its intrior, so th lls i 1 n i fulfill th onition for 2-3 swp. This swp rmovs i 1 n i from th tringultion, s,j n,j n tmporry nw ll = (,, v i 1, v i+1 ). Th rmining lls (C \ { i 1, i }) {} togthr with th ru prtition F \ {f j } n th ru orr (B \ {(v i 1, v i ), (v i, v i+1 )}) {} fulfill Conitions 1 3. So, G 32 n ppli to th ru stting. By inution, th ru stting n pross with ithr (n 1) swps, follow y 3-2 swp, or with (n 1) swps, follow y 4-4 swp. Aing th 2-3 swp to rmov f j, th lim follows. 6.2 Rpling G 23 Sin th G 23 oprtion is th invrs of th G 32 oprtion for th sm prtition F, G 23 n rpl y sris of si swps. Thorm 5. Th sm fft s G 23 oprtion of prtition F snwih twn n n otin y sris of ithr singl 2-3 swp, follow y n swps, or singl 4-4 swp, follow y n swps. Proof. Whil G 23 rpls th lls C y lls C, G 32 os th invrs. G 32 n sustitut y sris of si swp oprtions G 32 = s 1 s 2 s m, with m ing ithr n 2 (s m ing 3-2 swp) or n 3 (s m ing 4-4 swp), s in Thorm 4. For th sm hoi of F, w hv G 23 = G 32 1 = (s 1 s m ) 1 = s 1 m s 1 1. Th invrs of 3-2 swp is 2-3 swp n vi vrs, n th invrs of 4-4 swp is orrsponing 4-4 swp. W strt in G 23 with s 1 m, whih is ithr 2-3 swp or 4-4 swp. Thn w pro with ithr n 3 or n swps. 7 Conlusions W hv prsnt iffrnt gomtri onitions for gnrliz swp oprtions 3D tringultion. Ths onitions r prov to quivlnt, suh tht on

17 Gnrliz swp oprtion for ttrhriztions 17 n us tht prtiulr onition in prti tht is most pproprit givn th spifi ns of n implmnttion. In msh optimiztion pplition ths swp oprtions r us to sp up th optimiztion pross n to ttnut gtting stuk in lol minim. Furthrmor, w hv shown tht th gnrliz swp oprtions n rliz y simpl 3-2, 2-3, n 4-4 swps, whih simplifis th implmnttion signifintly. This omposition of th gnrliz swp gurnts t th sm tim, tht ll intrmit tringultions r onsistntly orint n o not ontin gnrt lls, using numril prolms in rtin pplitions. Bs on ths onitions, our futur rsrh plns r fous on pplitions of 3D msh optimiztions,.g., in vio omprssions or io-mil n io-mhnil simultions. Aknowlgmnts This work ws prtly fun y th Grmn Rsrh Fountion (DFG) within th Intrntionl Rsrh Trining Group 1131, Visuliztion of Lrg n Unstrutur Dt Sts t th Univrsity of Kisrslutrn. This work ws lso support y th Ntionl Sin Fountion unr ontrt ACI (CAREER Awr) n lrg Informtion Thnology Rsrh (ITR) grnt. Rfrns 1. N. Amnt, S. Choi, n R. K. Kolluri. Th powr rust, unions of lls, n th mil xis trnsform. Computtionl Gomtry, 19(2 3): , M. Brg, M. vn Krvl, M. Ovrmry, n O. Shwrzkopf. Computtionl Gomtry. Springr, 2n ition, H. L. Cougny n M. S. Shphr. Prlll rfinmnt n orsning of ttrhrl mshs. Int. J. Numr. Mth. Engng., 46: , L. Dmrt, N. Dyn, n A. Isk. Img omprssion y linr splins ovr ptiv tringultions. Signl Pross., 86(7): , L. Dmrt, N. Dyn, A. Isk, n M. Flotr. Aptiv thinning for trrin molling n img omprssion. In N. A. Dogson, M. S. Flotr, n M. A. Sin, itors, Avns in Multirsolution for Gomtri Molling, pgs Springr, Klus Dnkr, Burkhr Lhnr, n Gorg Umluf. Onlin tringultion of lsrsn t. In R. Grimll, itor, Proings of th 17th Intrntionl Mshing Rountl 2008, pgs , N. Dyn, D. Lvin, n S. Ripp. Dt pnnt tringultions for piwis linr intrpoltions. IMA Journl of Numril Anlysis, 10(1): , Jn M. Grln n P. Hkrt. Fst polygonl pproximtion of trrins n hight fils. Thnil rport, CS Dprtmnt, Crngi Mllon Univrsity, M. Grln n P. S. Hkrt. Surf simplifition using quri rror mtris. In SIGGRAPH 97, pgs , M. Grln n Y. Zhou. Quri-s simplifition in ny imnsion. ACM Trns. Grph., 24(2): , H. Hopp. Progrssiv mshs. In SIGGRAPH 96, pgs , 1996.

18 18 B. Lhnr, B. Hmnn, G. Umluf 12. H. Hopp, T. DRos, T. Duhmp, J. MDonl, n W. Stützl. Surf ronstrution from unorgniz points. Computr Grphis, 26(2):71 78, B. Jo. Constrution of thr-imnsionl improv-qulity tringultions using lol trnsformtions. SIAM J. Si. Comp., 16(6): , B. M. Klingnr n J. R. Shwhuk. Aggrssiv ttrhrl msh improvmnt. In 16th Int. Mshing Rountl, pgs 3 23, O. Krylos n B. Hmnn. On simult nnling n th onstrution of linr splin pproximtions for sttr t. IEEE TVCG, 7(1):17 31, C. L. Lwson. Proprtis of n-imnsionl tringultions. CAGD, 3: , B. Lhnr. Mshing Thniqus for Img/Vio Comprssion n Surf Ronstrution. PhD thsis, TU Kisrslutrn, Grmny, B. Lhnr, G. Umluf, n B. Hmnn. Img omprssion using t-pnnt tringultions. In G. Bis, itor, ISVC 2007, pgs , B. Lhnr, G. Umluf, n B. Hmnn. Vio omprssion using t-pnnt tringultions. In Computr Grphis n Visuliztion 08, pgs , H. Prini. An improv rfinmnt n imtion mtho for ptiv trrin surf pproximtion. In Proings of WSCG, pgs , V. Ptrovi n F. Küstr. Optimiz onstrution of linr pproximtions to img t. In Pro. 11th Pifi Conf. on Comp. Grphis n Appl., pgs , L. L. Shumkr. Computing optiml tringultions using simult nnling. CAGD, 10(3-4): , J. R. Shwhuk. Two isrt optimiztion lgorithms for th topologol improvmnt of ttrhrl mshs, Unpulish mnusript, jrs/pprs/g.pf. 24. J. R. Shwhuk. Wht is goo linr lmnt? Intrpoltion, onitioning, n qulity msurs. In 11th Int. Mshing Rountl, pgs , X. Yu, B. S. Mors, n T. W. Srrg. Img ronstrution using tpnnt tringultion. IEEE Comput. Grph. Appl., 21(3):62 68, 2001.

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Polygons POLYGONS.

Polygons POLYGONS. Polgons PLYGNS www.mthltis.o.uk ow os it work? Solutions Polgons Pg qustions Polgons Polgon Not polgon Polgon Not polgon Polgon Not polgon Polgon Not polgon f g h Polgon Not polgon Polgon Not polgon Polgon

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids

On Local Transformations in Plane Geometric Graphs Embedded on Small Grids On Lol Trnsformtions in Pln Gomtri Grphs Em on Smll Gris Mnul Allns Prosnjit Bos Alfro Grí Frrn Hurto Pro Rmos Euro Rivr-Cmpo Jvir Tjl Astrt Givn two n-vrtx pln grphs G 1 = (V 1, E 1 ) n G 2 = (V 2, E

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

3 Simplicial Complexes

3 Simplicial Complexes CS 468 Wintr 2004 Simpliil Complxs Afr Zomoroin Comintoris is th slums of topology. J. H. C. Whith (ttr.) 3 Simpliil Complxs In th first ltur, w look t onpts from point st topology, th rnh of topology

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

CONSTRAINED TRIANGULATION: APPLICATION TO HEX-DOMINANT MESH GENERATION

CONSTRAINED TRIANGULATION: APPLICATION TO HEX-DOMINANT MESH GENERATION ONTRINE TRINGULTION: PPLITION TO HEX-OMINNT MEH GENERTION tvn J. Own nsys,in. nonsurg P. U... stv.own@nsys.om TRT ounry-onstrin tringultion hs long n th omin of luny msh gnrtion. nothr pplition for onstrin

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

WORKSHOP 6 BRIDGE TRUSS

WORKSHOP 6 BRIDGE TRUSS WORKSHOP 6 BRIDGE TRUSS WS6-2 Workshop Ojtivs Lrn to msh lin gomtry to gnrt CBAR lmnts Bom fmilir with stting up th CBAR orinttion vtor n stion proprtis Lrn to st up multipl lo ss Lrn to viw th iffrnt

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Uniform 2D-Monotone Minimum Spanning Graphs

Uniform 2D-Monotone Minimum Spanning Graphs CCCG 2018, Winnipg, Cn, August 8 10, 2018 Uniorm 2D-Monoton Minimum Spnning Grphs Konstntinos Mstks Astrt A gomtri grph G is xy monoton i h pir o vrtis o G is onnt y xy monoton pth. W stuy th prolm o prouing

More information

ApplMath Sergey Korotov; Michal Křížek On simplicial red refinement in three and higher dimensions.

ApplMath Sergey Korotov; Michal Křížek On simplicial red refinement in three and higher dimensions. ApplMth 2013 Srgy Korotov; Mihl Křížk On simpliil r rfinmnt in thr n highr imnsions In: Jn Brnts n Srgj Korotov n Mihl Křížk n Jku Šístk n Tomáš Vjhoský (s.): Applitions of Mthmtis 2013, In honor of th

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery

A 43k Kernel for Planar Dominating Set using Computer-Aided Reduction Rule Discovery A 43k Krnl for Plnr Dominting St using Computr-Ai Rution Rul Disovry John Torås Hlsth Dprtmnt of Informtis Univrsity of Brgn A thsis sumitt for th gr of Mstr of Sin Suprvisor: Dnil Lokshtnov Frury 2016

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Construction 11: Book I, Proposition 42

Construction 11: Book I, Proposition 42 Th Visul Construtions of Euli Constrution #11 73 Constrution 11: Book I, Proposition 42 To onstrut, in givn rtilinl ngl, prlllogrm qul to givn tringl. Not: Equl hr mns qul in r. 74 Constrution # 11 Th

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Compression. Compression. Compression. This part of the course... Ifi, UiO Norsk Regnesentral Vårsemester 2005 Wolfgang Leister

Compression. Compression. Compression. This part of the course... Ifi, UiO Norsk Regnesentral Vårsemester 2005 Wolfgang Leister Kurs INF5080 Ifi, UiO Norsk Rgnsntrl Vårsmstr 2005 Wolfgng Listr This prt of th ours...... is hl t Ifi, UiO... (Wolfgng Listr) n t ontins mtril from Univrsity Collg Krlsruh (Ptr Ol, Clmns Knorzr) Informtion

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ h ln ony, hrunk th t ihr nr omputr in n nginring nivrsity of shington t omprssion onpts ossy t omprssion osslss t omprssion rfix os uffmn os th y 24 2 t omprssion onpts originl omprss o x y xˆ nor or omprss

More information

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications Proings of th 6th WSEAS Intrntionl Confrn on Miroltronis, Nnoltronis, Optoltronis, Istnul, Turky, My 27-29, 27 32 A Low Nois n Rlil CMOS I/O Buffr for Mix Low Voltg Applitions HWANG-CHERNG CHOW n YOU-GANG

More information

Witness-Bar Visibility Graphs

Witness-Bar Visibility Graphs Mxin Confrn on Disrt Mthmtis n Computtionl Gomtry Witnss-Br Visiility Grphs Crmn Cortés Frrn Hurto Alrto Márquz Jsús Vlnzul Astrt Br visiility grphs wr introu in th svntis s mol for som VLSI lyout prolms.

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information